Universidad Autdnoma del Estado de Hidalgo

Instituto de Ciencias Basicas e Ingenieria

Licenciatura en Ciencias Computacionales

TESIS

Para obtener el grado de Licenciado en Ciencias Computacionales

Propuesta de metodologia para la ingenieria
de software y proceso creativo para el
desarrollo de un videojuego en 2D

Presenta

José Armando Rodriguez Cortez

Director:

M.C.C. Gonzalo Alberto Torres Samperio

Comité tutorial:
M.C.C. Gonzalo Alberto Torres Samperio
Dr. Juan Carlos Gonzalez Islas
Dr. Edgar Olguin Guzman
Mtro. Arturo Curiel Anaya

Universidad Auténoma del Estado de Hidalgo

%Bﬂ Insmulo de Ciencias Bésmas e Ingenieria

chool of Engineering and Basic Sclences

Mineral de la Reforma, Hgo., a 02 de diciembre de 2025

Namero de control: ICBI-D/3057/2025
Asunto: Autorizacion de impresion.

MTRA. OJUKY DEL ROCIO ISLAS MALDONADO
DIRECTORA DE ADMINISTRACION ESCOLAR DE LA UAEH

Con Titulo Quinto, Capitulo Il, Capitulo V, Articulo 51 Fraccion IX del Estatuto General de
nuestra Institucion, por este medio, le comunico que el Jurado asignado al egresado de la
Licenciatura en Ciencias Computacionales José Armando Rodriguez Cortez, quien
presenta el trabajo de titulacion “Propuesta de metodologia para la ingenieria de
software y proceso creativo para el desarrollo de un videojuego en 2D”, ha decidido,
después de revisar fundamento en lo dispuesto en el Titulo Tercero, Capitulo |, Articulo
18 Fraccion IV, dicho trabajo en la reunion de sinodales, autorizar la impresion del
mismo, una vez realizadas |las correcciones acordadas.

A continuacién, firman de conformidad los integrantes del Jurado: /

Presidente: Dr. Edgar Olguin Guzman /%

Secretario: Dr. Juan Carlos Gonzalez Islas / 1

i
Vocal: M.C.C. Gonzalo Alberto Torres Samperio
Suplente: M.C.C. Arturo Curiel Anaya ‘X@»

Sin otro particular por el momento, reciba un cordial saludo.

Mtro. Gabn - //
//
. -y //
GVR/YCC /
Ciudad del Conocimiento, Carretera Pachuca-
N Tulancingo Km. 4.5 Colonia Carboneras, Mineral de la
Reforma, Hidalgo, México. C.P. 42184
Teléfono: 77171720 00 Ext. 40001
“Amor, Orden y Progreso” direccion_icbi@uaeh.edu.mx, vergarar@uaeh edu mx
Wit e
H womD oo T & 4‘\, Y%
H Y 2025 / ‘r"-‘ ‘.:.T"," uaeh.edu.mx
.

Universidad Auténoma del Estado de Hidalgo

Instituto de Ciencias Basicas e Ingenieria
School of Engineering and Basic Sciences

Area Académica de Computacién y Electrénica
Department of Electronics and Computer Scienve

Mineral de la Reforma, Hgo., a 05 de diciembre del 2025

Namero de control: ICBI-AACyE/2746/2025
Asunto: Integracién en el repositorio institucional.

MTRO. JORGE EDUARDO PENA ZEPEDA
DIRECTOR DE BIBLIOTECAS Y CENTROS DE INFORMACION.

Por medio del presente, hago constar que la tesis en formato digital titulado: “Propuesta de
metodologia para la ingenieria de software y proceso creativo para el desarrollo de un
videojuego en 2D”, que presenta el alumno José Armando Rodriguez Cortez con numero de
cuenta 419062, es la version final validada por el Comité Tutorial y cumple con el oficio de
autorizacién de impresion, por lo que solicito su integracién en el repositorio institucional de tesis.

Sin otro particular, me despido de usted.

Atentamente
“Amor, Orden y Progreso”

c

Dra. Anily o Arcega José Armando Rodriguez Cortez
Coordinadora de la Li¢enciatura en TN

Ciencias Computationales

AFA | KGB

'
S Ciudad del Conocimiento, Carretera Pachuca-

v AREA AcADEMICA g TUlancingo Km. 4.5 Colonia Carboneras, Mineral de la
COMPUTACION Y luevzﬁqbrml. Hidalgo, México. C.P. 42184

Teléfono: 52 (771) 71 720 00 Ext. 40052, 40053
“Amor, Orden y Progreso” aacye_lcbi@uaeh.edu.mx, jesus_ordaz @uaeh.edu.mx

WORLD S Times _‘f:’: AT
EErE 20 [&

Contenido

INAICE A FIGUIAS ...ttt ettt ettt et e et et eneeaenaeneas 6
Agradecimientos Y DedICAtOrialcuuueiiiiiiieiiiiee e eereee s eeee s e eraae s s e raaa e 8
RESUMEN....coiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitee e eeeaees 9
F Y o1 £ =T} ST UUUSUPPRRN 10
Tl 1geTo [N TeToiTo] o IR PP PURTUPPRRN 11
ProbIemMALtICA.cooiiii e 12
Propuesta de SOIUCIONuueeeeiiiiceeiieee e e et e e e e e e e e eeeeae e e s e eeeeenennnnnnnnns 14
1.- Adopcion de una Metodologia Agil Adaptada..........c.cceveveevereeveueeeeeeeeeeeeeeeeeeeenee 14
2.- Implementacion de Herramientas Colaborativas Integradasccccceeeeiiinnnnnneee. 14
3.- Establecimiento de Protocolos de Comunicacion y Documentacion.................eeeee.. 15
4.- Prototipado lterativo y Pruebas de Usuario Tempranascccceeeeevvvveeieevvnnnreennnnnn. 15
5.- Evaluacién Continua y Mejora del ProCesouuvveeeeeeiiiiiiiiiicceee e 15
[0 1S3 1) o= Tox o] o PP RPRPRRNt 16
ANTECERABNTES ...t e e e e ettt ee e e e e e ee e et aaa e e s e eeeeeeaanannaeseeeeseennnnnn 18
(0 o] 11 117/ 01 TR 19
(O o] [(A o CT=T o1 T - | PP PP RPPPPPPPPRPPPRPPR 19
ODbjJetiVOS ESPECITICOS ..uvvvvriiiiiiiiiiiiiiiiiiiiiietittteetiteeeeeeteeeaeeaes 19
AlcanCes Y IMItACIONES.....ccoviiiiieee i e e e e e e e e e e e e reaaaee e s e eeeeeennnnes 20
AlCANCES ...ttt e e e e e 20
LIMItACIONES ...cceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitttte ittt eeeseeeseseeaee 20
Capitulo 1 Marco tedrico y Conceptual..................ccccceeeieiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeaas 22
1.1 Ingenieria de Software en el Desarrollo de Videojuegoscccceeeeeveveveicieiicinnnnne. 22
1.1.1 Metodologias de Desarrollo de SOftWareccceevvieeiviiiiiceee e 22
1.1.2 Arquitectura de Software en Videojuegos 2Dccovvveeiceenriiieeiiieceee e 22
1.1.3. Proceso Creativo en el Desarrollo de Videojuegos en 2D..........cccceeeeeeeeiinnnnnnne 23
1.1.3.1 Etapas del Proceso Creativocceeeeeeeeeiiiic s 23
1.1.4. Interseccion entre Ingenieria de Software y Proceso Creativo..........ccccceeuunnnneee. 23
1.1.4.1 Tensiones entre [0 TECNICO ¥ 10 Creativocceevvieeeeiiiiiiceee e 23
1.1.4.2 Metodologias Hibridas y Colaboracion Efectiva..........cccceevviiieiiiiiiieeeniiieeennnne. 24
1.1.5. Herramientas y Tecnologias en el Desarrollo de Videojuegos en 2D 24
1.1.6.- Ingenieria de SOftWareeeiiiiiiiiiiee e 25

1.1.6.1.- Ciclo de vida del Desarrollo de Softwarecccccooeieiiiiiiiiiiiiiiie 25
1.1.6.2.- Principios de la ingeniera de softwarec..coovvvvviiiceen e, 25
1.1.6.3.- Herramientas de la ingenieria de softwareooevveeeeiiiiiiiiiicieeee e, 25
1.1.7.- ProCeS0S CreatiVOS 26
1.1.7.1.- Etapas del Proceso Creativocooovveeiiiiiiiieeeieeeeeeeeee e 26
1.1.7.2.- Técnicas y Estrategias Creativaseuuceeeiiiiiiiiiiiiieee e, 26
1.1.7.3.- Herramientas para el Proceso Creativo.......cccooiveevvviiiceeeiiieeeeeieceee e 26
LR RN @] 111017 Tor (o) o [P PP 27
1.1.8.1.- Tipos de OptimIZaciOnceuuuuuieeiiiieeiiiieee et ee ettt e e e e eeeeeeaaaes 27
1.1.8.2.- Etapas del Proceso de Optimizacioncceevvieeeiiiiiiieieeiieeeeeeeceee e 27
1.1.8.3.- Técnicas y Métodos de Optimizacionccceevieeeviiiiiiieeeeieeeeeeeeeeee e 28
1.1.8.4.- Aplicaciones de la OptimiZacCiOnouvvreieeeiiieeiiiiceee e e e 28
1.1.8.5.- Importancia de la Optimizacioneuveieeeiiieiiiiiceee e e e 29
1.1.9.- Optimizacion de SOftWAre........oeeuuieeiii e e e e 29
1.1.9.1.- Tipos de OptimIZaciOnceuuuueeeiiieeeeeicceee e e e e e e e e eeeeeeanaes 29
1.1.9.2.- Etapas del Proceso de Optimizacion en Softwarecoevvvvvvieeeniiieeennnnee. 30
1.1.9.3.- Herramientas de Optimizacion en Software...........ccccoeeeeeiiieieiiiiiiieee e, 31
1.1.9.4.- Aplicaciones de la Optimizacion de Softwareccccooeoiiiiiiiiiiiiiiiiicee 31
1.1.10.- Desarrollo de VIdEOJUEGOSuuuueeiiiieeiiieiieee e e eeeeeeeeee e e e eeeeeeeee e s e e eeeeeennnes 31
1.1.10.1.- Fases, elementos clave y técnicas de desarrollo.........c..oeveeeveeviieeenriieeennnnne. 31
1.2.- EStado del Arte.....e e 33
Capitulo 2 Metodologiacoooiiiiiiiiiiiiii 35
1.- Modelo €N CaSCATAccceiiiiiiiiiiiiiiiiii e 35
1.1 Fases del Modelo en CasCadaccoovvvuumiiiiiiiiiiiiiiiiiiiiceeeeeeeeeeeeeee e 35
2.- Programacion EXIrema (XP).... ... e e 37
2.1.- Fases de la Programacion EXtremaccoouuuiiiiiiiiiiiiiiiiiee e, 37
3.-DESAITONO AQl......eoeeeeieeeeieeeteeeeeeeee ettt ettt eaens 39
3.1.- Fases del DeSarrollo Alooeeicuiiiiieieeeeeeeeeeeeeeeeeee et 39
LO10FTo [(o T 0o] 0 0] 0= =1 1Y/ P 41
(S t=Tolol (o] gl (=N N4 =] oo [o] (o] =1 - I RPNt 42
Capitulo 3 Disefio Yy DeSArrolloccooiiiiiiiiiiiiiiiiiiiieeeeee e 43
1.-PlanifiCaCioNcoooiiiiiiiiiiii e 43
2.- Desarrollo € ImplementacCion........ivu i it e e e e e e eeas 44

01 ¢CT- TojTe] g e [N O 0T [1= (o H PRSPPI 50

Capitulo 4 ReSUIAdOScoooiiiiiee e e e e e e e s 68
4.1- ENCuestas REALZATASovuuriiiiiiiiieii ettt et et e et e e et et et e e e e e 73
R S - [o [A o= T SRR 74

4.3.- RetrosSpectiva y PrUEbasou ittt e e e et e eeenee 81
Capitulo 5 Conclusiones y trabajo futuroccccvviiee i, 82
GlOSANO ... 84
REfEIENCIAS ... 88

indice de figuras

llustracion 1 Disefo de NIVEI 1 ... e 44
llustracion 2 ENemigo SHMEoovueiiiii e e e 45
llustracion 3 Enemigo Slime de FUEQO...........vveiiiiiiiiiice e 45
llustracidn 4 ObStAcUIO PINChOSuuuiiiiiiiiiiiiiiiiiiei e 46
llustracion 5 Obstaculo Plataformas Elevada............ccooovviiiiiii 46
llustracion 6 Objeto AmMatista..............uuuuiiiiiiiiiiiiii s 47
llustracion 7 Objeto COrazZONuuuuuiuuiiiiiiiiiiiiii e 47
llustracion 8 Punto de transporte 1.........oooooiiiiiiiiie e 48
llustracion 9 Personaje del JUBJOuuuuiiiiiiiiiiiiiiiiiiiiiiiiii e 49
llustracion 10 Punto de TranSporte 2..........oouuueiiiieeee e e e eeeeees 49
llustracidon 11 Codigo Player 1 Parte 1oueeiiiiiiiiiiiiiiiiiiiiiiiie 51
llustracidon 12 Codigo Player Parte 2uuvuuiiiiiiiiiiiiiiiiiiiiiiiie 52
llustracidon 13 Codigo Player 3 Parte 3uuuiiiiiiiiiiiiiiiiiiiiiiiieee 53
llustracion 14 COdigo Player 4 Parte 4uuuuuiiiiiiiiiiiiiiiiiiiiiiiiieieee 54
llustracion 15 Codigo enemigo parte 1.........oovuiiiiiiiiiiiicce e, 55
llustracion 16 Codigo Enemigo Parte 2...........eoiiiiiiiiiiiiicie e 55
llustracion 17 Codigo Enemigo Parte 3..........oeeiiiiiiiiiiiccce e, 56
llustracion 18 Cédigo Parametros del JUEQO........cccoevviiiiiiiiiieieeeeeeecee e, 58
llustracion 19 Cédigo enemigo flama Parte 1., 59
llustracion 20 Cédigo enemigo Flama Parte 2.............ooovviiiiiiiiiiiiicceeeee e, 60
llustracion 21 Cédigo Enemigo Flama Parte 3 ..., 60
llustracion 22 Cédigo Obstaculo con PiCOSccooeeeiiiiiiiiiiiieeeeeeeeeeeee e 61
llustracion 23 Codigo Objeto MoNedasoiiieeiiiiiiiiiicce e, 61
llustracion 24 Codigo Objeto Vidasoooeuvuiiiiiiii e 62
llustracion 25 Cdédigo Objeto Amatistaeeeeeiiiiiiiiiiiiici e, 62
llustracidén 26 Codigo Cambio de NiVeluuuuiiiiiiiiiiiiiiiie 63
llustracion 27 Interfaz de FL StUdiO.........coovviiiiiiiiie e 64
llustracion 28 interfaz BandLabcooooiiiiiiiii e 64
USEracCion 29 NIVEI 2 ...t e e e e e e e e eeeeees 65
I[VEY (=i o] g G TOIN =3 o T=T0 g 1o [0 J O =1 1 1 o] o TR 65
llustracidn 31 Enemigo MUICIElagouuuuuuuiiimiiiiiiiiiiiiiiiiiiiieeeee 66
USEracion 32 NIVEI 3 ... e e e e e et e e e e e e eeenenes 66
llustracién 33 Enemigo ESQUEIETOuuuuiiiiiiiiiiiiiiiii 67
llustracion 34 Modelo UML............ueiiii et e e eeeees 68
llustracién 35 Inicio del prototipo de JUEJOuuueeiiiiiiiiiiiiiiiiiiiiiee 69

llustracion 36 Tutorial del Prototipo........cooveeiiiieii e 70

llustracion 37 Prototipo NIVEl 1 ... 70
llustracion 38 Primer punto de transporte ..o 71
llustracion 39 Prototipo NIVEI 2. 71
llustracion 40 Punto de transporte del segundo nivel............ccooeeiiviiiiiiien e, 72
llustracion 41 Prototipo Tercer NIVlcoooeviiiiiiiii e 72
llustracion 42 Primera preguntaoooueiiiiiiiiie e 74
llustracion 43 Segunda PreguNta............ooooiiiiiiiii e 75
llustracion 44 Tercera PreguUNta..........oceueiiiiiiiie e e e eees 76
llustracion 45 Cuarta PreguNtacoooo i 76
llustracién 46 QUINtA PreguNauuueuiiiiiiii e 77
llustracion 47 Sexta PreguNta..........cooie i 78
llustracion 48 Séptima Pregunta.........ccoov e 78
llustracion 49 Octava PreguNia..............eeeeeeeiiiiiiiiiiii e 79
llustracion 50 NOVENA PreguNta...........uuuuiuuiiiiiiiiiiiiiiiiiiii e 80
llustracion 51 Decima PreguNta................uuueeeieiiiiiiiiiiiiiiee e 80

Agradecimientos y Dedicatoria

Quiero agradecer esto a todas las personas que me ayudaron en todo este proceso,
desde aquel agosto de 2019, hasta hoy dia que estoy terminando este trabajo.

A los amigos que de alguna u otra manera me dieron apoyo en seguir y no rendirme,
aunque creyera que no podria terminarlo.

