

TESIS

Para obtener el grado de Licenciado en Ciencias Computacionales

Presenta

José Armando Rodríguez Cortez

Director:

M.C.C. Gonzalo Alberto Torres Samperio

Comité tutorial:

M.C.C. Gonzalo Alberto Torres Samperio

Dr. Juan Carlos González Islas

Dr. Edgar Olguín Guzmán

Mtro. Arturo Curiel Anaya

Propuesta de metodología para la ingeniería
de software y proceso creativo para el

desarrollo de un videojuego en 2D

Universidad Autónoma del Estado de Hidalgo
Instituto de Ciencias Básicas e Ingeniería

Licenciatura en Ciencias Computacionales

1

2

3

Contenido
Índice de figuras .. 6

Agradecimientos y Dedicatoria .. 8

Resumen .. 9

Abstract .. 10

Introducción ... 11

Problemática .. 12

Propuesta de solución ... 14

1.- Adopción de una Metodología Ágil Adaptada .. 14

2.- Implementación de Herramientas Colaborativas Integradas 14

3.- Establecimiento de Protocolos de Comunicación y Documentación 15

4.- Prototipado Iterativo y Pruebas de Usuario Tempranas .. 15

5.- Evaluación Continua y Mejora del Proceso ... 15

Justificación ... 16

Antecedentes ... 18

Objetivos .. 19

Objetivo General .. 19

Objetivos Específicos ... 19

Alcances y limitaciones .. 20

Alcances .. 20

Limitaciones ... 20

Capítulo 1 Marco teórico y Conceptual .. 22

1.1 Ingeniería de Software en el Desarrollo de Videojuegos .. 22

1.1.1 Metodologías de Desarrollo de Software ... 22

1.1.2 Arquitectura de Software en Videojuegos 2D .. 22

1.1.3. Proceso Creativo en el Desarrollo de Videojuegos en 2D 23

1.1.3.1 Etapas del Proceso Creativo .. 23

1.1.4. Intersección entre Ingeniería de Software y Proceso Creativo 23

1.1.4.1 Tensiones entre lo Técnico y lo Creativo .. 23

1.1.4.2 Metodologías Híbridas y Colaboración Efectiva .. 24

1.1.5. Herramientas y Tecnologías en el Desarrollo de Videojuegos en 2D 24

1.1.6.- Ingeniería de software ... 25

4

1.1.6.1.- Ciclo de vida del Desarrollo de Software .. 25

1.1.6.2.- Principios de la ingeniera de software .. 25

1.1.6.3.- Herramientas de la ingeniería de software ... 25

1.1.7.- Procesos Creativos ... 26

1.1.7.1.- Etapas del Proceso Creativo .. 26

1.1.7.2.- Técnicas y Estrategias Creativas ... 26

1.1.7.3.- Herramientas para el Proceso Creativo .. 26

1.1.8.- Optimización ... 27

1.1.8.1.- Tipos de Optimización .. 27

1.1.8.2.- Etapas del Proceso de Optimización .. 27

1.1.8.3.- Técnicas y Métodos de Optimización ... 28

1.1.8.4.- Aplicaciones de la Optimización ... 28

1.1.8.5.- Importancia de la Optimización .. 29

1.1.9.- Optimización de Software .. 29

1.1.9.1.- Tipos de Optimización .. 29

1.1.9.2.- Etapas del Proceso de Optimización en Software .. 30

1.1.9.3.- Herramientas de Optimización en Software .. 31

1.1.9.4.- Aplicaciones de la Optimización de Software ... 31

1.1.10.- Desarrollo de Videojuegos .. 31

1.1.10.1.- Fases, elementos clave y técnicas de desarrollo .. 31

1.2.- Estado del Arte ... 33

Capítulo 2 Metodología ... 35

1.- Modelo en Cascada .. 35

1.1 Fases del Modelo en Cascada ... 35

2.- Programación Extrema (XP).. 37

2.1.- Fases de la Programación Extrema ... 37

3.- Desarrollo Ágil ... 39

3.1.- Fases del Desarrollo Ágil ... 39

Cuadro Comparativo .. 41

Elección de Metodología ... 42

Capítulo 3 Diseño y Desarrollo ... 43

1.-Planificación ... 43

2.- Desarrollo e Implementación .. 44

5

Creación de Código ... 50

Capítulo 4 Resultados ... 68

4.1- Encuestas Realizadas .. 73

4.2- Estadísticas ... 74

4.3.- Retrospectiva y Pruebas .. 81

Capítulo 5 Conclusiones y trabajo futuro .. 82

Glosario .. 84

Referencias .. 88

6

Índice de figuras

Ilustración 1 Diseño de Nivel 1 .. 44

Ilustración 2 Enemigo Slime .. 45

Ilustración 3 Enemigo Slime de Fuego .. 45

Ilustración 4 Obstáculo Pinchos .. 46

Ilustración 5 Obstáculo Plataformas Elevada .. 46

Ilustración 6 Objeto Amatista ... 47

Ilustración 7 Objeto Corazón ... 47

Ilustración 8 Punto de transporte 1 .. 48

Ilustración 9 Personaje del Juego ... 49

Ilustración 10 Punto de Transporte 2 ... 49

Ilustración 11 Código Player 1 Parte 1 .. 51

Ilustración 12 Código Player Parte 2 ... 52

Ilustración 13 Código Player 3 Parte 3 .. 53

Ilustración 14 Código Player 4 Parte 4 .. 54

Ilustración 15 Código enemigo parte 1 .. 55

Ilustración 16 Código Enemigo Parte 2 .. 55

Ilustración 17 Código Enemigo Parte 3 ... 56

Ilustración 18 Código Parámetros del Juego ... 58