A mi asesor, que estuvo pendiente en cada revision, en cada correccion y siempre
me guio con paciencia y direccion.

A mi familia por siempre confiar en mi y motivarme a no defraudarlos, a mi tia por
haber confiado en mi, dandome todo tipo de apoyo que estuvo a su alcance.

Y, por ultimo, siendo la persona mas importante en todo este proceso, a mi madre,
que es la razdn por la cual hoy puedo realizar este trabajo, porque gracias a ella,
llegue a este punto de mi vida, porque las veces que tenia que levantarme a las 5
de la mafana para poder llegar puntual a la secundaria ella ya estaba despierta
desde las 4, porque a pesar de que tuve muchos fallos y tropiezos por todo este
camino que tuve desde primaria hasta el nivel universidad, ella jamas me dio la
espalda y me quito su apoyo, aunque muchas veces no lo haya aprovechado como
hubiera debido.

Te dedico esta tesis a ti ma, porque este logro mas que mio, es tuyo porque sin ti,
nada de esto hubiera sido posible, gracias por todo.
Te amo mama.

Resumen

Este trabajo se enfocé en explicar las fases del proceso creativo, el cdmo se crea la
programacién para un prototipo de videojuego en 2D, como funciona la
optimizaciéon, explicar varios tipos de metodologias, y por sobre de todo, la
implementacion de una metodologia hibrida que combina las mejoras practicas del
proceso creativo, y de la ingenieria de software, ya que gracias a las investigaciones
que se hicieron para la creacion de este trabajo, se pudo notar que no hay una
metodologia orientada a la versatilidad y cambios repentinos que puede tener el
proceso creativo sin tener que modificar, retrasar o afectar a la ingenieria de
software, ya que esta no esta tan orientada a esos cambios repentinos.

Lo que se buscd en primera instancia fue estudiar las diferentes metodologias y que
se plasmaran en este trabajo para tener un punto de salida, y de ahi partir hacia lo
que la metodologia buscaba comprobar, si era una buena propuesta de metodologia
para crear un prototipo de videojuego en 2D.

El siguiente paso fue estudiar sobre optimizaciones, herramientas, y procesos de
desarrollos sobre videojuegos, que fue en la parte donde se puso especial atenciéon
para que el prototipo pudiera lograrse dentro del tiempo especificado, ya que al
haber combinado las mejores practicas del proceso creativo y de la ingenieria de
software, se buscaba que los tiempos de cada sprint, tanto de la ingeniera de
software como del proceso creativo se hicieran en menor tiempo, buscando también
aplicar un poco sobre lo aprendido de optimizacion.

Una vez habiendo logrado lo mencionado en el parrafo anterior, se inicié con el
desarrollo del prototipo de videojuego en 2D, que si bien, se encontraron con ciertos
problemas a la hora de su elaboracién, tanto del lado de la ingenieria de software
como del proceso creativo, se manejé el calendario establecido de una manera
brillante por parte de ambos equipos, ya que los sprints se respetaron en su
totalidad, haciendo que ambas partes pudieran trabajar de la mano sin retrasarse
mutuamente.

El proceso de creacion demoro 10 semanas aproximadamente, haciendo una labor
de 6 horas diarias, se tuvo un presupuesto de 500 pesos mexicanos con lo cual,
para el proyecto, se compro un curso de Domestika (Véase referencias) para poder
tener de apoyo adicional al solucionar algunos problemas de programacién que se
tuvieron, el equipo de desarrollo estuvo conformado por una sola persona, al igual
que el equipo creativo, siendo en ambos casos, la misma persona.

Al final, se pudo obtener un prototipo funcional, jugable, escalable y actualizable a
largo plazo, aplicando todo lo estudiado de optimizacion, programacion y, sobre
todo, aplicando la metodologia que se propuso en este trabajo.

Abstract

This work will focus on explaining the phases of the creative process, how the
programming for a 2D video game prototype is created, how optimization works,
explaining various types of methodologies, and above all, the implementation of a
hybrid methodology that combines the best practices of the creative process and
software engineering, thanks to the research that was done for the creation of this
work, it was noted that there is no methodology oriented to versatility and sudden
changes that the creative process can have, without having to modify, delay or affect
software engineering, since it is not so oriented to those sudden changes.

The initial objective was to study the different methodologies and have them
reflected in this work to provide a starting point, and from there, move on to what the
methodology sought to verify: whether it was a good methodology for creating a 2D
video game prototype.

The next step was to study optimizations, tools, and development processes for
video games, which was the part where special attention was paid to ensuring that
the prototype could be achieved within the specified time, since by combining the
best practices of the creative process and software engineering, the goal was to
achieve a shorter time for each sprint, both for software engineering and the creative
process, while also seeking to apply some of what was learned about optimization.

Once having achieved what was mentioned in the previous paragraph, the
development of the 2D video game prototype began, which although they
encountered certain problems at the time of its elaboration, both on the side of
software engineering as well as the creative process, the established calendar was
handled in a brilliant way by both teams, since the sprints were fully respected,
allowing both parties to work hand in hand without delaying each other.

The creation process took approximately 10 weeks, with 6 hours of work per day.
The project budget was 500 Mexican pesos, which is why a Domestika course (see
references) was purchased for the project to provide additional support in
troubleshooting some programming issues. The development team consisted of a
single person, as did the creative team, who were the same person in both cases.

In the end, a functional, playable, scalable, and long-term updatable prototype was
achieved by applying everything studied in optimization, programming, and, above
all, by applying the methodology proposed in this work.

10

Introduccion

Segun Product Hackers (2022), la industria de los videojuegos ha experimentado
un crecimiento exponencial en las ultimas décadas y se encuentra entre las formas
de entretenimiento mas influyentes y rentables del mundo. En este amplio ambito,
los juegos arcade en 2D no solo evocan recuerdos de generaciones de jugadores
anteriores, sino también brindan un legado creativo enriquecedor para los
desarrolladores que buscan innovar en un formato accesible y ampliamente
comprendido, puesto que sigue siendo relevante aun en la actualidad.

El disefio de videojuegos 2D requiere la colaboracion de la ingenieria de software y
los procesos creativos, aunque estos campos pueden desempefiarse de manera
distinta. El proceso creativo se enfoca en la narracion, el disefio visual y otros
elementos fundamentales que impulsan el éxito de un videojuego e impactan la
experiencia del usuario, mientras que la ingenieria de software proporciona lo
necesario para llevar a cabo juegos de manera eficiente, segura y escalable.

El disefio y desarrollo de videojuegos 2D requiere una comprension profunda de los
principios y métodos de ingenieria de software como el control de calidad, la gestion
de versiones y el ciclo de vida. Mientras tanto, debemos establecer un entorno en
el que el concepto se prototipe, evalle y refine hasta que se desarrolle una visiéon
coherente que resuene con el publico objetivo.

Esta investigacion analiza la interseccion de la ingenieria de software y el proceso
creativo ya que busca cubrir las etapas clave del desarrollo de videojuegos 2D vy
analiza las formas mas efectivas de gestionar dichos proyectos.

También analiza herramientas y métodos para convertir lo conceptual en productos
viables, ademas, para garantizar que el producto final no solo cumpla con los
estandares técnicos, sino que también proporcione una experiencia atractiva para
los jugadores, se analizan los desafios comunes que surgen durante el desarrollo
de videojuegos y se proponen métodos para superarlos.

En ultima instancia, el objetivo de este proyecto es proponer un marco tedrico y
practico para aquellos interesados en el desarrollo de videojuegos 2D desde una
perspectiva técnica, creativa o de gestion. Este proyecto busca enfatizar los
aspectos técnicos y creativos que se combinan para crear videojuegos que no solo
funcionan bien, sino que también capturan la imaginaciéon y el interés de los
jugadores.

11

Problematica

El desarrollo de videojuegos 2D, aunque simplificado en comparacion con los
proyectos 3D, plantea desafios importantes que requieren una cuidadosa
integracion de la ingenieria de software y los procesos creativos.
Hablando sobre la ingenieria de software, los desarrolladores enfrentan la
complejidad de crear codigo eficiente, estandar y escalable intentando admitir el
disefio de juegos sin sacrificar el rendimiento ni la estabilidad.
Por otra parte, el proceso creativo requiere una flexibilidad constante, lo que permite
cambios rapidos en el disefio visual, la narracion y la mecanica del juego para lograr
una experiencia final coherente e innovadora.

Uno de los principales problemas que surge durante esta integracion es la falta de
métodos y herramientas capaces de equilibrar los requisitos técnicos y creativos, ya
que tradicionalmente, los proyectos de ingenieria de software se gestionan
mediante métodos estrictos y estructurados, como el desarrollo agil o en cascada,
que priorizan la planificacion detallada y la gestion de riesgos, pero por otro lado, el
proceso creativo suele ser mas complicado y exploratorio, con ideas que
evolucionan y cambian rapidamente, respondiendo con nuevas inspiraciones o
comentarios de pruebas de usuarios.

Lo comentado por Isidro Ros en su nota en muycomputer (2021), los equipos de
desarrollo a menudo enfrentan decisiones dificiles, como elegir entre mantener el
codigo estable o incorporar cambios innovadores que podrian cambiar la estructura
del software, esto puede conducir a un ciclo de desarrollo improductivo en el que la
creatividad se ve limitada por ciertas limitaciones técnicas o el codigo se vuelve
inflado debido a constantes cambios no planificados.

También existe el desafio adicional de la comunicacion entre los equipos técnico y
creativo ya que la falta de un lenguaje comun y de herramientas de colaboracién
eficaces puede provocar malentendidos y desalineaciéon de los objetivos, lo que
repercute negativamente en la calidad y la cohesion del producto final.

Estos problemas pueden llevar a videojuegos que, aunque técnicamente
funcionales, no logran realizar la visién creativa original ni ofrecer una experiencia
de usuario satisfactoria, o por otro lado, puede llevar a videojuegos que logran
realizar la vision creativa original, pero no funcionales del todo técnicamente, por lo
tanto, existe la necesidad de investigar y desarrollar métodos y herramientas que
permitan una integracién perfecta entre la ingenieria de software y los procesos
creativos en el desarrollo de videojuegos 2D.

Es importante encontrar un equilibrio que permita a los equipos técnicos y creativos
trabajar juntos, aumentando la eficiencia y la calidad del producto final sin
comprometer la creatividad ni la estabilidad.

12

Resolver este problema no solo mejorara el desarrollo de videojuegos 2D, sino que
también proporcionara un marco replicable para otros proyectos de la industria de
los videojuegos.

13

Propuesta de solucion

Para abordar la problematica identificada, se propone la inclusion de un marco
metodoldgico hibrido que combine las mejores practicas de la ingenieria de software
con enfoques que promuevan la flexibilidad creativa. Este marco, que
denominaremos "Desarrollo Creativo Agil" (DCA), buscara crear un equilibrio
dinamico entre la estabilidad técnica y la libertad artistica, buscando optimizaciones
en el flujo de trabajo y garantizando la calidad del producto final.

1.- Adopcion de una Metodologia Agil Adaptada

El desarrollo agil ha demostrado ser eficaz en proyectos que requieren iteraciones
rapidas y adaptacion a cambios. Sin embargo, para que sea aplicable en el contexto
del desarrollo de videojuegos 2D, sera necesario ajustar sus principios para permitir
un mayor enfoque en la creatividad. Esto se puede lograr mediante la integracion
de sprints, donde se prioricen las exploraciones artisticas y de disefio antes de pasar
a una implementacion técnica.

En este marco, cada ciclo de desarrollo incluiria:

o Sprints Técnicos: Centrados en la implementacién, optimizacion y pruebas
de caracteristicas del juego.

o Sprints Creativos: Dedicados a la ideacion, prototipado y evaluacion de
aspectos visuales, narrativos y de jugabilidad.

Ambos tipos de sprints se alternarian y estarian interconectados mediante
revisiones conjuntas, asegurando que las decisiones creativas se realicen con una
comprension clara de las limitaciones técnicas, y viceversa.

2.- Implementacion de Herramientas Colaborativas Integradas

Para facilitar la comunicacion y el trabajo conjunto entre los equipos técnicos y
creativos, se propone la adopcién de herramientas de desarrollo que integren la
gestion del codigo con la gestidn de recursos creativos. Plataformas como Github o
GitLab pueden ser expandidas para incluir plugins o integraciones que permitan a
los disenadores visualizar y modificar directamente los elementos de arte, sonido y
disefo narrativo dentro del entorno de desarrollo.

Estas herramientas deberian soportar:

o Versiones Creativas: Permitiendo al apartado creativo iterar en sus disefios
sin interrumpir el flujo de trabajo de los desarrolladores.

o« Comentarios Cruzados: Facilitando la comunicacién donde los equipos
puedan comentar cambios y ajustes, asegurando una alineacién continua
entre la vision creativa y la implementacion técnica.

14

3.- Establecimiento de Protocolos de Comunicacion y
Documentacion

Para reducir los malentendidos y la desalineacion de objetivos, se sugiere la
creacion de protocolos de comunicacion claros y una documentacion accesible para
todos los miembros del equipo. Esto incluiria la definicion de un lenguaje comun que
unifique términos técnicos y creativos, y la utilizacion de herramientas de
documentacion colaborativa como Confluence o Notion.

La documentacion continua y la comunicacion frecuente se estructurarian de la
siguiente manera:

« Reuniones Semanales: Donde se revisen los avances de los sprints
técnicos y creativos, permitiendo ajustes en tiempo real.

« Documentacion Accesible: Esta documentacién se debera actualizar
conforme a los cambios en el disefio y desarrollo, ofreciendo una referencia
constante para todos los miembros del equipo.

4.- Prototipado Iterativo y Pruebas de Usuario Tempranas

Finalmente, se propone un enfoque centrado en el usuario final, mediante la
creacion de prototipos jugables tempranos y la realizacion de testeos de usuarios
frecuentes, estos prototipos permitiran evaluar la coherencia entre la vision creativa
y la experiencia de juego real, junto con posibles problemas antes de que se
integren en la version final del juego.

Los ciclos de pruebas incluirian:

o Pruebas Internas Rapidas: Realizadas al final de cada sprint creativo para
ajustar la direccidn antes de la implementacion técnica.

« Pruebas Externas con Usuarios: En las fases medias del desarrollo, para
recoger comentarios y criticas reales y ajustar las mecanicas de juego y el
disefio basado en las expectativas y preferencias del publico objetivo.

5.- Evaluacion Continua y Mejora del Proceso

El marco DCA debe ser flexible y evolucionar con el proyecto. Por lo tanto, se
recomienda la evaluacién continua de su efectividad a través de retrospecciones
después de cada ciclo completo de sprints técnicos y creativos. Esto permitira
ajustes y mejoras en la metodologia para adaptarse a las necesidades especificas
del proyecto y del equipo.

15

Justificacion
El desarrollo de videojuegos 2D ha resurgido en la ultima década, impulsado por la
nostalgia y el surgimiento de desarrolladores independientes que ven este formato

como una alternativa viable, ya que es una herramienta poderosa y accesible para
ellos.

En la nota de 33bits de Pedro Diaz San Miguel (2019) en la industria de los
videojuegos, los videojuegos 2D siguen siendo una parte importante del
ecosistema, sobresaliendo en géneros como los de plataformas, aventuras, juegos
de rol, entre muchos otros, sin embargo, este proceso de creacién de videojuegos
plantea desafios especificos que requieren una profunda integracion entre la
ingenieria de software y el proceso creativo, ya que la ingenieria de software
proporciona la base técnica necesaria para el desarrollo de videojuegos
garantizando que el cédigo sea solido, escalable y eficiente.

Sin embargo, el éxito de un videojuego no solo depende de su desempenio técnico
sino también de la calidad de la experiencia que brinda al jugador, aqui es donde
entra en juego el proceso creativo, desde el disefio visual hasta la narracién y la
jugabilidad, que son vitales para captar y mantener la atencion del jugador.

Esto crea la necesidad de un marco metodolégico que pueda integrar eficazmente
estos dos campos, ya que los desarrolladores enfrentan el desafio de equilibrar el
rigor técnico con la flexibilidad creativa, un desafio que, si no se aborda
adecuadamente puede resultar en que el producto final sea inconsistente o no
cumpla con la visién creativa original.

Ademas, la falta de herramientas de comunicacién entre los equipos técnicos y
creativos puede provocar malentendidos, doble trabajo y en ultimas instancias,
mayores costos y tiempo de desarrollo.

El desarrollo de videojuegos 2D, aunque mas accesible en términos de recursos
que los videojuegos 3D, sigue siendo un proceso complejo que requiere una gestion
cuidadosa de cada fase del proyecto, es importante que los métodos de ingenieria
de software se adapten para respaldar el proceso creativo y que el proceso creativo
se organice de manera que no afecte la estabilidad técnica del producto final.

Esta propuesta busca contribuir al conocimiento y la practica en el campo del
desarrollo de videojuegos, proponiendo soluciones metodoldgicas que faciliten la
creacion de productos de alta calidad al hacer investigaciones y proponer un marco
hibrido que permita una colaboracion perfecta entre los aspectos técnicos y
creativos del desarrollo de videojuegos 2D, con el objetivo e no sélo mejorar el
proceso de desarrollo sino también mejorar el nivel de resultados del producto,
beneficiando tanto a los desarrolladores como a los jugadores.

Ademas, la creciente accesibilidad de las herramientas de desarrollo y la
popularidad de las plataformas de distribucion digital han permitido que mas

16

desarrolladores independientes ingresen al mercado, haciendo que esto sea aun
mas importante a la hora de crear un marco que simplifique y optimice el proceso
de desarrollo, permitiendo a los creadores centrarse en la innovacion y la calidad
sin toparse con los cuellos de botella técnicos o creativos que suelen surgir en estos
proyectos.

17

Antecedentes

Tomando informacion de la nota anteriormente mencionada de 33bits, durante las
décadas de 1970 y 1980, con la proliferacién de consolas de videojuegos y los
arcades, los videojuegos 2D dominaron la industria, juegos como Pong (1972),
Super Mario Bros (1985) y The Legend of Zelda (1986) no sdélo establecieron
estandares para el disefio de videojuegos, sino que también enfatizaron la
importancia de una arquitectura de software robusta para garantizar la jugabilidad y
la estabilidad del juego.

Aunque estos juegos son visualmente simples en comparacién con los graficos 3D
de las ultimas décadas, fue esta simplicidad la que sentd las bases para el desarrollo
de experiencias interactivas profundas donde la narracion, las imagenes y la
mecanica de juego son esenciales para el éxito.

Con el tiempo, el desarrollo de videojuegos 2D ha seguido siendo importante,
incluso con la llegada de los graficos 3D y las experiencias de realidad virtual, de
hecho, la simplicidad y accesibilidad de los juegos 2D ha permitido que florezcan
los estudios independientes o también conocidos como “indies”, creando obras que
priorizan la innovacion en el disefio, narracién y mecanicas de juego como "Celeste"
(2018) y "Hollow Knight". (2017), que demuestran que los juegos 2D pueden ofrecer
experiencias unicas y complejas como cualquier juego 3D, destacando la
importancia de un enfoque equilibrado entre la ingenieria de software y el proceso
creativo.

En el caso de estudio de Raquel Echeandia en el portal Dialnet menciona que la
ingenieria de software y el desarrollo de videojuegos ha adoptado y adaptado
diferentes enfoques para gestionar la creciente complejidad de los proyectos, la
adopcién de metodologias agiles como la Scrum y Kanban, ha permitido a los
desarrolladores responder rapidamente a los cambios, iterar ideas y mejorar la
colaboracion entre equipos, sin embargo, estos enfoques a menudo se centran en
el dominio técnico lo que hace que se entre en conflicto con la naturaleza
exploratoria del proceso creativo en el disefio de videojuegos.

Por otro lado, el proceso creativo en el desarrollo de videojuegos involucra una
variedad de actividades, desde conceptualizar historias y personajes hasta crear
arte visual y componer la musica, este proceso es de naturaleza iterativa, ya que
las ideas iniciales a menudo se refinan o cambian por completo a medida que
avanza el desarrollo y las pruebas de usuario.

Esta naturaleza flexible y exploratoria del proceso creativo puede chocar con la
rigidez de la metodologia del desarrollo de software, creando tension entre los
equipos técnicos y creativos, aunado a la creciente complejidad de los videojuegos
y la necesidad de mantener coherencia entre la vision creativa y la ejecucion
artistica ha llevado a la busqueda de nuevas formas de integrar estos dos campos.

18

Objetivos

Objetivo General

Desarrollar un marco metodolégico hibrido que integre la ingenieria de
software y el proceso creativo, optimizando el desarrollo de videojuegos 2D,
para mejorar la calidad técnica y la coherencia creativa del producto final.

Objetivos Especificos

1.

Analizar las metodologias actuales de ingenieria de software aplicadas al
desarrollo de videojuegos 2D, identificando sus fortalezas y sus limitaciones
en relacion con el proceso creativo.

Investigar las practicas y enfoques creativos utilizados en la
conceptualizaciéon y disefio de videojuegos 2D, con el fin de identificar los
puntos de roce y conflicto con los procesos técnicos.

Desarrollar y proponer un marco metodologico hibrido que combine aspectos
técnicos y creativos, permitiendo iteraciones rapidas y ajustes flexibles sin
comprometer la estabilidad y escalabilidad del software.

Implementar un prototipo de videojuego 2D utilizando el marco metodoldgico
propuesto en la propuesta de solucion, para evaluar su efectividad en la
integracion de la ingenieria de software y el proceso creativo.

Realizar pruebas y validaciones del prototipo con usuarios y desarrolladores,
recopilando comentarios para refinar el marco metodolégico y asegurar su
aplicabilidad en proyectos futuros.

Documentar las lecciones aprendidas y las mejores practicas derivadas de la
aplicacion del marco metodolégico en el desarrollo del prototipo,
proporcionando una guia para futuros proyectos de videojuegos 2D.

19

Alcances y limitaciones

Alcances

1.

Desarrollo de un Marco Metodolégico: El proyecto enfocara en desarrollar
un marco metodoldgico hibrido que integre la ingenieria de software y el
proceso creativo, disefiado especificamente para el desarrollo de
videojuegos 2D.

Este marco incluira principios y practicas que puedan ser aplicados por
equipos de desarrollo de diferentes tamanos y niveles de experiencia.

Implementacion de un Prototipo de Videojuego en 2D: Se disefiara y
desarrollara un prototipo de videojuego en 2D utilizando el marco
metodologico propuesto. Este prototipo servira como caso de estudio para
validar la efectividad del marco en un entorno real de desarrollo.

Evaluacién y Validaciéon del Marco: Se realizaran pruebas con usuarios y
revisiones por parte de desarrolladores expertos para evaluar la calidad
técnica y creativa del prototipo, asi como la eficacia del marco metodologico
en facilitar la colaboracion entre equipos técnicos y creativos.

Documentacion de Mejores Practicas: La investigacion resultara en la
documentacion de mejores practicas y lecciones aprendidas, proporcionando
una guia que pueda ser utilizada por otros desarrolladores interesados en
aplicar este marco metodoldgico en proyectos futuros.

Enfoque en Juegos en 2D: La investigacion se limitara al desarrollo de
videojuegos en 2D, abordando tanto las especificidades técnicas como
creativas que son unicas para este formato en comparacion con los juegos
en 3D.

Limitaciones

1.

Generalizacién del Marco Metodolégico: Aunque el marco metodoldgico
desarrollado estara disefiado para ser aplicable a una variedad de proyectos
de videojuegos en 2D, su efectividad puede variar dependiendo del tamano
del equipo, los recursos disponibles y la complejidad del proyecto. La
validacién del marco se realizara a través de un prototipo especifico, por lo
que su generalizacion a otros tipos de proyectos o formatos de videojuegos
(como 3D o VR) puede requerir ajustes adicionales.

Recursos Limitados para el Desarrollo del Prototipo: El prototipo de
videojuego en 2D desarrollado como parte de este proyecto estara limitado
por los recursos disponibles, incluyendo tiempo, personal y herramientas.
Esto puede afectar la complejidad y la escala del juego final, lo que a su vez
podria influir en la evaluacion del marco metodoldgico.

20

3. Enfoque en el Proceso de Desarrollo: El proyecto se centrara en el proceso
de desarrollo y la integracion de ingenieria de software y creatividad.
Aspectos relacionados con la comercializacion, distribucion o recepcion en el
mercado del videojuego desarrollado no seran abordados en profundidad.

4. Pruebas y Feedback Limitados: Aunque se planea realizar pruebas de
usuario y revisiones por parte de expertos, el numero de participantes y la
variedad de perfiles pueden estar limitados por la disponibilidad y el alcance
del proyecto. Esto podria restringir la cantidad de feedback obtenida, lo que
podria afectar la validez de las conclusiones.

5. Restricciones Tecnoldgicas: Las herramientas y tecnologias utilizadas
para desarrollar el prototipo estaran limitadas a aquellas accesibles dentro
del marco temporal y de recursos de la investigacion. Esto puede influir en
las decisiones de disefo y desarrollo, asi como en la aplicabilidad del marco
a entornos con diferentes capacidades tecnoldgicas.

21

Capitulo 1 Marco teorico
y Conceptual

1.1 Ingenieria de Software en el Desarrollo de Videojuegos

La ingenieria de software es la disciplina que se ocupa del disefo, desarrollo,
mantenimiento y gestiéon de software de alta calidad. (“;Qué es la Ingenieria de
Software? | COHETE.digital”)

En el contexto del desarrollo de videojuegos, la ingenieria de software proporciona
las bases técnicas necesarias para garantizar que un juego funcione de manera
eficiente, sea escalable y esté libre de errores graves.

1.1.1 Metodologias de Desarrollo de Software

Las metodologias de desarrollo de software como el modelo en cascada, el
desarrollo agil y la programacion extrema (XP) han sido ampliamente utilizadas en
la industria del software. Sin embargo, en el contexto del desarrollo de videojuegos,
especialmente en 2D, se han adaptado ciertas metodologias para acomodar la
naturaleza iterativa y creativa del proceso de disefio.

« Desarrollo Agil: Se ha convertido en una de las metodologias preferidas en
el desarrollo de videojuegos debido a su flexibilidad y capacidad de
adaptacién. Metodologias agiles como Scrum y Kanban permiten a los
equipos de desarrollo iterar rapidamente sobre ideas, integrar el feedback del
usuario y ajustar el enfoque segun sea necesario.

o Programacion Extrema (XP): Aunque XP es menos comun en la industria
del videojuego, algunos de sus principios, como la entrega frecuente de
versiones funcionales del software y la participacion continua del cliente,
pueden ser beneficiosos en proyectos donde la retroalimentacion temprana
y constante es critica para el éxito del juego.

1.1.2 Arquitectura de Software en Videojuegos 2D

Segun arcus-global (2018), la arquitectura de software en los videojuegos en 2D es
fundamental para garantizar que el juego pueda soportar los requisitos de disefo,
como la carga grafica, la fisica del juego y la inteligencia artificial sin tener que
comprometer el rendimiento.

Para esto, se utilizan patrones de disefio como el Modelo-Vista-Controlador (MVC),
que permite una separacion clara entre la loégica del juego, la interfaz de usuario y
la manipulacién de datos, facilitando asi la gestion de cambios y la implementacion
de nuevas funcionalidades.

22

1.1.3. Proceso Creativo en el Desarrollo de Videojuegos en
2D

El proceso creativo en el desarrollo de videojuegos involucra la concepcion, disefio
y refinamiento de ideas que eventualmente se transforman en el producto final. Este
proceso es crucial para definir la estética del juego, su narrativa, y las mecanicas de
juego que lo diferencian en el mercado.

1.1.3.1 Etapas del Proceso Creativo

o Conceptualizacion: En esta fase, se generan las ideas principales del juego,
incluyendo la historia, los personajes, el estilo artistico y las mecanicas de
juego.

e« La conceptualizacion es un proceso iterativo que a menudo involucra
brainstorming, prototipado rapido y discusion entre los miembros del equipo
creativo.

« Diseno y Prototipado: Después de la conceptualizacion, el equipo creativo
desarrolla prototipos que permiten experimentar con las ideas propuestas.
En el caso de los videojuegos en 2D, el prototipado puede incluir el disefio
de niveles, la creacién de arte en pixeles y la implementacién basica de
mecanicas de juego.

« El prototipado es esencial para visualizar como se integraran las ideas en el
producto final y para identificar posibles problemas antes de entrar en la fase
de desarrollo completo.

« Iteracion y Refinamiento: A medida que el proyecto avanza, el proceso
creativo involucra la constante iteracion y refinamiento de los elementos del
juego. Esto puede incluir ajustes en el disefio visual, la narrativa o las
mecanicas de juego, basados en pruebas internas y feedback de usuarios.

1.1.4. Interseccion entre Ingenieria de Software y Proceso
Creativo

La integracion de la ingenieria de software con el proceso creativo es uno de los
mayores desafios en el desarrollo de videojuegos. Mientras que la ingenieria de
software se enfoca en la estabilidad, eficiencia y escalabilidad del codigo, el proceso
creativo requiere flexibilidad y capacidad de adaptacion rapida a nuevas ideas y
cambios de direccion.

1.1.4.1 Tensiones entre lo Técnico y lo Creativo

La principal tension entre la ingenieria de software y el proceso creativo radica en
sus enfoques inherentemente diferentes. Mientras que la ingenieria de software
busca minimizar los riesgos y controlar los cambios para garantizar la calidad del

23

producto final, el proceso creativo a menudo prospera en un entorno donde las ideas
pueden evolucionar y cambiar sin restricciones.

Esto puede generar fricciones en el equipo, retrasos en el proyecto y, en algunos
casos, compromisos que afectan la calidad final del juego.

1.1.4.2 Metodologias Hibridas y Colaboracion Efectiva

Para abordar estas tensiones, se han propuesto diversas metodologias hibridas que
buscan integrar lo mejor de ambos mundos. Estas metodologias combinan la
estructura y las buenas practicas de la ingenieria de software con la flexibilidad y el
enfoque exploratorio del proceso creativo. Un ejemplo de esto es la metodologia
“Desarrollo Agil Creativo” (DAC), que alterna sprints técnicos con sprints creativos,
permitiendo a ambos equipos trabajar de manera sinérgica hacia un objetivo comun.

Ademas, la colaboracion efectiva entre los equipos técnicos y creativos es esencial.
Herramientas colaborativas que permiten la integracion de cdodigo con recursos
creativos, junto con una comunicacion clara y continua, son claves para garantizar
que la vision del juego se mantenga coherente y que el proceso de desarrollo sea
lo mas fluido posible.

1.1.5. Herramientas y Tecnologias en el Desarrollo de
Videojuegos en 2D

El desarrollo de videojuegos en 2D se apoya en un conjunto de herramientas y
tecnologias que facilitan tanto el proceso creativo como la implementacién técnica.

« Motores de Juego: Herramientas como Unity, Godot, y GameMaker Studio
son ampliamente utilizadas en el desarrollo de videojuegos en 2D. Estos
motores de juego proporcionan un entorno integrado donde los
desarrolladores pueden crear, probar y depurar juegos, a la vez que ofrecen
capacidades avanzadas para el manejo de graficos, fisica y sonido.

o Software de Arte y Animacién: Herramientas como Adobe Photoshop,
Aseprite, y Spine son esenciales para la creacion de arte y animaciones en
2D. Estas herramientas permiten a los disefiadores trabajar en pixeles, crear
sprites, y animar personajes y escenarios de manera eficiente.

o Sistemas de Control de Versiones: Git y GitHub son herramientas
fundamentales para la gestién de cédigo y recursos creativos en proyectos
de desarrollo de videojuegos. Estas herramientas permiten a los equipos
trabajar de manera colaborativa, gestionar cambios en el cédigo y mantener
un historial de versiones, lo que es crucial para proyectos en constante
evolucion.

24

1.1.6.- Ingenieria de software

Es la disciplina que se ocupa del diseino, el desarrollo, mantenimiento, pruebas y
evaluacion del software, a diferencia de la programacion pura, esta disciplina se
enfoca en aplicar principios de ingenieria para crear software robusto, eficiente y
mantenible.

1.1.6.1.- Ciclo de vida del Desarrollo de Software

Recoleccion de Requisitos: Identifica y documenta las necesidades del
usuario final y los objetivos del sistema.

Analisis de requisito: Descompone los requisitos para comprenderlos en
detalle y especificar lo que debe hacer el software.

Diseno: Creacion de una arquitectura o estructura del software.
Implementacion (Codificaciéon): Desarrollo del software propiamente
dicho, aqui se escribe codigo en el lenguaje de programacion seleccionado.
Pruebas: Evaluacion del software para identificar y corregir errores,
procurando que cumpla con los objetivos.

Despliegue: Instalacion y puesta en funcionamiento del software en el
entorno del usuario.

Mantenimiento: Actualizaciones, mejoras y correcciones de errores que
puedan surgir una vez que el software se encuentra en uso.

1.1.6.2.- Principios de la ingeniera de software

Se basa en varios principios fundamentales para asegurar que el software resultante
sea de alta calidad:

Modularidad: Dividir el sistema en componentes o0 modulos independientes
para facilitar su desarrollo, mantenimiento y prueba.

Reutilizacion: Uso de componentes de software previamente desarrollados
para reducir costos y tiempo.

Mantenibilidad: El software debe disefiarse para facilitar su mantenimiento
y actualizacién a futuro.

Escalabilidad: Capacidad del software para manejar un aumento en la carga
o volumen de datos sin perdida significativa de rendimiento.

Confiabilidad: El software debe funcionar de manera correcta bajo diversas
condiciones y manejar errores de manera adecuada.

1.1.6.3.- Herramientas de la ingenieria de software

Sistemas de Control de Versiones: Para gestionar cambios en el cédigo
fuente (Como github).

Entornos de desarrollo (IDE): Ofrecen un entorno unificado para escribir,
probar y depurar codigo (Visual Studio, Eclipse).

25

1.1.7.- Procesos Creativos

Es la metodologia que guia el desarrollo de una idea desde la concepcion inicial
hasta la ejecucién final, se caracteriza por ser no lineal, iterativo y a menudo,
involucra tanto la inspiracion momentanea como el analisis racional, a diferencia de
otros procesos este valora tanto la intuicion como la Iégica.