Ilustración 19 Código enemigo flama Parte 1 .. 59

Ilustración 20 Código enemigo Flama Parte 2... 60

Ilustración 21 Código Enemigo Flama Parte 3 .. 60

Ilustración 22 Código Obstáculo con Picos ... 61

Ilustración 23 Código Objeto Monedas ... 61

Ilustración 24 Código Objeto Vidas ... 62

Ilustración 25 Código Objeto Amatista .. 62

Ilustración 26 Código Cambio de Nivel ... 63

Ilustración 27 Interfaz de FL Studio ... 64

Ilustración 28 interfaz BandLab ... 64

Ilustración 29 Nivel 2 ... 65

Ilustración 30 Enemigo Camión ... 65

Ilustración 31 Enemigo Murciélago ... 66

Ilustración 32 Nivel 3 ... 66

Ilustración 33 Enemigo Esqueleto ... 67

Ilustración 34 Modelo UML .. 68

Ilustración 35 Inicio del prototipo de juego .. 69

7

Ilustración 36 Tutorial del prototipo .. 70

Ilustración 37 Prototipo nivel 1 .. 70

Ilustración 38 Primer punto de transporte ... 71

Ilustración 39 Prototipo Nivel 2 .. 71

Ilustración 40 Punto de transporte del segundo nivel .. 72

Ilustración 41 Prototipo Tercer nivel .. 72

Ilustración 42 Primera pregunta .. 74

Ilustración 43 Segunda pregunta ... 75

Ilustración 44 Tercera pregunta ... 76

Ilustración 45 Cuarta pregunta .. 76

Ilustración 46 Quinta pregunta .. 77

Ilustración 47 Sexta pregunta .. 78

Ilustración 48 Séptima pregunta .. 78

Ilustración 49 Octava pregunta .. 79

Ilustración 50 Novena pregunta ... 80

Ilustración 51 Decima pregunta ... 80

8

Agradecimientos y Dedicatoria
Quiero agradecer esto a todas las personas que me ayudaron en todo este proceso,

desde aquel agosto de 2019, hasta hoy día que estoy terminando este trabajo.

A los amigos que de alguna u otra manera me dieron apoyo en seguir y no rendirme,

aunque creyera que no podría terminarlo.

A mi asesor, que estuvo pendiente en cada revisión, en cada corrección y siempre

me guio con paciencia y dirección.

A mi familia por siempre confiar en mí y motivarme a no defraudarlos, a mi tía por

haber confiado en mí, dándome todo tipo de apoyo que estuvo a su alcance.

Y, por último, siendo la persona más importante en todo este proceso, a mi madre,

que es la razón por la cual hoy puedo realizar este trabajo, porque gracias a ella,

llegue a este punto de mi vida, porque las veces que tenía que levantarme a las 5

de la mañana para poder llegar puntual a la secundaria ella ya estaba despierta

desde las 4, porque a pesar de que tuve muchos fallos y tropiezos por todo este

camino que tuve desde primaria hasta el nivel universidad, ella jamás me dio la

espalda y me quito su apoyo, aunque muchas veces no lo haya aprovechado como

hubiera debido.

Te dedico esta tesis a ti má, porque este logro más que mío, es tuyo porque sin ti,

nada de esto hubiera sido posible, gracias por todo.

Te amo mama.

9

Resumen
Este trabajo se enfocó en explicar las fases del proceso creativo, el cómo se crea la

programación para un prototipo de videojuego en 2D, cómo funciona la

optimización, explicar varios tipos de metodologías, y por sobre de todo, la

implementación de una metodología hibrida que combina las mejoras practicas del

proceso creativo, y de la ingeniería de software, ya que gracias a las investigaciones

que se hicieron para la creación de este trabajo, se pudo notar que no hay una

metodología orientada a la versatilidad y cambios repentinos que puede tener el

proceso creativo sin tener que modificar, retrasar o afectar a la ingeniería de

software, ya que esta no esta tan orientada a esos cambios repentinos.

Lo que se buscó en primera instancia fue estudiar las diferentes metodologías y que

se plasmaran en este trabajo para tener un punto de salida, y de ahí partir hacia lo

que la metodología buscaba comprobar, si era una buena propuesta de metodología

para crear un prototipo de videojuego en 2D.

El siguiente paso fue estudiar sobre optimizaciones, herramientas, y procesos de

desarrollos sobre videojuegos, que fue en la parte donde se puso especial atención

para que el prototipo pudiera lograrse dentro del tiempo especificado, ya que al

haber combinado las mejores prácticas del proceso creativo y de la ingeniería de

software, se buscaba que los tiempos de cada sprint, tanto de la ingeniera de

software como del proceso creativo se hicieran en menor tiempo, buscando también

aplicar un poco sobre lo aprendido de optimización.