1.1.7.1.- Etapas del Proceso Creativo

Preparacion: Recolectar informacion, investigar y adquirir el conocimiento
necesario sobre el problema o tema en cuestion, se analizan referencias, se
estudian casos previos y se busca entender a fondo el contexto.
Incubacién: Deja que la mente procese la informacibn de manera
subconsciente, durante este periodo las ideas no se trabajan activamente,
pero la mente sigue buscando conexiones.

lluminacién (Insight): Es cuando surge una idea o una solucion, esta fase
a menudo es descrita como la parte mas emocionante y reveladora del
proceso creativo.

Evaluacién: Analisis critico de la idea generada, aqui se evalua si la idea es
factible, si cumple con los objetivos planteados y si es realmente innovadora.
Elaboracion: Es el desarrollo completo de la idea, aqui se pasa de la fase
conceptual a la practica, detallando, refinando y concretando la solucion o la
obra creativa.

1.1.7.2.- Técnicas y Estrategias Creativas

Tormenta de ideas (BrainStorming): Reunir un grupo para generarla mayor
cantidad posible de ideas sin juzgarlas, aqui la cantidad se prioriza sobre la
calidad.

Mapas mentales: Visualizar ideas y conceptos de manera gréfica,
conectandolos de forma jerarquica y encontrando relaciones que no son
obvias a primera vista,

Pensamiento Lateral: Proponer soluciones fuera de lo convencional, a
diferencia del pensamiento logico, el pensamiento lateral fomenta la
creatividad al abordar problemas desde angulos inesperados.

SCAMPER: Técnica que invita a modificar una idea a través de preguntas
clave: Sustituir, Combinar, Adaptar, Modificar, Poner en otro uso, Eliminar,
Reorganizar.

Analogias y Metaforas: Utilizar conceptos o situaciones de otros contextos
para encontrar inspiracién y generar nuevas ideas aplicables al problema en
cuestion.

1.1.7.3.- Herramientas para el Proceso Creativo

Software de Mapas Mentales: Permiten estructurar visualmente las ideas
(MindMeister o Xmind).

26

Plataformas de Colaboracion: Para que equipos creativos puedan trabajar
juntos, compartir recursos y desarrollar conceptos (Miro o Notion).

Diarios Creativos o Cuadernos de Bocetos: Son espacios para capturar
ideas espontaneas, dibujar, escribir o plasmar conceptos sin restricciones.
Generadores de ideas: Aplicaciones o juegos que presentan desafios
creativos o sugerencias para inspirar nuevas ideas.

1.1.8.- Optimizacion
Es un proceso que mejora la eficiencia, rendimiento o efectividad de un sistema,
proceso o solucion, implica encontrar la mejor opcidn posible dentro de un conjunto

de alternativas bajo ciertos criterios especificos como minimizar costos, maximizar
ganancias, reducir tiempo o mejorar la calidad.

1.1.8.1.- Tipos de Optimizacion

Matematica: Utiliza métodos matematicos y algoritmos para encontrar la
mejor solucién a problemas formulados como modelos matematicos, vy
subdivide en optimizacion lineal, que es donde las relaciones entre las
variables son lineales, adecuada para problemas que pueden ser descritos
mediante ecuaciones o desigualdades lineales, la optimizacién no lineal, que
es cuando las relaciones entre variables no son lineales, es mas complejo y
se aplica a problemas con relaciones no proporcionales, Optimizacién entera,
aqui las variables de decision solo pueden tomar valores enteros, se utiliza
en problemas donde las soluciones no pueden ser fraccionadas, como la
planificacion de recursos o el disefio de rutas, y por ultimo Organizacién
Dinamica, que se aplica a problemas en los que la decisién optima depende
de una secuencia de eventos a lo largo del tiempo.

Optimizacion Heuristica: Emplea métodos aproximados que buscan
soluciones venas, pero no necesariamente optimas, es util cuando el espacio
de busqueda es demasiado grande para explorar exhaustivamente.
Optimizacién Multiobjetivo: Se utiliza cuando un problema tiene varios
objetivos que pueden ser conflictivos entre si, como minimizar costos
mientras se maximiza la calidad, busca un equilibrio optimo mediante
técnicas como el frente de Pareto, donde se consideran soluciones que no
son superadas simultaneamente en todos los objetivos.

1.1.8.2.- Etapas del Proceso de Optimizacion

Formulacion del Problema: Definicion claro del problema, objetivos,
variables de decisién y las restricciones, es fundamental identificar que es lo
que se quiere optimizar y en qué condiciones.

Modelo Matematico: Crear un modelo matematico que represente el
problema, incluyendo una funcion objetivo que debe ser optimizado, asi
como las restricciones que limitan las posibles soluciones.

27

Seleccion del método de optimizacion: Elegir la técnica o algoritmo
adecuado segun el tipo de problema.

Resolucién del Problema: Aplicar el método seleccionado para encontrar a
solucion éptima, en esta fase se implementan los calculos o simulaciones
necesarios.

Validaciéon y analisis de resultados: Se comprueba que la solucion
obtenida cumple con los objetivos planteados y as restricciones definidas, se
analiza su la solucion es razonable y se ajustan los parametros si es
necesario.

Implementacioén y Monitoreo: Implementar la solucion en el contexto real y
monitorear su efectividad, si surgen cambios o problemas en el entorno,
podria ser necesario ajustar la optimizacion.

1.1.8.3.- Técnicas y Métodos de Optimizacion

Métodos Exactos: Se encuentra la solucion exacta del problema (Método
Simplex y Método de Branch and Bound, por mencionar algunos)

Métodos Aproximados o Heuristicos: Ofrecen soluciones satisfactorias
cuando los métodos exactos son computacionalmente inviables (Algoritmos
genéticos y recocido simulado).

Métodos de optimizacion Convexa: Se aplican a problemas donde la
funcién objetivo es convexa, lo que asegura que cualquier minimo local es
también el minimo global.

Métodos de Gradiente: Utilizan derivadas para moverse hacia la direccion
de mejora en el espacio de soluciones, como el método del gradiente
descendente.

Programacion lineal y no lineal: Son técnicas clasicas que utilizan
restricciones lineales o no lineales para definir el espacio de busqueda.

1.1.8.4.- Aplicaciones de la Optimizacion

Ingenieria y Disefio: Optimiza estructuras, circuitos electrénicos y procesos
industriales.

Logistica y transporte: Optimizacion de rutas, planificacion de la cadena de
suministro y asignacion de recursos para reducir tiempos y costos.
Finanzas: Maximizacion de beneficios en inversiones, minimizacion de
riesgos financieros y gestion optima de carteras de inversion.
Computacion: Optimizacion de algoritmos para mejorar la eficiencia
computacional, reducir el consumo de recursos y acelerar tiempos de
ejecucion.

28

1.1.8.5.- Importancia de la Optimizacién

e Reduccion de Costos: Minimizar el uso de recursos y los costos
asociados sin comprometer la calidad.

¢ Mejorar la Productividad: Aumentar la eficiencia en procesos y tareas,
reduciendo tiempos y aumentando la calidad del producto final.

e Mejor toma de Decisiones: Ofrecer alternativas claras y precisas para
elegir la mejor opcion bajo las circunstancias dadas.

e Sostenibilidad: En el contexto ambiental, la optimizaciéon permite el uso
eficiente de recursos naturales, reduciendo el impacto ambiental.

1.1.9.- Optimizacion de Software

Busca mejorar el rendimiento del codigo, reducir el consumo de recursos y aumentar
la velocidad de ejecucion, manteniendo o mejorando la funcionalidad del programa.

Abarca una serie de técnicas que van desde la optimizacion a nivel de cédigo fuente
hasta la configuracion de hardware en el que se ejecuta la aplicacion.

1.1.9.1.- Tipos de Optimizacion

A) Optimizaciéon del Rendimiento

Optimizacion de Algoritmos: Mejora la eficiencia de los algoritmos
utilizados, implicando la eleccion de algoritmos con la menor complejidad
computacional posible (O(n), O (log n), etc.), reduciendo el tiempo de
ejecucion y el uso de recursos.

Paralelizacion: Dividir tarea en multiples subprocesos o hilos que se pueden
ejecutar en paralelo, utilizando mejor los recursos del hardware.
Optimizacion de Consultas a Bases de Datos: Redisefar consultas SQL,
optimizar indices y reducir la cantidad de acceso a la base de datos para
mejorar el tiempo de respuesta.

Compilacién y Cédigo Maquina: Ajustar las opciones del compilador para
generar codigo mas eficiente y utilizar optimizaciones especificas de
hardware.

B) Optimizacién del uso de Memoria

Manejo Eficiente de la Memoria: Minimizar el uso de la memoria al evitar
fugar de memoria (memory leaks) y utilizar estructuras de datos que ocupen
menos espacio.

Caching: Guardar temporalmente resultados calculados para evitar calculos
repetidos, mejorando el rendimiento a costa el uso de memoria.
Optimizacién de la Recoleccién de Basura (Garbage Collection): Ajustar
las configuraciones del recolector de basura en lenguajes con manejo
automatico de memoria (Java, C#) para minimizar pausas innecesarias.

29

C) Optimizacion de Coédigo

Eliminacion de Cédigo Muerto: Quitar codigo que no se utiliza o que es
redundante, haciendo que el programa sea mas limpio y eficiente.
Refactorizacion: Mejorar la estructura del codigo sin cambiar su
comportamiento, esto incluye modularizacién, simplificacion de funciones
complejas y mejoras de la legibilidad.

Inlining: Integrar funciones pequefias directamente en el flujo principal del
programa, evitandolo la sobrecarga de llamadas a funciones.

Optimizaciéon de Ciclos: Minimizar la cantidad de iteraciones en bucles o
simplificar la l6gica interna para mejorar la eficiencia.

D) Optimizacion de la Experiencia de Usuario (UX)

Optimizacion del Tiempo de Carga: Minimizar el tiempo que tarda el
software en iniciar o cargar elementos esenciales, optimizando la entrada de
recursos.

Interaccion Fluida: Reducir el tiempo de espera para el usuario al cargar
contenido en segundo plano, usar animaciones suaves y proporcionar
retroalimentacion rapida.

Compresiéon de Recursos: Reducir el tamafo de los archivos (imagenes,
scripts, etc.) que el software necesita cargar, mejorando la velocidad de
carga.

1.1.9.2.- Etapas del Proceso de Optimizaciéon en Software

Identificacion del Problema: Detectar que parte del software necesita la
optimizacién, esto puede involucrar el analisis del rendimiento, la evaluacién
del uso de memoria o la identificacién de cuellos de botella especificos.
Medicion y Analisis: Recopilar datos precisos sobre el rendimiento del
software, usando herramientas como profilers, monitores de memoria y
analisis de tiempos de ejecucion.

Modelado y Ajustes: Aplicar técnicas de optimizacion especificas para
solucionar los problemas identificados, esto puede incluir cambios en el
cbdigo, justes en la configuracion del sistema o la implementacion de nuevas
estructuras de datos.

Pruebas: Validar que las optimizaciones realizadas funciones correctamente
sin afectar negativamente el comportamiento del software, siendo
fundamental realizar pruebas de regresion para asegurar que no se
introduzcan nuevos errores.

Monitoreo Continuo: Después de la optimizacién es importante seguir
monitoreando el rendimiento para detectar posibles problemas futuros o
identificar nuevas oportunidades de mejora.

30

1.1.9.3.- Herramientas de Optimizacion en Software

Profilers: Permiten identificar cuellos de botella en el cédigo y areas que
sonsumen mucho tiempo o recursos (VisualVM, Perf, gprof, JProfiler).
Analizadores de Memoria: Para identificar fugas de memoria 0 uso
ineficiente (Valgrind, Memory Analyzer y HeapDump).

Pruebas de Carga y Rendimiento: Para evaluar como responde el software
bajo diferentes cargas de trabajo (JMeter, Gatling o LoadRunner).

Sistemas de Caching: Permiten implementar caching efectivo para
mejorarel rendimiento (Redis, Memcached, Varnish).

Minificadores y Compresores: Reducen el tamafo del codigo JavaScript o
imagenes para mejorar la velocidad de carga (UglifyJS o ImageOptim).

1.1.9.4.- Aplicaciones de la Optimizacion de Software

Aplicaciones Web: Mejora del tiempo de carga, optimizacidén de peticiones
HTTP, reduccion del tamarfio de archivos y optimizacion del manejo del DOM.
Aplicaciones Moéviles: Minimizacién del uso de bateria, reduccion del
tamano de la aplicacion, optimizacion del rendimiento grafico y mejora de la
capacidad de respuesta.

Software Empresarial: Optimizacidén de consultas a bases de datos, gestion
eficiente de la memoria en servidores y mejora de la escalabilidad para
manejar grandes volumenes de datos.

Sistemas Embebidos: Uso eficiente de recursos limitados, como memoria
y CPU, optimizacion del consumo energético y maximizacion del rendimiento
en dispositivos con hardware restringido.

Videojuegos: Optimizacién del rendimiento grafico, mejora de la fisica, y
simulaciones en tiempo real, minimizacion de latencia y optimizacién del uso
de la GPU.

1.1.10.- Desarrollo de Videojuegos

Es un proceso complejo y multidisciplinario que abarca desde la conceptualizacion
de una idea hasta la creacion de un producto interactivo final que puede ser jugado
en diferentes plataformas.

Involucra a profesionales de diversas areas, como la programacion, el disefo
grafico, la musica, la narrativa y la gestion de proyectos, quienes colaboran para
crear una experiencia de juego envolvente y entretenida.

1.1.10.1.- Fases, elementos clave y técnicas de desarrollo
A) Conceptualizacién y Preproduccién

Idea inicial: La creacion de un videojuego inicia con una idea o concepto en
general, este concepto incluye una revisidén basica el tipo de juego, ya sea
accion, aventura, RPG, la historia, ambientacion y la estética.

31

Documento de Concepto: Se elabora un documento que recoge la idea
principal, incluyendo detalles sobre la narrativa, los personajes, el disefio
visual, las mecanicas de juego y los objetivos, este documento sirve como
guia inicial para todo el equipo.

Prototipado Rapido: Se desarrollan prototipos basicos del juego para probar
las mecanicas fundamentales y verificar si la idea es viable, en esta fase se
experimenta y se ajustan aspectos esenciales del disefio antes de
comprometerse a una produccion completa.

Planificacion del Proyecto: Se establece un plan detallado que incluye el
cronograma de desarrollo, la asignacion de tareas, los recursos necesarios y
los hitos importantes, esto implica identificar el motor de juego que se
utilizara, plataformas destino, el presupuesto y el tiempo estimados.

B) Diseio del Juego

Mecanicas de Juego.

Diseiio de Niveles.

Narrativa y Disefio de Personajes.
Diseio de Arte y Estilo Visual.

C) Produccién

Programacion y Desarrollo de Software: Los programadore implementan
las mecanicas de juego y la légica que define el comportamiento del mundo
virtual.

Graficos y Animacion: Los artistas graficos crean los modelos 3D o los
sprites 2D, texturas y elementos visuales que conformaran el aspecto del
juego.

Audio y Musica: Los disenadores de sonido crean efectos de audio, dialogos
y ambientaciones sonoras que enriquecen la experiencia del juego.

D) Pruebas y Depuracién

Pruebas de Jugabilidad: Se hace una evaluacion de la jugabilidad,
buscando problemas mecanicos.

Pruebas de Rendimiento: Se realizan pruebas para medir el rendimiento
del juego en diferentes dispositivos.

Depuracion y Correccion de Errores: Se corrigen errores detectados
durante las pruebas, se ajustan las mecanicas de juego y solucionan
problemas de estabilidad.

32

1.2.- Estado del Arte

El proyecto de titulacion de Carrasco Juan, Ramirez Luis, Duarte Andrés y Barrera
Jesus tiene como objetivo atraer a potenciales aspirantes a la carrera de ingenieria
de sistemas y computacion mediante la creacion de un videojuego, ya que se
percataron que la cantidad de aspirantes a dicha carrera ha ido cayendo con el
pasar de los afos, mencionando un estudio realizado por MinTic en 2015.
(Rodriguez et al., 2019)

Se menciona que en ese estudio una de las principales causas de que la carrera no
tenga tantos aspirantes como en otros afios es por la forma en como se esta
mostrando la carrera, dando a los potenciales aspirantes una idea totalmente
equivocada sobre esta misma, dando paso a que dichos aspirantes busquen otra
carrera que se les haga mas atractiva con respecto a la anteriormente mencionada.

Con eso en mente, desarrollaron un videojuego para demostrar que la carrera de
sistemas y computacion no es como se ha llegado a dar entender, incluso
demostrando que puede ser divertida buscando asi llegar a personas que no tengan
un total entendimiento de como es esa carrera, y demostrar a las que si lo tengan
que no es como imaginaban.

Este trabajo es especial, por la capacidad que tiene de demostrar con la creacion y
la implementacion de un videojuego que ciertas cosas no son como se pueden llegar
a imaginar o como incluso, se pueden llegar a platicar, ademas de que demuestra
que los videojuegos no solo funcionan como un medio de entretenimiento o
distraccién, si no que también como un medio educativo y de divulgacion
informativa.

Félix Etxeberria Balerdi (2009)

El trabajo de Félix Etxeberria Balerdi (2009) llama la atencion, ya que a diferencia
de muchos otros trabajos consultados para el proceso de creacidn de este proyecto,
no habla sobre procesos de desarrollo, ni de metodologias, si no sobre lo que en
realidad es un videojuego, explicando sus inicios, historia, como han ido
evolucionando, ofreciendo tablas de porcentajes desde que tipos de videojuegos
son los enfoques preferidos de las personas, como violencia fantastica, deportivos,
educativos, estando estos ultimos en ultimo lugar con un pobre 2%.

También proporciona una tabla de los mejores juegos de 1997 junto con una tabla
que proporciona el gusto tanto de nifias como de nifios, aunando una tabla que
proporciona el tiempo de juego de cada uno, de la fuente de Funk (1993).

Pero no solo se queda ahi la investigacion de Félix Etxeberria Balerdi, si no que
profundiza mas mencionando la psicologia del aprendizaje y videojuegos,
mencionando que lo fundamental es que una tarea tenga el suficiente atractivo o
motivacién para promover el aprendizaje.

33

Y se considera que esto es cierto, ya que hoy en dia muchas personas tildan a los
videojuegos de que no aportan nada bueno dentro del aprendizaje, dejando de lado
que los videojuegos pueden proporcionar muchas facilidades al aprendizaje, y a
actividades motrices, con consolas como la Wii, o los sistemas de realidad virtual.

Aparte de todo esto, también hace una mencioén sobre influencias negativas que
pueden proporcionar los videojuegos, como la violencia, sexismo, sociabilidad,
creatividad entre varios otros, haciendo que esto en particular sea algo destacable,
ya que no muchos trabajos mencionan estas partes negativas que un videojuego
puede tener si no se sabe manejar de manera correcta, haciendo que se le deba
poner especial atencion a estos detalles.

Ana Ma Manrubia Pereira (2015)

En el trabajo de Ana Ma Manrubia Pereira llamado “El proceso productivo del
videojuego: fases de produccion” (2015), menciona la importancia de los
videojuegos en los ultimos afios, haciendo que su proceso de desarrollo sea una
parte fundamental en su creacion.

Explica la proceso de produccion de los videojuegos, iniciando por la preproduccién
iniciado en el concepto de juego, que es una de las partes mas importantes a la
hora de crear un videojuego, ya que aqui es cuando se decide el género, se crea la
historia y se hacen los bocetos de los niveles, o espacios donde el personaje
interactuara asi como también el gameplay, que es la parte mas importante de un
videojuego, ya que de esta depende si sera un videojuego innovador, que aporte
cosas nuevas a los videojuegos, y también de esta dependera si el juego es un
éxito, o no.

Una vez terminada esta parte es cuando se puede pasar al apartado de produccion,
iniciando con el disefio de juego, que es donde se especifican los elementos que
compondran al juego, y después se inicia el disefio artistico para implementar la
historia, creacion de sonidos, musica, efectos, etc. Las interfaces que se tendran en
el producto, y los graficos.

El trabajo es interesante porque ayudo a ser una guia en el proceso que este
proyecto estaba teniendo, si bien los sprints ayudaron demasiado, tener una
cronologia de creacion como la de este trabajo, ayudo para poder saber como
guiarse a la hora de ir terminando esos sprints.

34

Capitulo 2 Metodologia

1.- Modelo en Cascada

Esta es una de las que fueron las primeras metodologias formales de desarrollo de
software, ocupa un enfoque secuencial que sigue una estructura rigida y
organizada, donde cada fase del proyecto debe de completarse antes de pasar a la
siguiente, se le llama “cascada” por qué tiene la similitud con el agua de una
cascada, ya que el flujo del trabajo avanza en una sola direccion, hacia adelante.

1.1 Fases del Modelo en Cascada
Requisitos

Se recopilan y documentan todos los requisitos del proyecto o producto a
desarrollar.

Los requisitos deben ser totalmente entendidos y ser definidos claramente antes de
continuar.

Diseio del Sistema

A partir del punto anterior, se disefa la arquitectura del proyecto, incluyendo las
especificaciones de hardware y software, asi como el disefo de la base de la
estructura de la aplicacion.

Implementacion

En esta fase, los programadores traducen el disefio en codigo, creando el sistema
o producto.

Aqui se desarrolla el cédigo fuente y se integran los modulos desarrollados para
formar el sistema completo

Pruebas

Después de que el sistema haya sido implementado se realiza una fase de pruebas
exhaustivas para asegurarse de que el software funcione segun los requisitos y esté
libre de errores.

Despliegue

Después de que el sistema ha sido probado y verificado, se implementa en el
entorno real donde sera utilizado por los usuarios finales.

35

Mantenimiento

Después del despliegue, el sistema entra en la fase de mantenimiento, donde se
realizan correcciones de errores y mejoras segun sea necesario.

El modelo en Cascada presenta varias ventajas y desventajas que deben ser
consideradas. Entre los aspectos positivos, destaca su claridad y estructura; gracias
a su enfoque secuencial, cada fase cuenta con un inicio y un final claramente
definidos, lo que facilita la planificacion y el seguimiento del progreso. Ademas,
fomenta una documentacion extensa en cada etapa, lo que mejora la comprension
del proyecto y facilita la transferencia de conocimiento, sirviendo como referencia
para el futuro.

La naturaleza predecible y lineal del modelo también simplifica la gestion de
proyectos, permitiendo a los integrantes del equipo evaluar hitos especificos y
realizar un seguimiento efectivo del avance y el presupuesto. Este enfoque resulta
especialmente adecuado para proyectos pequefios donde los requisitos son bien
conocidos, claros y poco propensos a cambios.

Sin embargo, el modelo en Cascada también presenta inconvenientes significativos.
Uno de los mas destacados es su falta de flexibilidad; si surgen cambios en los
requisitos durante fases posteriores, adaptarse a ellos puede resultar costoso y
complicado, ya que el modelo no contempla la retroalimentaciéon continua ni la
modificacion de los procesos en curso. Ademas, la poca retroalimentacion del
cliente puede ser un problema, ya que este solo tiene acceso al producto final una
vez que se ha completado la implementacién, o que puede generar sorpresas o
insatisfaccion si los resultados no cumplen con sus expectativas.

Asimismo, dado que las pruebas se realizan solo después de la implementacion, los
errores o fallos pueden no detectarse hasta etapas avanzadas del proyecto,
complicando su correccion. Por ultimo, este modelo no es adecuado para proyectos
complejos o con requisitos cambiantes, ya que su estructura secuencial dificulta la
adaptacién a cambios imprevistos.

36

2.- Programacion Extrema (XP)

Esta es una metodologia agil enfocada en mejorar la calidad del software y la
capacidad de respuesta a los cambios de requisitos, desarrollada en la década de
1990 por Kent Beck y se basa en una serie de buenas practicas que buscan mejorar
la eficiencia el desarrollo de software a través de ciclos rapidos y comunicacion
constante.

2.1.- Fases de la Programacion Extrema
Planificacion

Se define el alcance del proyecto mediante las llamadas “historias de usuario” que
describen las funcionalidades que el cliente desea, y a partir de esto, el equipo
estima el tiempo necesario para cada tarea y se organizan las iteraciones.

Disefo
En disefio siempre se mantiene lo mas simple posible, lo que significa que el equipo

solo construye lo que es necesario para satisfacer al usuario, también se usan las
técnicas llamadas “disefo guiado por pruebas”.

Codificaciéon
El equipo trabaja en pares, lo que significa que dos desarrolladores colaboran en

una misma estacion de trabajo, y mientras uno esta escribiendo el codigo, el otro lo
revisa en tiempo real, promoviendo la calidad de dicho codigo desde un inicio.

Pruebas

Esta metodologia tiene un fuerte enfoque en las pruebas, ya que se realizan
pruebas automatizadas y unitarias desde el principio del ciclo de desarrollo, y cada
funcionalidad tiene que pasar dichas pruebas para ser considerada completa.

Entrega

Al final de cada iteracion, se entrega una versién funcional del software que puede
ser aprobada y revisada por el cliente, asegurando que el software ese siempre en
un estado utilizable y que se pueda mejorar en funcion de feedback recibido.

La programacién extrema (XP) presenta una variedad de ventajas y desventajas
que vale la pena considerar. Entre sus aspectos positivos, destaca su capacidad de
respuesta rapida a cambios, ya que su flexibilidad permite adaptarse rapidamente
a nuevos requisitos o a cambios en las prioridades del cliente. Asimismo, la mejora
continua del proyecto es fundamental; las entregas frecuentes y la retroalimentacién
constante facilitan la realizacion de ajustes, asegurando que el producto evolucione
conforme a las expectativas del cliente.

37

Ademas, XP promueve una alta calidad del cédigo. Gracias a la programacion en
pareja y al enfoque en pruebas automatizadas, se reducen los errores desde las
primeras etapas del desarrollo. Otro beneficio es la simplicidad en el disefo, que
evita la creacion de cédigo innecesariamente complejo, facilitando el mantenimiento
y reduciendo la probabilidad de errores a largo plazo. Finalmente, esta metodologia
fomenta un ambiente de trabajo dinamico y participativo, lo que puede incrementar
la motivacion y el compromiso del equipo.

No obstante, la programacion extrema también presenta desventajas. Una de las
mas significativas es que puede ser dificil de implementar en equipos grandes; esta
metodologia funciona mejor en grupos pequefos y altamente colaborativos,
mientras que, en equipos mas grandes, la coordinacion y la comunicacion pueden
volverse complicadas.

Ademas, requiere una alta participacion del cliente en el proceso de desarrollo, lo
que puede ser problematico si el cliente no dispone del tiempo o de los recursos
necesarios para colaborar de manera continua.

Otro riesgo es la posible falta de planificacion a largo plazo; el enfoque en
iteraciones cortas y entregas rapidas puede llevar a descuidar la planificacion futura,
lo que podria ocasionar problemas de escalabilidad o integracion en etapas
posteriores del proyecto. Aunque la programacion en pareja tiene sus beneficios, no
todos los desarrolladores se sienten comodos trabajando de esta forma, y en ciertas
circunstancias, puede ralentizar al equipo. Por ultimo, el enfoque intensivo en
pruebas automatizadas y de unidad puede incrementar los costos de desarrollo,
especialmente si se requiere tiempo adicional para crear y mantener los entornos
de prueba.

38

3.- Desarrollo Agil

Esta metodologia se centra en la flexibilidad, colaboracion y la entrega incremental
de software funcional, creada debido a las limitaciones de los enfoques mas
tradicionales como el modelo en cascada anteriormente mencionado en el
documento, y basado en los principios del manifiesto agil, el principal objetivo es
entregar valor al cliente de manera rapida y efectiva, ajustandose a los cambios en
los requisitos a lo largo del proyecto.

3.1.- Fases del Desarrollo Agil

Planificacion del Sprint

Esta metodologia se organiza en iteraciones cortas llamadas sprints, generalmente
de 1 a 4 semanas, durante la planeacion el equipo selecciona las historias de
usuario que se van a desarrollar durante el sprint.

Desarrollo e Implementacién

Durante el sprint, el equipo trabaja en la implementacion de las historias elegidas,
el equipo tiene autonomia para resolver problemas y ajustar el cédigo en funcion de
los cambios que se vayan encontrando.

Revision del Sprint

Al final de cada sprint, el equipo revisa lo que ha completado y presenta un software
funcional al cliente. Esta entrega de software permite que el cliente pruebe el
sistema pueda dar feedback sobre él.

Retrospectiva

Después de la revision, el equipo se reune para discutir lo que funciona bien, lo que
no funciona bien y como se puede mejorar en el préximo sprint, con el objetivo de
aprender y mejorar continuamente.

Pruebas

A lo largo del proceso se desarrollan pruebas continuas, a menudo automatizadas
para asegurar la calidad del software, estas pruebas garantizan que cada
funcionalidad agregada no rompa el sistema y cumpla con los requisitos.

El desarrollo agil ofrece multiples ventajas y desventajas que es importante
considerar. Entre sus pros, la flexibilidad ante el cambio se destaca como una de
las mayores fortalezas, ya que permite adaptarse a modificaciones en los requisitos
en cualquier momento del proyecto. Ademas, la entrega continua es un aspecto
fundamental; cada sprint genera un software funcional, lo que significa que el cliente
puede recibir avances incrementales a lo largo del desarrollo, permitiendo realizar
ajustes basados en una retroalimentacion rapida.

39

La mejora continua es otra ventaja, ya que las reuniones de retrospectiva permiten
identificar problemas y optimizar procesos, aumentando la eficiencia del equipo.
Ademas, la alta colaboracion y transparencia son caracteristicas esenciales; el
cliente esta involucrado activamente en cada fase del proyecto, lo que genera una
comunicacion fluida y proporciona visibilidad sobre el estado de este.

Finalmente, esta metodologia tiende a aumentar la satisfaccion del cliente, ya que
las entregas frecuentes y la participacion en el desarrollo le otorgan un mayor control
sobre el producto final, reduciendo el riesgo de que el resultado no cumpla con sus
expectativas.

Sin embargo, el desarrollo agil también presenta desventajas. Una de ellas es la
falta de previsidon a largo plazo; al centrarse en sprints cortos y entregas rapidas,
puede haber una carencia de planificacién estratégica, o que podria generar
problemas en la integracidon o escalabilidad del sistema. Ademas, requiere un
compromiso activo del cliente, ya que el éxito de la metodologia depende de su
participacion frecuente. Si el cliente no tiene tiempo para colaborar o proporcionar
retroalimentacion, el proyecto puede desviarse de su rumbo.

Otro inconveniente es la dificultad para estimar el tiempo y el costo total del
proyecto. La naturaleza iterativa del proceso complica la prediccion precisa de
cuanto tiempo y presupuesto seran necesarios para completarlo. Asimismo, la
priorizacion de la creacidn de software funcional sobre la documentacion puede
resultar en una falta de informacidn detallada, lo que puede dificultar el
mantenimiento a largo plazo del sistema. Por ultimo, si no se gestiona
adecuadamente, el enfoque agil puede dar lugar a una sensacion de caos o
desorganizacion, especialmente en equipos que no estan familiarizados con esta
metodologia.

40

Cuadro Comparativo: Metodologias de Desarrollo de Software en

Cuadro Comparativo

Videojuegos en 2D

Aspecto Desarrollo Agil Programacion Modelo en
Extrema (XP) Cascada
Enfoque Flexibilidad y Calidad del cédigo Estructura
Principal adaptabilidad y colaboracion secuencial y
mediante ciclos continua. planificacion
iterativos. detallada.
Ciclo de lteraciones lteraciones rapidas Fases
Desarrcllo rapidas (sprints) con integracién secuenciales

con entregas

continua y pruebas

(analisis, disefio,

incrementales. frecuentes. implementacion,
pruebas).
Documentacion Documentacion Documentacion Documentacion
minima ligera, enfocado en extensay
necesaria, la codificacion y detallada en cada

enfocado en el
trabajo en equipo.

pruebas continuas.

fase.

Flexibilidad Alta flexibilidad Alta flexibilidad en Baja flexibilidad,
para adaptarse a la integracién de cambios en fases
cambios y nuevos cambios durante el avanzadas son
requisitos. desarrollo. dificiles.

Gestion de Gestion mediante Gestion basada en Gestion estricta

Proyectos reuniones diarias la retroalimentacion con un enfoque

¥ revision de
sprints.

constante y ajustes
técnicos.

en la planificacion
inicial.

Colaboracidon

Comunicacidn
continua entre los
miembros del
equipo y clientes.

Colaboracian
cercana entre
desarrolladores y
clientes para
ajustes constantes.

Comunicacidn
estructurada y
formal entre los
equipos.

Enfoque en la

Mejora continua

Enfoque en la

Control de calidad

Calidad del producto a calidad del codigoy al final de cada
traves de la funcionalidad fase del proyecto.
revisiones y mediante pruebas
feedback] frecuentes.

Adecuacidén Adecuado para Beneficioso para Menos adecuado

para proyectos con proyectos que para proyectos

Videojuegos en cambios requieren alta gque necesitan

2D frecuentes en el calidad técnica y flexibilidad
disefioy cambios rapidos. creativa.
mecanicas.

Ejemplos de Jira, Trello, Herramientas de Herramientas de

Herramientas herramientas de integracion gestién de
integracion continua, sistemas proyectos

continua (Cl).

de control de
versiones.

tradicionales.

41

Eleccién de Metodologia

La metodologia elegida para este proyecto fue la metodologia agil, ya que se
adaptaba bien a los objetivos y resultados que se buscaban alcanzar. Esta
metodologia se caracteriza por su enfoque en la documentacion no excesivamente
detallada y la realizacion de sprints iterativos para la produccion de cada
componente del proyecto. Sin embargo, se realizaron algunas modificaciones para
alinearla con el proceso creativo mencionado anteriormente, evitando asi posibles
fricciones y permitiendo un trabajo contintio, llamandola “Proceso Creativo Agil” o
DCA para abreviar dentro de este documento. Aunque se presentaron ligeras fallas,
el enfoque se mantuvo funcional y no impacté negativamente en los tiempos ni en
la produccién del proyecto.

42

Capitulo 3 Diseno y
Desarrollo

La metodologia que se escogio fue la metodologia agil modificada para el DCA, hay
que tener en cuenta que el proyecto fue hecho por una sola persona, asi que cada
vez que nos refiramos al equipo creativo, el equipo de desarrollo o el compositor de
musica, sera la misma persona.