Una vez habiendo logrado lo mencionado en el párrafo anterior, se inició con el

desarrollo del prototipo de videojuego en 2D, que si bien, se encontraron con ciertos

problemas a la hora de su elaboración, tanto del lado de la ingeniería de software

como del proceso creativo, se manejó el calendario establecido de una manera

brillante por parte de ambos equipos, ya que los sprints se respetaron en su

totalidad, haciendo que ambas partes pudieran trabajar de la mano sin retrasarse

mutuamente.

El proceso de creación demoro 10 semanas aproximadamente, haciendo una labor

de 6 horas diarias, se tuvo un presupuesto de 500 pesos mexicanos con lo cual,

para el proyecto, se compró un curso de Domestika (Véase referencias) para poder

tener de apoyo adicional al solucionar algunos problemas de programación que se

tuvieron, el equipo de desarrollo estuvo conformado por una sola persona, al igual

que el equipo creativo, siendo en ambos casos, la misma persona.

Al final, se pudo obtener un prototipo funcional, jugable, escalable y actualizable a

largo plazo, aplicando todo lo estudiado de optimización, programación y, sobre

todo, aplicando la metodología que se propuso en este trabajo.

10

Abstract
This work will focus on explaining the phases of the creative process, how the

programming for a 2D video game prototype is created, how optimization works,

explaining various types of methodologies, and above all, the implementation of a

hybrid methodology that combines the best practices of the creative process and

software engineering, thanks to the research that was done for the creation of this

work, it was noted that there is no methodology oriented to versatility and sudden

changes that the creative process can have, without having to modify, delay or affect

software engineering, since it is not so oriented to those sudden changes.

The initial objective was to study the different methodologies and have them

reflected in this work to provide a starting point, and from there, move on to what the

methodology sought to verify: whether it was a good methodology for creating a 2D

video game prototype.

The next step was to study optimizations, tools, and development processes for

video games, which was the part where special attention was paid to ensuring that

the prototype could be achieved within the specified time, since by combining the

best practices of the creative process and software engineering, the goal was to

achieve a shorter time for each sprint, both for software engineering and the creative

process, while also seeking to apply some of what was learned about optimization.

Once having achieved what was mentioned in the previous paragraph, the

development of the 2D video game prototype began, which although they

encountered certain problems at the time of its elaboration, both on the side of

software engineering as well as the creative process, the established calendar was

handled in a brilliant way by both teams, since the sprints were fully respected,

allowing both parties to work hand in hand without delaying each other.

The creation process took approximately 10 weeks, with 6 hours of work per day.

The project budget was 500 Mexican pesos, which is why a Domestika course (see

references) was purchased for the project to provide additional support in

troubleshooting some programming issues. The development team consisted of a

single person, as did the creative team, who were the same person in both cases.

In the end, a functional, playable, scalable, and long-term updatable prototype was

achieved by applying everything studied in optimization, programming, and, above

all, by applying the methodology proposed in this work.

11

Introducción

Según Product Hackers (2022), la industria de los videojuegos ha experimentado

un crecimiento exponencial en las últimas décadas y se encuentra entre las formas

de entretenimiento más influyentes y rentables del mundo. En este amplio ámbito,

los juegos arcade en 2D no solo evocan recuerdos de generaciones de jugadores

anteriores, sino también brindan un legado creativo enriquecedor para los

desarrolladores que buscan innovar en un formato accesible y ampliamente

comprendido, puesto que sigue siendo relevante aún en la actualidad.

El diseño de videojuegos 2D requiere la colaboración de la ingeniería de software y

los procesos creativos, aunque estos campos pueden desempeñarse de manera

distinta. El proceso creativo se enfoca en la narración, el diseño visual y otros

elementos fundamentales que impulsan el éxito de un videojuego e impactan la

experiencia del usuario, mientras que la ingeniería de software proporciona lo

necesario para llevar a cabo juegos de manera eficiente, segura y escalable.

El diseño y desarrollo de videojuegos 2D requiere una comprensión profunda de los

principios y métodos de ingeniería de software como el control de calidad, la gestión

de versiones y el ciclo de vida. Mientras tanto, debemos establecer un entorno en

el que el concepto se prototipe, evalúe y refine hasta que se desarrolle una visión

coherente que resuene con el público objetivo.

Esta investigación analiza la intersección de la ingeniería de software y el proceso

creativo ya que busca cubrir las etapas clave del desarrollo de videojuegos 2D y

analiza las formas más efectivas de gestionar dichos proyectos.

También analiza herramientas y métodos para convertir lo conceptual en productos

viables, además, para garantizar que el producto final no solo cumpla con los

estándares técnicos, sino que también proporcione una experiencia atractiva para

los jugadores, se analizan los desafíos comunes que surgen durante el desarrollo

de videojuegos y se proponen métodos para superarlos.

En última instancia, el objetivo de este proyecto es proponer un marco teórico y

práctico para aquellos interesados en el desarrollo de videojuegos 2D desde una

perspectiva técnica, creativa o de gestión. Este proyecto busca enfatizar los

aspectos técnicos y creativos que se combinan para crear videojuegos que no solo

funcionan bien, sino que también capturan la imaginación y el interés de los

jugadores.

12

Problemática
El desarrollo de videojuegos 2D, aunque simplificado en comparación con los

proyectos 3D, plantea desafíos importantes que requieren una cuidadosa

integración de la ingeniería de software y los procesos creativos.

Hablando sobre la ingeniería de software, los desarrolladores enfrentan la

complejidad de crear código eficiente, estándar y escalable intentando admitir el

diseño de juegos sin sacrificar el rendimiento ni la estabilidad.

Por otra parte, el proceso creativo requiere una flexibilidad constante, lo que permite

cambios rápidos en el diseño visual, la narración y la mecánica del juego para lograr

una experiencia final coherente e innovadora.

 Uno de los principales problemas que surge durante esta integración es la falta de

métodos y herramientas capaces de equilibrar los requisitos técnicos y creativos, ya

que tradicionalmente, los proyectos de ingeniería de software se gestionan

mediante métodos estrictos y estructurados, como el desarrollo ágil o en cascada,

que priorizan la planificación detallada y la gestión de riesgos, pero por otro lado, el

proceso creativo suele ser más complicado y exploratorio, con ideas que

evolucionan y cambian rápidamente, respondiendo con nuevas inspiraciones o

comentarios de pruebas de usuarios.

Lo comentado por Isidro Ros en su nota en muycomputer (2021), los equipos de

desarrollo a menudo enfrentan decisiones difíciles, como elegir entre mantener el

código estable o incorporar cambios innovadores que podrían cambiar la estructura

del software, esto puede conducir a un ciclo de desarrollo improductivo en el que la

creatividad se ve limitada por ciertas limitaciones técnicas o el código se vuelve

inflado debido a constantes cambios no planificados.

También existe el desafío adicional de la comunicación entre los equipos técnico y

creativo ya que la falta de un lenguaje común y de herramientas de colaboración

eficaces puede provocar malentendidos y desalineación de los objetivos, lo que

repercute negativamente en la calidad y la cohesión del producto final.

Estos problemas pueden llevar a videojuegos que, aunque técnicamente

funcionales, no logran realizar la visión creativa original ni ofrecer una experiencia

de usuario satisfactoria, o por otro lado, puede llevar a videojuegos que logran

realizar la visión creativa original, pero no funcionales del todo técnicamente, por lo

tanto, existe la necesidad de investigar y desarrollar métodos y herramientas que

permitan una integración perfecta entre la ingeniería de software y los procesos

creativos en el desarrollo de videojuegos 2D.

Es importante encontrar un equilibrio que permita a los equipos técnicos y creativos

trabajar juntos, aumentando la eficiencia y la calidad del producto final sin

comprometer la creatividad ni la estabilidad.

13

Resolver este problema no sólo mejorará el desarrollo de videojuegos 2D, sino que

también proporcionará un marco replicable para otros proyectos de la industria de

los videojuegos.

14

Propuesta de solución
Para abordar la problemática identificada, se propone la inclusión de un marco

metodológico híbrido que combine las mejores prácticas de la ingeniería de software

con enfoques que promuevan la flexibilidad creativa. Este marco, que

denominaremos "Desarrollo Creativo Ágil" (DCA), buscara crear un equilibrio

dinámico entre la estabilidad técnica y la libertad artística, buscando optimizaciones

en el flujo de trabajo y garantizando la calidad del producto final.

1.- Adopción de una Metodología Ágil Adaptada

El desarrollo ágil ha demostrado ser eficaz en proyectos que requieren iteraciones

rápidas y adaptación a cambios. Sin embargo, para que sea aplicable en el contexto

del desarrollo de videojuegos 2D, será necesario ajustar sus principios para permitir

un mayor enfoque en la creatividad. Esto se puede lograr mediante la integración

de sprints, donde se prioricen las exploraciones artísticas y de diseño antes de pasar

a una implementación técnica.

En este marco, cada ciclo de desarrollo incluiría:

• Sprints Técnicos: Centrados en la implementación, optimización y pruebas

de características del juego.

• Sprints Creativos: Dedicados a la ideación, prototipado y evaluación de

aspectos visuales, narrativos y de jugabilidad.

Ambos tipos de sprints se alternarían y estarían interconectados mediante

revisiones conjuntas, asegurando que las decisiones creativas se realicen con una

comprensión clara de las limitaciones técnicas, y viceversa.

2.- Implementación de Herramientas Colaborativas Integradas

Para facilitar la comunicación y el trabajo conjunto entre los equipos técnicos y

creativos, se propone la adopción de herramientas de desarrollo que integren la

gestión del código con la gestión de recursos creativos. Plataformas como Github o

GitLab pueden ser expandidas para incluir plugins o integraciones que permitan a

los diseñadores visualizar y modificar directamente los elementos de arte, sonido y

diseño narrativo dentro del entorno de desarrollo.

Estas herramientas deberían soportar:

• Versiones Creativas: Permitiendo al apartado creativo iterar en sus diseños

sin interrumpir el flujo de trabajo de los desarrolladores.

• Comentarios Cruzados: Facilitando la comunicación donde los equipos

puedan comentar cambios y ajustes, asegurando una alineación continua

entre la visión creativa y la implementación técnica.