También resaltar que algunos de los assets se tomaron de un curso que se compro
en Domestika, ya que por falta de conocimiento en el pixel art, y tiempo de desarrollo
se optd por hacerlo asi, pero no sin antes dar gracias a Domestika por la gran ayuda
que esto proporciono al prototipo de videojuego en 2D que se planteo.

1.-Planificacion del sprint

Durante 2 semanas se estuvo analizando que es lo que se queria lograr con la
metodologia anteriormente mencionada, haciendo esas modificaciones para que el
proceso creativo pudiera ir de la mano junto con la ingenieria de software sin tener
que esperar a saber que se habia hecho o que no, lo primero fue ajustar fechas
para cada parte del proyecto, incluyendo disefios de nivel, escenarios, jugabilidad,
mecanicas de juego, disefio de enemigos, disefio de plataformas y disefio de
fondos, por decir lo mas importante.

El equipo creativo tuvo como meta planificar como seria la mecéanica de juego, ya
que analizo que sin eso no tendrian un punto de salida para el desarrollo total del
juego, el prototipo de juego se basé en una mecanica de mundo libre, no lineal,
queriendo decir que podrias ir de un punto A, a un punto C, o de un punto B a un
punto A, no que forzosamente se tuviera que seguir un orden lineal, para asi, poder
hacer mas dinamica la jugabilidad de exploracion.

También se optd por disefiar una mecanica plataformera como los clasicos juegos
en 2D, tales como Kirby, Mario Bros, o Hollow Night, por mencionar algunos, aparte
de que se busco que fuera por niveles, como se menciond antes, asi que se tenia
que disefar cada nivel, y lo mas importante, como se pudiera avanzar o regresar a
otro nivel.

El equipo de desarrollo, o de ingenieria de software, se dedic6 a hacer la
programacién en base a las mecanicas de jugabilidad que el equipo creativo
planteo, si bien se encontraron con varios problemas que mas adelante se van a
abordar, el trabajar mediante sprints iterativos hizo que esto no significara una
demora que afectara los tiempos propuestos para el calendario que se planteé.

43

2.- Desarrollo e Implementacion

Ilustracion 1 Disefo de Nivel 1

El primer nivel conceptualizado fue un escenario ambientado en un bosque (véase
llustracién 1), ya que, segun la historia desarrollada para el protagonista, este debia
atravesar un bosque antes de llegar a los siguientes niveles. Para este nivel se
disefié una mecanica de plataformas sencilla, con saltos y enemigos basicos, con
el objetivo de que el jugador pudiera familiarizarse con las mecanicas del juego. Los
enemigos fueron seleccionados cuidadosamente para armonizar con la
ambientacion del bosque.

El primer enemigo disefiado fue una criatura tipo Slime (llustracién 2), que podia ser
eliminada al saltar sobre ella. Se introdujo una variacion en la que algunos Slimes
requerian un segundo salto para ser derrotados. Como es habitual en los
videojuegos, eliminar a estos enemigos otorgaba puntos al jugador. El dafio que
infligen ocurre unicamente cuando el jugador se acerca demasiado, quitandole un
corazon de vida.

44

Illustracién 2 Enemigo Slime

El siguiente enemigo disefado para este nivel fue una flama (llustracion 3), una
version mutada del Slime que, de ser inofensiva, se convirti6 en una amenaza
peligrosa.

La mecanica propuesta para este enemigo se centraba en evitarlo a toda costa, ya
que no podia ser eliminado. Al contrario, cualquier contacto con la flama resultaria
en la eliminacion instantanea del jugador.

Ilustracion 3 Enemigo Slime de Fuego

45

Aunque los enemigos principales eran solo dos, el equipo sintié que el prototipo
necesitaba un mayor desafio. Para lograrlo, decidieron agregar obstaculos, como
los pinchos (llustracion 4). Al igual que la flama, estos eliminaban al jugador con
solo tocarlos, pero tenian la ventaja de ser estaticos, lo que permitia al jugador
esquivarlos con mayor facilidad y continuar explorando el nivel sin complicaciones.

Ilustracidon 4 Obstaculo Pinchos

El siguiente obstaculo disefado fueron plataformas que requerian saltos, como es
comun en este tipo de juegos (llustracién 5). Sin embargo, al implementarlas,
surgié un error que llevd al equipo creativo a buscar una solucion. Como resultado,
se introdujo una nueva mecanica en el juego: el doble salto, activado solo cuando
el jugador estuviera cerca de una pared. Ademas, se establecio un limite de un
salto extra por plataforma, permitiendo repetirlo solo después de volver a tocar el
suelo.

Illustracion 5 Obstaculo Plataformas Elevada

46

El equipo creativo también consideré que explorar un nivel sin una motivacion
adicional resultaria mondtono. Por ello, decidieron incorporar elementos que
incentivaran la exploraciéon completa del escenario. se afiadieron monedas de oro,
que los jugadores podrian recolectar, asi como corazones que restaurarian 1 punto

Ilustracion 7 Objeto Corazén

Illustracion 6 Objeto Amatista

47

de vida, ademas, se incluyeron objetos mas valiosos, las amatistas, que otorgarian
una mayor cantidad de puntos y vidas adicionales (llustraciones 6 y 7).

Inicialmente, para los cambios de nivel, se habia pensado en un "botén" que, al
saltar sobre él, transportara al jugador al siguiente nivel vinculado. Sin embargo, se
considerd que esto rompia con la estética de mundo abierto del juego. En su lugar,
se optd por implementar una zona que, al tocarla, teletransportara al jugador al nivel
programado (Imagen 8). Esta solucién aumentaba la inmersion, permitiendo que el

Illustracion 8 Punto de transporte 1

48

jugador accediera a los nuevos niveles ya sea caminando o cayendo, haciendo la
mecanica mas dinamica.

Para sefalizar estos puntos de transporte, se afadié un cartel (llustracion 9), de
manera que el jugador pudiera identificar estas areas sin ser tomado por sorpresa.

Ilustracion 10 Punto de Transporte 2

Y finalmente, pero no menos importante, el personaje principal (llustracién 10).
Para su disefio, el equipo creativo decidié utilizar un asset adquirido en un curso de
Domestika (véase en referencias), ya que encajaba con la visidon que tenian para el
juego. Aunque originalmente se considero crear un personaje desde cero, debido a

Ilustracion 9 Personaje del Juego

49

las complicaciones mencionadas al inicio de este apartado, se opto por usar este
recurso, agradeciendo nuevamente a Domestika por el material proporcionado.

El personaje principal contaria con diversas mecanicas: la habilidad de saltar,
moverse tanto hacia la derecha como hacia la izquierda, realizar un doble salto
cuando estuviera cerca de una pared para alcanzar zonas mas altas del nivel, y una
hitbox de recoleccion. Esta hitbox permitiria al personaje tanto dafiar a los enemigos
susceptibles al ataque, como recoger monedas de oro, corazones y amatistas
distribuidas por los diferentes niveles.

Creacion de Codigo

Una vez definido todo lo anterior, fue el turno del equipo de desarrollo para convertir
las ideas del equipo creativo en algo funcional. Para ello, eligieron Unity como la
plataforma en la que comenzarian a crear el entorno y desarrollar las mecanicas
planteadas. Unity, al utilizar C# como lenguaje de programacion por defecto, facilitd
que el equipo continuara con este lenguaje, aprovechando sus beneficios para el
desarrollo de juegos. El cédigo fue editado y creado en Visual Studio, seleccionado
por su simplicidad y practicidad, lo que permitia un mejor control sobre el proceso
de programacion.

El primer paso fue programar al personaje, ya que este constituiria la base sobre la
cual se implementaria el resto de las funcionalidades. El equipo se asegur6 de que
todo lo demas interactuara correctamente con el cdédigo del personaje, realizando
ajustes para corregir errores o afinar ciertos detalles, con el objetivo de mantener
un cédigo limpio y eficiente.

50

El cédigo denominado "Player" (llustracion 11) fue el mas extenso de todos los que
se programaron, ya que centralizaba la mayor parte de las interacciones del jugador.

Illustracion 11 Codigo Player 1 Parte 1

La primera parte son todas las librerias que Unity necesita para poder compilar y
hacer funcionar lo que se llegue a programar, se pueden anadir mas librerias para
diferentes casos, como lo veremos mas adelante.

En la segunda parte de mas abajo se programaron todas las variables que el
personaje iba a tener, como las vidas, variables booleanas para saber si se estaban
en ciertos estados, fuerza de salto, el radio del hitbox que se menciond
anteriormente, animaciones para poder hacer que el personaje tenga un dinamismo
y no solo este estatico como una imagen, y textos de vida y puntaje.

En la funcion Start (llustracion 12) se cargan todos los parametros iniciales, que
serian las animaciones, el rigidbody para las fisicas, tipo gravedad del personaje,
colisiones, etc.

En la funcidbn update, es para el apartado que va a ir actualizando el
comportamiento del personaje, como el movimiento, ya que la mayor parte del

51

movHor = Input.c Horizontal");
isMoving = (movHor != Bf.

isGrounded = Physics2D.C

ast(transform.position, radius, Vector3.down, groundRayDist, groundLayer);

wn(KeyCode. Space))

isMoving);
, isGrounded);

flip(movHor);

Ilustracion 12 Codigo Player Parte 2

cbdigo que aqui podemos ver es del movimiento, y que pasa cuando hacemos click
sobre la tecla asignada para que el personaje salte o se mueva de manera horizontal

52

o verticalmente click sobre la tecla asignada para que el personaje salte o se mueva
ya sea de manera horizontal o verticalmente.

La funcion FixedUpdate (llustracion 13) funciona para corregir algunos errores de
movimiento que puedan llegar a ocurrir al momento que la funcién Update hace el
compilado dentro del prototipo de videojuego.

rb.velocity = (movHor * speed, rb.velocity.y);

jump()
(!isGrounded)

rb.velocity =

flip(_xValue)
th le = transform.localScale;

(_xValue < 8)
theScale.x = Mathf.Abs(theScale.x) * -1;

(_xvalue > @)
theScale.x = Mathf.Abs(theScale.x);

transform.localScale = theScale;

Ilustracion 13 Codigo Player 3 Parte 3

La funciéon Jump controla la velocidad de salto, tanto de inicio como de caida, la
funcioén flip hace que el personaje detecte cuando se quiere ir a la izquierda y se
“voltee” hacia la izquierda y viceversa, si voltea hacia la derecha, girara hacia la
derecha.

La funcién getDamage funciona para que el contador de vidas baje si el personaje
recibe dafo, al igual que tiene un condicional que si el personaje llega a 0 vidas el
juego se reinicie.

La funcion get vidas (llustracion 14) funciona para que se pueda agregar en la
funcion UpdateLivesText para poder poner un texto con un contador de vidas visible
en la interfaz de la pantalla que se actualiza al momento de recibir dafo con la

53

lives;

addLive()

lives+t;
UpdatelivesText():

(lives > Game.obj.maxLives)
lives = Game.obj.maxLives;

Updatel ivesText()

livesText.text = "Vidas:

Ilustracion 14 Codigo Player 4 Parte 4

funcion antes mencionada, o que se actualice también con la funcion addLives que
seria cuando el personaje recoge una vida adicional, también teniendo un
condicional que para que no llegue a mas de una cantidad establecida dentro de los
parametros del personaje que se declararon mucho mas arriba

El siguiente cdédigo que se programo fue el de los enemigos (llustraciéon 15), como
se puede observar tiene las mismas librerias que la de Player, pero en algunos
parametros cambian, ya que aqui se coloca que tenga movimiento por si solo,

54

respetando de izquierda a derecha, que el enemigo haga un check si aun hay
plataforma delante de él, y si no, que cambie de direccion.

Se le asigno un RaycastHit para que pueda ir analizando si no hay un precipicio
delante de él y no se caiga alterando asi la experiencia de juego que se buscaba
conseguir.

t = 8.801f;

ive = 58;

hit-

Ilustracion 15 Cédigo enemigo parte 1

Este codigo fue uno de los mas complejos de programar por las mecanicas que se
le buscaron dar al enemigo, que seria el hecho de que cheque si aun queda
plataforma delante de él, que pueda revisar si hay un precipicio delante de él y la
mas importante que el equipo de desarrollo pensd, que cambie de direccién cada

.position.y - floorCheckY, transform.pesit: z), (movHor, @, 8), frentGrndRayDist, groundlLayer));

CmowHor, ©, 8), frontCheck, groundLayer))

movHor * fromtCheck, transform.position.y, transferm.positien.z), (movHor, 8, 8), frontDist);

Illustracion 16 Cddigo Enemigo Parte 2

55

vez que se encuentre con otro enemigo, para que asi no se queden atascados a la
mitad de una plataforma (llustracién 16).

En este apartado (llustracion 17) ya se trabajan los comportamientos que se tendran
al interactuar con el enemigo, desde que te haga dafio en la funcién
OnCollisionEnter2D, que el enemigo sea eliminado con la funcién
OnTriggerEnter2D y dentro de esta funcion se tiene un condicional para que el

Fix date()
rb.velocity = (movHor * speed,rb.velocity.y);
OnCollisienEn collision)
(collision.gameObject.Com yer”))
£

Player.obj ();

‘Enter2D(
(collision.gameObject.gameObject.CompareTag("Player"})

etKilled();

(collision.gameDbject.Com

e(scoreGive);

llustracion 17 Codigo Enemigo Parte 3

56

enemigo sea eliminado y te dé el puntaje que se haya establecido en la parte de
mas arriba.

Y, por ultimo, la funcién getKilled funcionaria para “desactivar’ al enemigo y que no
siga apareciendo.

57

Este codigo (llustracion 18) se hizo para poder controlar parametros dentro del
juego, como que se actualice la puntacion cada vez que se elimine un enemigo y
que se vaya mostrando en pantalla en tiempo real.

gamePaused =
UpdateScoreText

scoreGive;

Text();

- G;jﬁuntﬁjéc)

n score;

g&r@:v;y()

SceneManager.

UpdateScoreText()

scoreText.text = "

Ilustracion 18 Codigo Parametros del Juego

58

La funcion gameOver se hizo para que reiniciara el nivel y se pudiera volver a
intentar, también dentro del codigo se coloca la cantidad de vidas maximas que el
personaje va a poder tener, cada vez que el juego se llegase a pausar, entre varias
otras cosas que se complementan con otros codigos que se van a ir mencionando
0 que ya se mencionaron.

El siguiente codigo que se programo fue el del enemigo flama (llustracién 19), ya
que como se menciond en el apartado de proceso creativo se buscaba que su
comportamiento fuera diferente al del enemigo comun, asi que en algunas cosas se
va a parecer al enemigo comun, como el hecho de que haga un check para saber
si hay enemigos delante de él, o si hay un precipicio y cambie de direccidn, la
velocidad de movimiento que va a tener, etc.

scoreGive = 58;

llustracion 19 Cédigo enemigo flama Parte 1

En esta parte es muy parecido a lo que tiene el enemigo comun (llustracién 20), con
algunas modificaciones para que no sea parecido, ya que sigue teniendo el efecto
de que no caiga en un precipicio, 0 cambie de direccion en una pared, y también
cambie de direccion cuando choque con un enemigo, pero tiene la funcion agregada
de flip, ya que por el disefo que se obtuvo del enemigo flama, cada vez que
cambiaba de direccion solo quedaba viendo hacia un lado, asi que se le puso la
mecanica de que rotara el sprite como lo hace el personaje, pero se tuvo el reto de
hacerlo de cierta manera automatico, ya que el enemigo flama al igual que el comun,

59

se mueve por si solo, y a diferencia con el personaje Player, no tenia una tecla que
se pudiera vincular con ese cambio de posicion.

date()

(transform.position.x, transform.position.y — floorChecky, transform.position.z), (movHor, ©, 6), frontGrndRayDist, groundLayer));

(movHor, @, 8), frontCheck, groundLayer))

movHor * frontCheck, transform.position.y, transform.position.z), (movHor, 6, @), frontDist);

(collision.gameObject

Player.obj.g

ansform. LocalScale;

athf.Abs(theScale.x) * —1;

(_xval >
theScale. .Abs(theScale.x);

transform.localScale = theScale;

getKilled()
llustracion 21 Cédigo Enemigo Flama Parte 3

Todo el trabajo que se hizo para poder lograr ese cambio de direccion en el enemigo
se logré en la funcidn flip (llustracion 21), que funciona de manera similar a la del
personaje player, pero se modificé para que detectara cada vez que el enemigo
cambiaba de direccion para que también pudiera trabajar el cambio de vista del
sprite, rotdndolo 180 grados dando la sensacion de que el personaje gira y tiene un
uso de razén pequefio, aparte de que como se menciond, se buscaba que el
enemigo eliminara el personaje con solo tocarlo, asi que dentro de la funcion es
OnTriggerEnter2D, se le coloco que haga una comparacion de la Tag del Personaje
para asi poderlo eliminar con solo tocarlo que es lo que se queria.

El siguiente cbédigo que se programo fue en de los obstaculos con picos que se
mencionaron mas arriba (llustracién 22), el codigo por si solo solo fue un copy paste

60

de la funcion que se programo6 mas arriba llamada getKilled, solamente haciéndole
unas modificaciones para que funcione de manera correcta.