15

3.- Establecimiento de Protocolos de Comunicación y

Documentación

Para reducir los malentendidos y la desalineación de objetivos, se sugiere la

creación de protocolos de comunicación claros y una documentación accesible para

todos los miembros del equipo. Esto incluiría la definición de un lenguaje común que

unifique términos técnicos y creativos, y la utilización de herramientas de

documentación colaborativa como Confluence o Notion.

La documentación continua y la comunicación frecuente se estructurarían de la

siguiente manera:

• Reuniones Semanales: Donde se revisen los avances de los sprints

técnicos y creativos, permitiendo ajustes en tiempo real.

• Documentación Accesible: Esta documentación se deberá actualizar

conforme a los cambios en el diseño y desarrollo, ofreciendo una referencia

constante para todos los miembros del equipo.

4.- Prototipado Iterativo y Pruebas de Usuario Tempranas

Finalmente, se propone un enfoque centrado en el usuario final, mediante la

creación de prototipos jugables tempranos y la realización de testeos de usuarios

frecuentes, estos prototipos permitirán evaluar la coherencia entre la visión creativa

y la experiencia de juego real, junto con posibles problemas antes de que se

integren en la versión final del juego.

Los ciclos de pruebas incluirían:

• Pruebas Internas Rápidas: Realizadas al final de cada sprint creativo para

ajustar la dirección antes de la implementación técnica.

• Pruebas Externas con Usuarios: En las fases medias del desarrollo, para

recoger comentarios y criticas reales y ajustar las mecánicas de juego y el

diseño basado en las expectativas y preferencias del público objetivo.

5.- Evaluación Continua y Mejora del Proceso

El marco DCA debe ser flexible y evolucionar con el proyecto. Por lo tanto, se

recomienda la evaluación continua de su efectividad a través de retrospecciones

después de cada ciclo completo de sprints técnicos y creativos. Esto permitirá

ajustes y mejoras en la metodología para adaptarse a las necesidades específicas

del proyecto y del equipo.

16

Justificación
El desarrollo de videojuegos 2D ha resurgido en la última década, impulsado por la

nostalgia y el surgimiento de desarrolladores independientes que ven este formato

como una alternativa viable, ya que es una herramienta poderosa y accesible para

ellos.

En la nota de 33bits de Pedro Diaz San Miguel (2019) en la industria de los

videojuegos, los videojuegos 2D siguen siendo una parte importante del

ecosistema, sobresaliendo en géneros como los de plataformas, aventuras, juegos

de rol, entre muchos otros, sin embargo, este proceso de creación de videojuegos

plantea desafíos específicos que requieren una profunda integración entre la

ingeniería de software y el proceso creativo, ya que la ingeniería de software

proporciona la base técnica necesaria para el desarrollo de videojuegos

garantizando que el código sea sólido, escalable y eficiente.

Sin embargo, el éxito de un videojuego no solo depende de su desempeño técnico

sino también de la calidad de la experiencia que brinda al jugador, aquí es donde

entra en juego el proceso creativo, desde el diseño visual hasta la narración y la

jugabilidad, que son vitales para captar y mantener la atención del jugador.

Esto crea la necesidad de un marco metodológico que pueda integrar eficazmente

estos dos campos, ya que los desarrolladores enfrentan el desafío de equilibrar el

rigor técnico con la flexibilidad creativa, un desafío que, si no se aborda

adecuadamente puede resultar en que el producto final sea inconsistente o no

cumpla con la visión creativa original.

Además, la falta de herramientas de comunicación entre los equipos técnicos y

creativos puede provocar malentendidos, doble trabajo y en últimas instancias,

mayores costos y tiempo de desarrollo.

El desarrollo de videojuegos 2D, aunque más accesible en términos de recursos

que los videojuegos 3D, sigue siendo un proceso complejo que requiere una gestión

cuidadosa de cada fase del proyecto, es importante que los métodos de ingeniería

de software se adapten para respaldar el proceso creativo y que el proceso creativo

se organice de manera que no afecte la estabilidad técnica del producto final.

Esta propuesta busca contribuir al conocimiento y la práctica en el campo del

desarrollo de videojuegos, proponiendo soluciones metodológicas que faciliten la

creación de productos de alta calidad al hacer investigaciones y proponer un marco

híbrido que permita una colaboración perfecta entre los aspectos técnicos y

creativos del desarrollo de videojuegos 2D, con el objetivo e no sólo mejorar el

proceso de desarrollo sino también mejorar el nivel de resultados del producto,

beneficiando tanto a los desarrolladores como a los jugadores.

Además, la creciente accesibilidad de las herramientas de desarrollo y la

popularidad de las plataformas de distribución digital han permitido que más

17

desarrolladores independientes ingresen al mercado, haciendo que esto sea aún

más importante a la hora de crear un marco que simplifique y optimice el proceso

de desarrollo, permitiendo a los creadores centrarse en la innovación y la calidad

sin toparse con los cuellos de botella técnicos o creativos que suelen surgir en estos

proyectos.

18

Antecedentes
Tomando información de la nota anteriormente mencionada de 33bits, durante las

décadas de 1970 y 1980, con la proliferación de consolas de videojuegos y los

arcades, los videojuegos 2D dominaron la industria, juegos como Pong (1972),

Super Mario Bros (1985) y The Legend of Zelda (1986) no sólo establecieron

estándares para el diseño de videojuegos, sino que también enfatizaron la

importancia de una arquitectura de software robusta para garantizar la jugabilidad y

la estabilidad del juego.

Aunque estos juegos son visualmente simples en comparación con los gráficos 3D

de las últimas décadas, fue esta simplicidad la que sentó las bases para el desarrollo

de experiencias interactivas profundas donde la narración, las imágenes y la

mecánica de juego son esenciales para el éxito.

Con el tiempo, el desarrollo de videojuegos 2D ha seguido siendo importante,

incluso con la llegada de los gráficos 3D y las experiencias de realidad virtual, de

hecho, la simplicidad y accesibilidad de los juegos 2D ha permitido que florezcan

los estudios independientes o también conocidos como “indies”, creando obras que

priorizan la innovación en el diseño, narración y mecánicas de juego como "Celeste"

(2018) y "Hollow Knight". (2017), que demuestran que los juegos 2D pueden ofrecer

experiencias únicas y complejas como cualquier juego 3D, destacando la

importancia de un enfoque equilibrado entre la ingeniería de software y el proceso

creativo.

En el caso de estudio de Raquel Echeandía en el portal Dialnet menciona que la

ingeniería de software y el desarrollo de videojuegos ha adoptado y adaptado

diferentes enfoques para gestionar la creciente complejidad de los proyectos, la

adopción de metodologías ágiles como la Scrum y Kanban, ha permitido a los

desarrolladores responder rápidamente a los cambios, iterar ideas y mejorar la

colaboración entre equipos, sin embargo, estos enfoques a menudo se centran en

el dominio técnico lo que hace que se entre en conflicto con la naturaleza

exploratoria del proceso creativo en el diseño de videojuegos.

Por otro lado, el proceso creativo en el desarrollo de videojuegos involucra una

variedad de actividades, desde conceptualizar historias y personajes hasta crear

arte visual y componer la música, este proceso es de naturaleza iterativa, ya que

las ideas iniciales a menudo se refinan o cambian por completo a medida que

avanza el desarrollo y las pruebas de usuario.

Esta naturaleza flexible y exploratoria del proceso creativo puede chocar con la

rigidez de la metodología del desarrollo de software, creando tensión entre los

equipos técnicos y creativos, aunado a la creciente complejidad de los videojuegos

y la necesidad de mantener coherencia entre la visión creativa y la ejecución

artística ha llevado a la búsqueda de nuevas formas de integrar estos dos campos.

19

Objetivos

Objetivo General

• Desarrollar un marco metodológico híbrido que integre la ingeniería de

software y el proceso creativo, optimizando el desarrollo de videojuegos 2D,

para mejorar la calidad técnica y la coherencia creativa del producto final.

Objetivos Específicos

1. Analizar las metodologías actuales de ingeniería de software aplicadas al

desarrollo de videojuegos 2D, identificando sus fortalezas y sus limitaciones

en relación con el proceso creativo.

2. Investigar las prácticas y enfoques creativos utilizados en la

conceptualización y diseño de videojuegos 2D, con el fin de identificar los

puntos de roce y conflicto con los procesos técnicos.

3. Desarrollar y proponer un marco metodológico híbrido que combine aspectos

técnicos y creativos, permitiendo iteraciones rápidas y ajustes flexibles sin

comprometer la estabilidad y escalabilidad del software.

4. Implementar un prototipo de videojuego 2D utilizando el marco metodológico

propuesto en la propuesta de solución, para evaluar su efectividad en la

integración de la ingeniería de software y el proceso creativo.

5. Realizar pruebas y validaciones del prototipo con usuarios y desarrolladores,

recopilando comentarios para refinar el marco metodológico y asegurar su

aplicabilidad en proyectos futuros.

6. Documentar las lecciones aprendidas y las mejores prácticas derivadas de la

aplicación del marco metodológico en el desarrollo del prototipo,

proporcionando una guía para futuros proyectos de videojuegos 2D.

20

Alcances y limitaciones

Alcances

1. Desarrollo de un Marco Metodológico: El proyecto enfocará en desarrollar

un marco metodológico híbrido que integre la ingeniería de software y el

proceso creativo, diseñado específicamente para el desarrollo de

videojuegos 2D.

2. Este marco incluirá principios y prácticas que puedan ser aplicados por

equipos de desarrollo de diferentes tamaños y niveles de experiencia.

3. Implementación de un Prototipo de Videojuego en 2D: Se diseñará y

desarrollará un prototipo de videojuego en 2D utilizando el marco

metodológico propuesto. Este prototipo servirá como caso de estudio para

validar la efectividad del marco en un entorno real de desarrollo.

4. Evaluación y Validación del Marco: Se realizarán pruebas con usuarios y

revisiones por parte de desarrolladores expertos para evaluar la calidad

técnica y creativa del prototipo, así como la eficacia del marco metodológico

en facilitar la colaboración entre equipos técnicos y creativos.

5. Documentación de Mejores Prácticas: La investigación resultará en la

documentación de mejores prácticas y lecciones aprendidas, proporcionando

una guía que pueda ser utilizada por otros desarrolladores interesados en

aplicar este marco metodológico en proyectos futuros.

6. Enfoque en Juegos en 2D: La investigación se limitará al desarrollo de

videojuegos en 2D, abordando tanto las especificidades técnicas como

creativas que son únicas para este formato en comparación con los juegos

en 3D.