OnCollisionEnter2D(

(collision.gameObject.Com

Game.obj. r();

Ilustracion 22 Codigo Obstaculo con Picos

Los siguientes cédigos que se programaron fueron los de las vidas y de las monedas
que se podian ir recogiendo a lo largo del nivel

gameObject. SetActive

Illustracion 23 Cédigo Objeto Monedas

Este cddigo es para las monedas (llustracion 23), y como se puede observar solo
se les agrego una funcién OnTriggerEnter2D para que reaccionen cuando el Player
pase por sobre ellas y asi puedan dar el puntaje que se le haya colocado,

61

afiadiéndolo al texto que se tiene en la interfaz y desactivando dicho objeto para
que no vuelva a aparecer en el juego.

Llision)

g ("Player”]))

re(scoreGive);

ive(];

gameObjoct. SetActive(J;

Ilustracion 24 Codigo Objeto Vidas

Y este otro codigo es para las vidas (llustracion 24), como se puede apreciar, da
puntaje, pero también agregar una vida al contador de vidas dentro de la interfaz

(collision.gameObject.Co

Game . obj Score(scoreGivel;
Player.obj.addLive();

gameObject . SethActive(

Ilustracion 25 Codigo Objeto Amatista

62

con un condicional cada vez que se toque, pero, asi como con la moneda, se
eliminara del juego para que no se pueda volver a tomar.

El cédigo de la amatista es el mismo que el de la vida (llustracion 25), pero con el
parametro scoreGive modificado para que dé mas puntaje, pero en general no
cambia en nada mas que no sea eso.

Y por ultimo se programé el cambio de nivel (llustracidon 26), para poder viajar de
cualquier nivel que se quisiese a otro nivel, siempre y cuando se encontrase el punto
de ese cambio.

OnTr

f (other.C

SceneManager.lLoad (nombreDelLaEscena) ;

Ilustracion 26 Codigo Cambio de Nivel

En este cddigo se anadié la libreria SceneManagement, que ayudaria con ese
cambio de nivel que se buscaba poder lograr, y al igual que en otros cddigos se usé
una funcion OnTrigerEnter2D para poder activarla y poder ir al nivel que tenga
ingresado en el parametro nombreDelLaEscena.

Para la musica se us6 la plataforma online BandLab (llustracion 28), porque fue la
que mas se prestaba al uso de plugins y dispositivos midi que se necesitaban para
la creacion de audio, y para la masterizacion, mezcla de audios y edicion se usé el
software FL Studio (llustracion 27), con la musica lo que se buscé conseguir era que

63

sintiera adecuada a lo que estaba pasando en los diferentes niveles también
afadiendo un poco de la imaginacion del compositor de cada cancion que se uso.

FILE EDIT ADD PATERNS VIEW OPTIONS 100ts He? () il Ao 32w wo 1:07:00"

Z- = 3

¢ Chann

-

llustracion 27 Interfaz de FL Studio

Nuevo proyecto

llustracion 28 interfaz BandLab

Para el segundo nivel se penso en la idea de un nivel de destreza (llustracion 29),
que se tuviera que saltar en el tiempo correcto, y se terminé de idealizar en un nivel
de ciudad intentando esquivar camiones que estuvieran sobre las plataformas, para

64

asi poder ir avanzando, y a diferencia de los enemigos del nivel 1, en el nivel 2 no
desaparecerian, haciendo un poco mas complejo el hecho de que se tenga que
investigar todo el nivel.

Illustracion 29 Nivel 2

Se siguieron usando las vidas, monedas y amatistas que mas arriba se
mencionaron, Unicamente se disefid a manera de que las plataformas significaran
un desafio para el jugador, ya que en este nivel no habria enemigos, pero si habra
obstaculos, que en este caso serian camiones, que no se eliminan del juego, solo
se pueden evitar saltando a tiempo para evitar ser golpeados por ellos.

El disefio el camion se pensd simple (llustracion 30), pero pensado para que
encajase en lo que se buscaba transmitir al jugador, una sensacién de que pudiera
0 no pudiera llegar a esquivarlo si no saltaba a tiempo, para su cédigo de

Illustracion 30 Enemigo Camidn

65

funcionamiento se reutilizo el del enemigo flama, unicamente desactivando los
parametros que quitara todas las vidas al tocarlo.

Para el tercer nivel y siguiendo la historia que se planteé (llustracion 31), se disefid
el nivel en base a un castillo que, los enemigos serian murciélagos y esqueletos, y
las plataformas estarian un poco acomodadas dando la alusién a las torres de
vigilancia que tenian los castillos

Los enemigos tienen las mismas mecanicas que el nivel 1, solo se pueden eliminar
a los esqueletos cayendo sobre ellos (llustracion 33), y los murciélagos no se
pueden eliminar (llustracion 32) y también te quitarian todos tus corazones con solo

llustracion 32 Nivel 3

Ilustracion 31 Enemigo Murciélago

66

tocarte, asi que igual que, con el enemigo flama, seria mejor solo correr y tratar de
esquivarlos

Illustracion 33 Enemigo Esqueleto

67

Capitulo 4 Resultados

Como se menciond, se busco que la ingeniera de software pudiera trabajar de la
mano con el proceso creativo creando una metodologia hibrida tomando las buenas
practicas de cada apartado, asi que como se mostrara en la llustracion 34, se cre6

un modelo UML a seguir para poder trabajar y respetar esto mismo que se queria
consequir.

Inicio del Proyecto

!

Recopilacién de Requisitos Iniciales

l

Definicién de Historias de Usuario

i

Priorizacién del Backlog

Planificacién del Sprint \

(1-4 semanas)

‘Metodologia Agil Modificada
Y
Metodologia Agil Modificada:

- Iteraciones Cortas
Disefio Iterativo del Sistema - Feedback Continuo

- Priorizacién Basada en el Cliente
l - TDD para Asegurar Calidad

Desarrollo del Videojuego

l

Desarrollo Guiado por Pruebas (TDD)

l

Pruebas Continuas y Feedback de Usuario

l

Integracién Continua de Funcionalidades

\

Feedback Répido del Cliente

N\

Revisién del Sprint y Presentacion

\

Retrospectiva y Ajustes

6 Entrega de Funcionalidad Finalizada

llustracion 34 Modelo UML

El prototipo se termind en un tiempo aproximado de 9 a 10 semanas, haciendo
reuniones cada 4 semanas para informar avances, depurar errores y compartir
nuevas ideas, o hacer observaciones.

68

Pendiente

Al “

Ilustracion 35 Inicio del prototipo de juego

El prototipo de videojuego 2D funciono de manera correcta en su primer apartado
que seria el menu principal (ilustracion 35), mediante el raton se puede seleccionar
un nuevo juego, ir a las opciones o a los créditos.

Al iniciar un nuevo juego, se empieza el tutorial por el cual el jugador conocera
cuales son los controles del juego (llustracion 36).

69

Para moverte utiliza las v
teclas A y D del teclado E

)

Ilustracidn 36 Tutorial del prototipo

El tutorial explica mecanicas del prototipo para que el jugador pueda conocer cuales
son los controles del juego, asi como conocer algunas mecanicas del juego, y una
vez terminado el tutorial se puede jugar el prototipo con normalidad.

Score: 50

' | Midas: 2

Ilustracion 37 Prototipo nivel 1

Como se puede observar en la ilustracién 37, el prototipo funciona con normalidad,
se puede ver el puntaje y cuantas vidas se tienen, al igual que el mapa que se
implementd para poder saber a dénde se puede ir.

70

Score: 100

=" Vidas: 2

Ilustracidon 38 Primer punto de transporte

En la imagen 38 se puede ver uno de los puntos de transporte para poder llegar al
siguiente nivel si el jugador asi lo desea, o puede seguir explorando el nivel para
poder encontrar el segundo punto de transporte del nivel.

Ilustracion 39 Prototipo Nivel 2

En la ilustracion 39 se muestra el segundo nivel, aqui se busca aclarar que se tuvo
un problema con algunos assets del prototipo y se perdieron los fondos del segundo
y tercer nivel, pero se pudo rescatar el nivel funcional.

71

Score: 1310

Vidas: 5

Illustracion 40 Punto de transporte del segundo nivel

Score: 0

Vidas: 3

Ilustracion 41 Prototipo Tercer nivel

Como se puede ven en las ilustraciones 40 y 41, al usar los puntos de transporte y
puede llegar a otro nivel, no siendo al azar, si no teniendo ese nivel vinculado para
poder saber a donde se esta yendo cuando se vuelva a llegar a ese punto de
transporte.

72

4.1- Encuestas Realizadas

Se realizo una encuesta en Google Forms a personas que ocuparon la metodologia
propuesta, para poder saber en que pudiera mejorar y en qué aspectos pudo ayudar
mas a los desarrolladores que optaron por el uso de esta metodologia en sus
proyectos.

Se usaron diferentes preguntas de control, tales como:
- ¢, EI DCA se acoplo a tu metodologia de trabajo?

- ¢ Facilito el proceso creativo dentro de tu proyecto?

Y algunas otras preguntas de satisfaccion:

-En escalade 1 a 10, ¢ Qué tan probable es que recomiendes el uso de este tipo de
desarrollo?

- ¢ Usarias el DCA para futuros proyectos tuyos donde se vea involucrado mas el
proceso creativo?

Se hizo esto con el fin de poder saber que beneficios tiene la metodologia
propuesta, en que partes puede no ser muy apta para el desarrollo de aplicaciones,
y en que otras partes puede ser muy buena para este tipo de propésito.

Se buscaron desarrolladores que iniciaban con algun proyecto pequeno, o que ya
tenian un proyecto iniciado y que pudieran incorporar partes de esta metodologia,
esto con el fin de que se pudiera tener una clara idea de en qué ayudo, y en que
beneficio a un desarrollo, asi como también poder saber las debilidades que tiene
esta metodologia y para que también se pudiera poner a prueba en otro tipo de
proyectos que no sean solo videojuegos.

Aparte de que no se buscaba que este trabajo estuviera solo fundamentado en el
trabajo que se propuso en el aplicativo que se realizd, si no tener mas feedback
sobre esta metodologia de diferentes tipos de desarrolladores, ya que no todos
trabajan de la misma manera, o trabajan solos. Siendo eso una gran ayuda para
poder impulsar el crecimiento de esta metodologia enfocada al proceso creativo.

73

4.2- Estadisticas

Se les dio a 5 desarrolladores independientes contestar la encuesta después de
que pudieran implementarla en algun proyecto pequefio, o introducirlas dentro de
proyectos que ya tuvieran algun tiempo de desarrollo para saber que tan flexible
fue el trabajar con la metodologia.

De los 5 desarrolladores 3 proyectos integraron la metodologia desde 0, se
desconoce si fue solo esa metodologia o la combinaron con otro tipo de
metodologias que pudieran afectar o beneficiar a la productividad de la
metodologia propuesta en este documento.

La primera pregunta fue:

¢EI DCA se acoplo a tu metodologia de trabajo?
5 respuestas

Si 4 (80%)

No 1(20%)

Illustracion 42 Primera pregunta

Como se puede apreciar en el grafico, 4 de los 5 desarrolladores pudieron acoplar
la metodologia al tipo de proyecto que estaban trabajando.

De las 4 respuestas afirmativas 3 fueron de desarrollos iniciales y la restante fue
de un desarrollo que ya estaba en curso.

La unica respuesta negativa fue de un proyecto que igual estaba en pleno
desarrollo y fue muy dificil poder hacer la introduccién en ciertas partes para el
desarrollo por la metodologia que se manegjo.

74

La segunda pregunta fue sobre la facilidad del proceso creativo con la
metodologia

¢ Te facilito el proceso creativo dentro de tu proyecto?
5 respuestas

Si 5 (100%)

No 1(20%)

Ilustracion 43 Segunda pregunta

Como se puede observar se respondio solo con un no a la pregunta sobre la
facilidad con la que el proceso creativo se pudo trabajar dentro del proyecto,
dando a entender que la metodologia propuesta ayuda mucho para el proceso
creativo.

Como tercera pregunta se quiso analizar la productividad que tiene la
metodologia:

75

¢Opinas que el DCA te ahorro tiempo a la hora de realizar tu proyecto?
5 respuestas

Si 5 (100%)

No [0 (0%)

Illustracion 44 Tercera pregunta

En el caso de las 5 respuestas, todas fueron afirmativas para el ahorro de tiempo
usando la metodologia propuesta, en el caso especial del proyecto que se manejé
en este documento, fueron un total de 2 meses y 2 semanas, o un total de 10 sprints.

Como cuarta pregunta se hizo un control sobre los diferentes proyectos con los
cuales se uso, o realizo una integracién de la metodologia propuesta:

¢Opinas que el DCA se puede ocupar en diversos tipos de proyectos?
5 respuestas

No

Tal vez 3 (60%)

Ilustracion 45 Cuarta pregunta

76

Como se puede observar 2 respuestas fueron afirmativas sobre proyectos que se
iniciaron desde 0 con la implementacion de esta metodologia.

Las otras 3 respuestas fueron un tal vez, siendo 1 con desarrollo desde 0 y los 2
restantes fue con la implementacion en una etapa avanzada de dicho proyecto.

Dejando sin contestar el apartado de no, demostrando que esta metodologia
pudiera llegar a ser mas flexible en diferentes tipos de proyectos y no solo para el
desarrollo de videojuegos.

Como quinta pregunta se analizo el si se recomendaria esta metodologia a otros
desarrolladores para que las usen en sus diversos proyectos:

¢;Recomendarias el DCA a colegas desarrolladores?
5 respuestas

5 (100%)

No [0 (0%)

Illustracion 46 Quinta pregunta

Como se puede observar, en un 100% estadistico recomendaria esta metodologia
a otros desarrolladores, demostrando que puede ser muy versatil a la hora de
desarrollar proyectos.

La sexta pregunta fue para poder saber que tanto los desarrolladores seguirian
usando la metodologia propuesta:

77

¢Usarias el DCA para futuros proyectos tuyos donde se vea involucrado mas el proceso creativo?
5 respuestas

3 (60%)

No

Tal vez

Illustracion 47 Sexta pregunta

Como se puede observar, un 60% usaria esta metodologia para futuros proyectos,
y un 40% tal vez la volveria a usar, esto demuestra que, para mas de la mitad de
desarrolladoras encuestados, la metodologia propuesta fue comoda para trabajar.

Como séptima pregunta se quiso saber si la metodologia implementaba bien el
proceso creativo dentro del desarrollo y planeacién del proyecto o en su caso, la
introduccién de este:

¢Opinas que el DCA involucro de una manera correcta el proceso creativo?
5 respuestas

Si 5 (100%)

No |0 (0%)

Illustracion 48 Séptima pregunta

78

Como se puede observar, todos los desarrolladores aceptaron que el DCA involucra
de una buena manera el proceso creativo dentro del proyecto desarrollado, o lo
introduce de una buena manera al desarrollo de un proyecto en curso.

Como octava pregunta se quiso conocer si los sprint propuestos en la metodologia
DCA estuvieron bien desarrollados:

¢Opinas que los sprints estuvieron bien desarrollados siguiendo el DCA?
5 respuestas

4 (80%)

No

Tal vez

Ilustracion 49 Octava pregunta

Como se puede observar 4 desarrolladores aceptaron de manera positiva a la
pregunta, y solo 1 contesto con un tal vez dentro de la encuesta que se realizo, esto
demuestra que la planeacion de los sprints dentro de la metodologia esta bien
desarrollada.

La penultima pregunta se hizo con el motivo de saber si aparte de ser util, el DCA
puede hacer que el usuario se sienta comodo, o0 “a gusto™:

79

¢ Te sentiste a gusto usando el DCA en tu proyecto?
5 respuestas

Si 5 (100%)

No [0 (0%)

Ilustracion 50 Novena pregunta

Como podemos observar tuvo una total aprobacion a hacer sentir comodos a todos
los encuestados a pesar de que no todos lo usaron, o les facilito el trabajo,
demostrando que no solo con mas adaptabilidad, el DCA podria ser una
metodologia 6ptima para el desarrollo de varios proyectos.

Y como ultima pregunta se pidié que los evaluadores calificaran el DCA, para asi
poder sacar un promedio de calificacion de usuarios:

En escala de 1 a 10, ;Que tan probable es que recomiendes el uso de este tipo de desarrollo?
5 respuestas

0 ((‘J%) 0 (?%) 0 ((‘)%) 0 (rlj%) 0 ((l)%) 0 ((‘J%) 0 ((J)%)
0
1 2 3 4 5 6 7

Illustracion 51Decima pregunta

80

Como se puede apreciar, 4 usuarios de la DCA la calificaron con un 8 y solo 1 la
califico con 10, esta ultima pregunta nos demuestra que con una calificaciéon
promedio de 8.4, el DCA es una metodologia que pudiera ser ampliamente aceptada
por diferentes tipos de proyectos.

4.3.- Retrospectiva y Pruebas

Tras completar las primeras cuatro semanas de sprints, se realizdé una prueba de
funcionamiento e integracion del cédigo y la jugabilidad para evaluar los siguientes
pasos a seguir. Sin embargo, al ejecutar el juego, el equipo de desarrollo se
encontrd con varios errores que afectaban la experiencia planeada.

Uno de los principales problemas fue la disposicion de las plataformas en el nivel,
que no estaban correctamente alineadas, lo que impedia que el jugador pudiera
saltar de una a otra como se habia previsto. Para corregir esto, se llevd a cabo un
redisefio del nivel, aumentando el tamafo de las plataformas y ajustando ciertos
parametros del personaje para hacer la mecanica mas eficiente sin que resultara
excesivamente poderosa, evitando lo que el equipo denominaba "broken" o
desbalanceado.