Limitaciones

1. Generalización del Marco Metodológico: Aunque el marco metodológico

desarrollado estará diseñado para ser aplicable a una variedad de proyectos

de videojuegos en 2D, su efectividad puede variar dependiendo del tamaño

del equipo, los recursos disponibles y la complejidad del proyecto. La

validación del marco se realizará a través de un prototipo específico, por lo

que su generalización a otros tipos de proyectos o formatos de videojuegos

(como 3D o VR) puede requerir ajustes adicionales.

2. Recursos Limitados para el Desarrollo del Prototipo: El prototipo de

videojuego en 2D desarrollado como parte de este proyecto estará limitado

por los recursos disponibles, incluyendo tiempo, personal y herramientas.

Esto puede afectar la complejidad y la escala del juego final, lo que a su vez

podría influir en la evaluación del marco metodológico.

21

3. Enfoque en el Proceso de Desarrollo: El proyecto se centrará en el proceso

de desarrollo y la integración de ingeniería de software y creatividad.

Aspectos relacionados con la comercialización, distribución o recepción en el

mercado del videojuego desarrollado no serán abordados en profundidad.

4. Pruebas y Feedback Limitados: Aunque se planea realizar pruebas de

usuario y revisiones por parte de expertos, el número de participantes y la

variedad de perfiles pueden estar limitados por la disponibilidad y el alcance

del proyecto. Esto podría restringir la cantidad de feedback obtenida, lo que

podría afectar la validez de las conclusiones.

5. Restricciones Tecnológicas: Las herramientas y tecnologías utilizadas

para desarrollar el prototipo estarán limitadas a aquellas accesibles dentro

del marco temporal y de recursos de la investigación. Esto puede influir en

las decisiones de diseño y desarrollo, así como en la aplicabilidad del marco

a entornos con diferentes capacidades tecnológicas.

22

Capítulo 1 Marco teórico

y Conceptual
1.1 Ingeniería de Software en el Desarrollo de Videojuegos

La ingeniería de software es la disciplina que se ocupa del diseño, desarrollo,

mantenimiento y gestión de software de alta calidad. (“¿Qué es la Ingeniería de

Software? | COHETE.digital”)

En el contexto del desarrollo de videojuegos, la ingeniería de software proporciona

las bases técnicas necesarias para garantizar que un juego funcione de manera

eficiente, sea escalable y esté libre de errores graves.

1.1.1 Metodologías de Desarrollo de Software

Las metodologías de desarrollo de software como el modelo en cascada, el

desarrollo ágil y la programación extrema (XP) han sido ampliamente utilizadas en

la industria del software. Sin embargo, en el contexto del desarrollo de videojuegos,

especialmente en 2D, se han adaptado ciertas metodologías para acomodar la

naturaleza iterativa y creativa del proceso de diseño.

• Desarrollo Ágil: Se ha convertido en una de las metodologías preferidas en

el desarrollo de videojuegos debido a su flexibilidad y capacidad de

adaptación. Metodologías ágiles como Scrum y Kanban permiten a los

equipos de desarrollo iterar rápidamente sobre ideas, integrar el feedback del

usuario y ajustar el enfoque según sea necesario.

• Programación Extrema (XP): Aunque XP es menos común en la industria

del videojuego, algunos de sus principios, como la entrega frecuente de

versiones funcionales del software y la participación continua del cliente,

pueden ser beneficiosos en proyectos donde la retroalimentación temprana

y constante es crítica para el éxito del juego.

1.1.2 Arquitectura de Software en Videojuegos 2D

Según arcus-global (2018), la arquitectura de software en los videojuegos en 2D es

fundamental para garantizar que el juego pueda soportar los requisitos de diseño,

como la carga gráfica, la física del juego y la inteligencia artificial sin tener que

comprometer el rendimiento.

Para esto, se utilizan patrones de diseño como el Modelo-Vista-Controlador (MVC),

que permite una separación clara entre la lógica del juego, la interfaz de usuario y

la manipulación de datos, facilitando así la gestión de cambios y la implementación

de nuevas funcionalidades.

23

1.1.3. Proceso Creativo en el Desarrollo de Videojuegos en

2D

El proceso creativo en el desarrollo de videojuegos involucra la concepción, diseño

y refinamiento de ideas que eventualmente se transforman en el producto final. Este

proceso es crucial para definir la estética del juego, su narrativa, y las mecánicas de

juego que lo diferencian en el mercado.

1.1.3.1 Etapas del Proceso Creativo

• Conceptualización: En esta fase, se generan las ideas principales del juego,

incluyendo la historia, los personajes, el estilo artístico y las mecánicas de

juego.

• La conceptualización es un proceso iterativo que a menudo involucra

brainstorming, prototipado rápido y discusión entre los miembros del equipo

creativo.

• Diseño y Prototipado: Después de la conceptualización, el equipo creativo

desarrolla prototipos que permiten experimentar con las ideas propuestas.

En el caso de los videojuegos en 2D, el prototipado puede incluir el diseño

de niveles, la creación de arte en píxeles y la implementación básica de

mecánicas de juego.

• El prototipado es esencial para visualizar cómo se integrarán las ideas en el

producto final y para identificar posibles problemas antes de entrar en la fase

de desarrollo completo.