No obstante, al realizar estos ajustes, se detecté otro problema: las plataformas
ubicadas por encima del personaje eran inalcanzables sin un redisefio completo del
nivel. En lugar de redisefiar todo de nuevo, el equipo creativo propuso una solucion:
permitir que el personaje realizara un doble salto, justificandolo como si se agarrara
del borde de una plataforma, lo que le permitiria alcanzar zonas mas altas.

Esta idea no solo fue bien recibida por el equipo de desarrollo, sino que, tras
implementarla, mejord significativamente la jugabilidad. Se modificé el cédigo y se
ajustaron hitboxes tanto en enemigos como en plataformas, logrando una versién
funcional del juego en sus primeros niveles.

El siguiente paso en el calendario del equipo creativo fue el disefio de los niveles
dos y tres, ademas de la creacion de la musica que acompanaria cada nivel para
enriquecer la experiencia de juego. Mientras tanto, el equipo de desarrollo depurd
algunos errores adicionales y quedo a la espera de las nuevas mecanicas que se
podrian incorporar en los siguientes niveles en desarrollo.

81

Capitulo 5 Conclusiones
y trabajo futuro

El desarrollo de un videojuego en 2D desde una perspectiva de ingenieria de
software y proceso creativo nos permite entender mejor los retos y beneficios de
aplicar metodologias de desarrollo estructurado en un campo que a menudo
depende de la innovacion y la creatividad.

A través de este trabajo se exploré y aplico principios de metodologias que
combinadas ofrecen un enfoque robusto y flexible, siendo esto necesario para
afrontar las demandas técnicas y creativas de un videojuego moderno.

Uno de los principales aprendizajes fue la de adaptar una metodologia agil
modificada para este proyecto, el uso de iteraciones cortas y ciclos de feedback
continuo resulto fundamentar para ajustar el prototipo en tiempo real, permitiendo
correcciones tempranas y sobre todo la construccion de este mismo en la forma y
tiempo estipulado. La agilidad del desarrollo también permitié enfrentar desafios y
cambios imprevistos sin comprometer gran avance del proyecto en general.

Otro aprendizaje de gran valor fue el de una planificacion inicial clara y detallada,
que no solo establece las bases de los objetivos, sino que también permite la
adaptacion con forme se detectaban nuevas necesidades o con forme surgian
nuevas innovaciones durante el proceso. La flexibilidad que se pudo conseguir fue
la clave que permitié a los equipos enfocarse en crear la experiencia de juego que
se buscaba desde un inicio, priorizando elementos riticos que aportaban valor
directo al prototipo.

Este proyecto también permitié aprender sobre el impacto de la colaboracién activa
y el trabajo en equipo, sobre todo al momento de hacer las reuniones al final de
cada sprint donde se demostré que el compartir ideas y buscar resolver problemas
en conjunto aumenta la calidad de cdédigo y disefio y fomenta una cultura de
aprendizaje continuo. La retroalimentacion entre companeros y el apoyo en el
desarrollo técnico, tanto en disefio como en implementaciéon fue esencial para
mejorar la comprensién de las soluciones, para asi evitar errores, y en ultima
instancia, crear un prototipo funcional.

El uso de la metodologia agil modificada permitié no solo cumplir con los requisitos
técnicos, sino que ademas demostrd ser una herramienta poderosa para mejorar la
eficiencia del equipo y potenciar la creatividad. Al balancear la estructura de la
ingenieria de software con la libertad que tiene el proceso creativo, se pudo obtener
una metodologia capaz de maximizar el valor del producto final.

82

Esto mismo genera una experiencia de usuario enriquecida y que cumple con las
expectativas cambiantes del mercado de los videojuegos en 2D.

83

Glosario

A
Asset

Recurso utilizado dentro de un proyecto digital o videojuego. Puede incluir
imagenes, sonidos, modelos, animaciones, scripts o cualquier elemento necesario
para la construccion del producto final.

B
BanLab

Plataforma o entorno colaborativo orientado a la creaciéon y edicion musical, que
permite a los usuarios producir, compartir y gestionar proyectos de audio.

C
Caching

Técnica que almacena temporalmente datos para acelerar accesos futuros y
optimizar el rendimiento de sistemas, aplicaciones y servicios web.

Check

Verificacion o condicidn empleada en programacion para validar que un proceso,
funcién o estado se encuentre en el estado correcto antes de continuar.

CPU (Central Processing Unit)

Unidad central de procesamiento. Componente principal de un sistema informatico
encargado de ejecutar instrucciones, coordinar tareas y controlar el flujo de
operaciones.

D
DOM (Document Object Model)

Modelo de representacion estructurada de documentos HTML o XML, que permite
la manipulacion programatica de su contenido y estilo mediante lenguajes como
JavaScript.

84

Domestika

Plataforma de cursos en linea enfocada en disciplinas creativas como disefio,
ilustracion, animacion, fotografia y artes digitales.

F
FL Studio

Estacion de trabajo de audio digital (DAW) que permite componer, grabar, editar y
mezclar musica utilizando instrumentos virtuales, sintetizadores y herramientas de
secuenciacion.

G
Gameplay

Conjunto de mecanicas, reglas, interacciones y experiencias que definen como el
jugador se relaciona con el videojuego y como se desarrolla la accién.

GPU (Graphics Processing Unit)

Unidad de procesamiento grafico especializada en el calculo paralelo y en el
renderizado de imagenes, fundamental en aplicaciones visuales y videojuegos.

H
Hitbox

Area invisible asociada a un objeto o personaje en un videojuego que se utiliza para
detectar colisiones, impactos o interacciones.

HTTP (Hypertext Transfer Protocol)

Protocolo de comunicacién utilizado para el intercambio de informacién entre
clientes y servidores en la web.

L
Latencia

Tiempo que tarda una sefial o dato en desplazarse desde su origen hasta su destino.
En videojuegos influye en la velocidad de respuesta y la sincronizacién en entornos
en linea.

85

M
Mecanicas de juego

Reglas, acciones, sistemas y comportamientos que determinan cémo interactua el
jugador con el mundo del videojuego y qué posibilidades de accidn existen.

Modularizacion

Proceso de dividir un sistema en partes o modulos independientes para facilitar su
desarrollo, mantenimiento, reutilizacion y escalabilidad.

P
Pixel Art

Estilo visual caracterizado por graficos formados por pixeles perceptibles, comun en
videojuegos retro y producciones inspiradas en la estética de 8 y 16 bits.

Plugins

Complementos o extensiones que afiaden nuevas funciones a un software o motor
sin modificar su estructura principal.

Profilers

Herramientas que permiten medir y analizar el rendimiento de un sistema o
videojuego, proporcionando informacion sobre uso de CPU, GPU, memoria,
tiempos de carga y ejecucion.

R
Rigidbody

Componente utilizado en motores de videojuegos, como Unity, que permite que un
objeto se comporte segun las leyes de la fisica, incluyendo gravedad, colisiones y
fuerzas.

S
Slime

En videojuegos, criatura enemiga comun representada como una masa gelatinosa;
también puede referirse a su estilo de animacion o comportamiento dentro del juego.

86

Sprite

Imagen o conjunto de imagenes 2D empleadas para representar personajes,
objetos, decoraciones o animaciones dentro de un videojuego.

Sprint

Periodo de tiempo corto utilizado en metodologias agiles, especialmente en Scrum,
en el que se planifican, desarrollan y entregan funcionalidades especificas del
proyecto.

U
Unity

Motor de videojuegos multiplataforma que permite desarrollar experiencias 2D, 3D
y de realidad interactiva mediante herramientas visuales y scripting con C#.

87

Referencias

“Creacion de videojuegos de plataformas con Unity”. Un curso online de 3D y
Animacioén de Steve Duran | Domestika. (2024, September 22). Domestika.
https://www.domestika.org/es/courses/910-creacion-de-videojuegos-de-
plataformas-con-unity/course

Arbonés, A. (2018, July 20). Del 2D al 3D: cémo el videojuego pasé de la
imaginacion a solo valorar los numeros. Canino. https://www.caninomag.es/del-2d-
al-3d-o-como-el-videojuego-paso-de-la-imaginacion-a-solo-valorar-los-numeros/

Atlassian. (n.d.). ¢ Qué es agil? | Atlassian. https://www.atlassian.com/es/agile

Campus, C. (2024, April 22). Proceso creativo: en qué consiste y caracteristicas.
Universidad Europea Creative Campus.
https://creativecampus.universidadeuropea.com/blog/fases-proceso-creativo/

Caurin, J. (2019, April 26). Videojuegos 2D | ; Qué significa Videojuegos 2D?
Geekno. https://www.geekno.com/glosario/videojuegos-2d

"Ciclo de vida del software: todo lo que necesitas saber." (“Ciclo de vida del
software: todo lo que necesitas saber - Intelequia”) (n.d.). Intelequia.
https://intelequia.com/es/blog/post/ciclo-de-vida-del-software-todo-lo-que-
necesitas-saber

Cortizo, J. C. (2022, October 20). "Si hay una industria que no es un juego, esa es
la de los Videojuegos." (“Si hay una industria que no es un juego, esa es la de los
Videojuegos ...”) Product Hackers. https://producthackers.com/es/blog/industria-
videojuegos

Definiciéon de Optimizar software o hardware (informatica). (2023, July 9).
Alegsa.com.ar. https://www.alegsa.com.ar/Dic/optimizar.php#gsc.tab=0

Delgado, M. (2022, September 8). Videojuegos y creatividad - The Good Gamer.
The Good Gamer. https://thegoodgamer.es/videojuegos-y-creatividad

Diaz, D. (2024, May 17). 11 herramientas de ingenieria de software que debe
conocer como programador. Geekflare Spain. https://geekflare.com/es/software-
engineering-tools/

Estos son los 10 mejores videojuegos 2D de la historia | Tokio. (n.d.). Tokio
School. https://www.tokioschool.com/noticias/videojuegos-2d/

Estrada, J., Salazar, A., & Wightman, P. (2017, June 2). Disefio e Implementacion
de un videojuego bajo la propuesta de La Leyenda del Guerrero Malibu. (“Diseno e

88

https://www.domestika.org/es/courses/910-creacion-de-videojuegos-de-plataformas-con-unity/course
https://www.domestika.org/es/courses/910-creacion-de-videojuegos-de-plataformas-con-unity/course
https://www.caninomag.es/del-2d-al-3d-o-como-el-videojuego-paso-de-la-imaginacion-a-solo-valorar-los-numeros/
https://www.caninomag.es/del-2d-al-3d-o-como-el-videojuego-paso-de-la-imaginacion-a-solo-valorar-los-numeros/
https://www.atlassian.com/es/agile
https://www.geekno.com/glosario/videojuegos-2d
https://thegoodgamer.es/videojuegos-y-creatividad
https://www.tokioschool.com/noticias/videojuegos-2d/

Implementacién de un videojuego bajo la propuesta de La ...”) Universidad Del
Norte. https://manglar.uninorte.edu.co/handle/10584/7298

Evad. (2020, October 12). EL PROCESO CREATIVO DE UN VIDEOJUEGO.
EVAD Escuela Superior De Videojuegos Y Arte Digital.
https://evadformacion.com/proceso-creativo-videojuego/

Feed. (n.d.). BandLab. https://www.bandlab.com/feed

Global, R. A., & Global, R. A. (2018, May 22). La arquitectura y su importancia en
los videojuegos | Arcus Global. Arcus Global. https://www.arcus-global.com/wp/la-
arquitectura-y-su-importancia-en-los-videojuegos/

Guevara, L. A., & Penia, F. F. (2024). "Desarrollo de un Algoritmo Procedimental de
Generacion de Estructuras para su Implementacién en el Desarrollo de un
Videojuego 2D." (“Desarrollo de un algoritmo procedimental de generacion de
estructuras ...”) Ciencia Latina Revista Cientifica Multidisciplinar, 7(6), 7736—7748.
https://doi.org/10.37811/cl rcm.v7i6.9305

Guzman, H. C. (n.d.). Las 7 fases mas importantes en el desarrollo de juegos |
Escuela de Videojuegos | Hektor Profe.
https://docs.hektorprofe.net/escueladevideojuegos/articulos/fases-del-desarrollo-
de-videojuegos/

Historia de los videojuegos. (n.d.). https://www.fib.upc.edu/retro-
informatica/historia/videojocs.html

https://dialnet.unirioja.es/servlet/tesis?codigo=312707

Laoyan, S. (2024, February 6). Qué es la metodologia waterfall y cuando utilizarla
[2024] - Asana. Asana. https://asana.com/es/resources/waterfall-project-
management-methodology

Ledmon. (2022, February 3). Herramientas del proceso creativo para optimizar
resultados | Ledmon. Ledmon. https://ledmon.com/6-herramientas-del-proceso-
creativo-para-optimizar-resultados/

Los 6 niveles de optimizacion de software | Mejora tu codigo | Go4IT Solutions.
(n.d.). https://lwww.go4it.solutions/es/blog/los-6-niveles-de-optimizacion-de-
software-mejora-tu-codigo

Miguel, P. D. S. (2019, August 6). Las plataformas 2D - 33bits. 33bits.
https://portal.33bits.net/los-plataformas-bidimensionales/

Porto, J. P., & Gardey, A. (2023, May 17). Optimizacion - Qué es, definicion y
concepto. Definicion.de. https://definicion.de/optimizacion/

Ros, 1. (2021, November 18). “"Cinco problemas a los que nos han acostumbrado
los desarrolladores de videojuegos, y que deberiamos superar cuanto antes."

89

https://manglar.uninorte.edu.co/handle/10584/7298
https://evadformacion.com/proceso-creativo-videojuego/
https://www.bandlab.com/feed
https://www.arcus-global.com/wp/la-arquitectura-y-su-importancia-en-los-videojuegos/
https://www.arcus-global.com/wp/la-arquitectura-y-su-importancia-en-los-videojuegos/
https://doi.org/10.37811/cl_rcm.v7i6.9305
https://docs.hektorprofe.net/escueladevideojuegos/articulos/fases-del-desarrollo-de-videojuegos/
https://docs.hektorprofe.net/escueladevideojuegos/articulos/fases-del-desarrollo-de-videojuegos/
https://www.fib.upc.edu/retro-informatica/historia/videojocs.html
https://www.fib.upc.edu/retro-informatica/historia/videojocs.html
https://dialnet.unirioja.es/servlet/tesis?codigo=312707
https://asana.com/es/resources/waterfall-project-management-methodology
https://asana.com/es/resources/waterfall-project-management-methodology
https://portal.33bits.net/los-plataformas-bidimensionales/

(“Cinco problemas a los que nos han acostumbrado los desarrolladores de ...")
MuyComputer. https://www.muycomputer.com/2021/07/01/errores-problemas-
videojuegos/

Sanz, C. V., & Suemay, M. Y. C. (2020). "Metodologias de disefio y desarrollo para
la creacion de juegos serios digitales." (“Descripcion: Metodologias de disefio y
desarrollo para la creacion de ...”) https://sedici.unlp.edu.ar/handle/10915/111123

Sara, C. G. (2022). Diserio creativo en la preproduccion y difusion de videojuegos
independientes: estudio de caso de Hollow Knight (Team Cherry). Dialnet.
https://dialnet.unirioja.es/servlet/tesis?codigo=312707

Stsepanets, A., Stsepanets, A., & Stsepanets, A. (2024, March 26). Modelo
cascada, qué es y cuando conviene usarlo. Gantt Chart GanttPRO Blog.
https://blog.ganttpro.com/es/metodologia-de-cascada/

Unity Essentials Pathway - Unity Learn. (n.d.). Unity Learn.
https://learn.unity.com/pathway/unity-essentials

VivesBarcelona, J. (2020, February 21). La parte creativa de los videojuegos. La
Vanguardia. https://www.lavanguardia.com/vida/junior-
report/20200219/473657943447/parte-creativa-videojuegos.html

Wilsom, N. B., & Armando, R. P. D. (2020, May 28). "Desarrollar una herramienta
software para atraer potenciales aspirantes al programa de ingenieria de sistemas
y computacion." (“Desarrollar una herramienta software para atraer potenciales
aspirantes ...”) Universidad Del Norte.
https://manglar.uninorte.edu.co/handle/10584/8864

Zendesk. (2023, February 15). ;Qué es la metodologia agil? ;Para qué sirve?
https://www.zendesk.com.mx/blog/metodologia-agil-que-es/

Félix, E. B. (2001). Videojuegos y educacién. Universidad De Salamanca.
https://gredos.usal.es/handle/10366/56438

Pereira, A. M. M. (2014). El proceso productivo del videojuego: fases de
produccion/The production process of the game: production phases. Historia y
comunicacion social, 19, 791-805.

90

https://sedici.unlp.edu.ar/handle/10915/111123
https://blog.ganttpro.com/es/metodologia-de-cascada/
https://learn.unity.com/pathway/unity-essentials
https://www.lavanguardia.com/vida/junior-report/20200219/473657943447/parte-creativa-videojuegos.html
https://www.lavanguardia.com/vida/junior-report/20200219/473657943447/parte-creativa-videojuegos.html
https://manglar.uninorte.edu.co/handle/10584/8864
https://www.zendesk.com.mx/blog/metodologia-agil-que-es/