• Iteración y Refinamiento: A medida que el proyecto avanza, el proceso

creativo involucra la constante iteración y refinamiento de los elementos del

juego. Esto puede incluir ajustes en el diseño visual, la narrativa o las

mecánicas de juego, basados en pruebas internas y feedback de usuarios.

1.1.4. Intersección entre Ingeniería de Software y Proceso

Creativo

La integración de la ingeniería de software con el proceso creativo es uno de los

mayores desafíos en el desarrollo de videojuegos. Mientras que la ingeniería de

software se enfoca en la estabilidad, eficiencia y escalabilidad del código, el proceso

creativo requiere flexibilidad y capacidad de adaptación rápida a nuevas ideas y

cambios de dirección.

1.1.4.1 Tensiones entre lo Técnico y lo Creativo

La principal tensión entre la ingeniería de software y el proceso creativo radica en

sus enfoques inherentemente diferentes. Mientras que la ingeniería de software

busca minimizar los riesgos y controlar los cambios para garantizar la calidad del

24

producto final, el proceso creativo a menudo prospera en un entorno donde las ideas

pueden evolucionar y cambiar sin restricciones.

Esto puede generar fricciones en el equipo, retrasos en el proyecto y, en algunos

casos, compromisos que afectan la calidad final del juego.

1.1.4.2 Metodologías Híbridas y Colaboración Efectiva

Para abordar estas tensiones, se han propuesto diversas metodologías híbridas que

buscan integrar lo mejor de ambos mundos. Estas metodologías combinan la

estructura y las buenas prácticas de la ingeniería de software con la flexibilidad y el

enfoque exploratorio del proceso creativo. Un ejemplo de esto es la metodología

“Desarrollo Ágil Creativo” (DAC), que alterna sprints técnicos con sprints creativos,

permitiendo a ambos equipos trabajar de manera sinérgica hacia un objetivo común.

Además, la colaboración efectiva entre los equipos técnicos y creativos es esencial.

Herramientas colaborativas que permiten la integración de código con recursos

creativos, junto con una comunicación clara y continua, son claves para garantizar

que la visión del juego se mantenga coherente y que el proceso de desarrollo sea

lo más fluido posible.

1.1.5. Herramientas y Tecnologías en el Desarrollo de

Videojuegos en 2D

El desarrollo de videojuegos en 2D se apoya en un conjunto de herramientas y

tecnologías que facilitan tanto el proceso creativo como la implementación técnica.

• Motores de Juego: Herramientas como Unity, Godot, y GameMaker Studio

son ampliamente utilizadas en el desarrollo de videojuegos en 2D. Estos

motores de juego proporcionan un entorno integrado donde los

desarrolladores pueden crear, probar y depurar juegos, a la vez que ofrecen

capacidades avanzadas para el manejo de gráficos, física y sonido.

• Software de Arte y Animación: Herramientas como Adobe Photoshop,

Aseprite, y Spine son esenciales para la creación de arte y animaciones en

2D. Estas herramientas permiten a los diseñadores trabajar en píxeles, crear

sprites, y animar personajes y escenarios de manera eficiente.

• Sistemas de Control de Versiones: Git y GitHub son herramientas

fundamentales para la gestión de código y recursos creativos en proyectos

de desarrollo de videojuegos. Estas herramientas permiten a los equipos

trabajar de manera colaborativa, gestionar cambios en el código y mantener

un historial de versiones, lo que es crucial para proyectos en constante

evolución.

25

1.1.6.- Ingeniería de software

Es la disciplina que se ocupa del diseño, el desarrollo, mantenimiento, pruebas y

evaluación del software, a diferencia de la programación pura, esta disciplina se

enfoca en aplicar principios de ingeniería para crear software robusto, eficiente y

mantenible.

1.1.6.1.- Ciclo de vida del Desarrollo de Software

• Recolección de Requisitos: Identifica y documenta las necesidades del

usuario final y los objetivos del sistema.

• Análisis de requisito: Descompone los requisitos para comprenderlos en

detalle y especificar lo que debe hacer el software.

• Diseño: Creación de una arquitectura o estructura del software.

• Implementación (Codificación): Desarrollo del software propiamente

dicho, aquí se escribe código en el lenguaje de programación seleccionado.

• Pruebas: Evaluación del software para identificar y corregir errores,

procurando que cumpla con los objetivos.

• Despliegue: Instalación y puesta en funcionamiento del software en el

entorno del usuario.

• Mantenimiento: Actualizaciones, mejoras y correcciones de errores que

puedan surgir una vez que el software se encuentra en uso.

1.1.6.2.- Principios de la ingeniera de software

Se basa en varios principios fundamentales para asegurar que el software resultante

sea de alta calidad:

• Modularidad: Dividir el sistema en componentes o módulos independientes

para facilitar su desarrollo, mantenimiento y prueba.

• Reutilización: Uso de componentes de software previamente desarrollados

para reducir costos y tiempo.

• Mantenibilidad: El software debe diseñarse para facilitar su mantenimiento

y actualización a futuro.

• Escalabilidad: Capacidad del software para manejar un aumento en la carga

o volumen de datos sin perdida significativa de rendimiento.

• Confiabilidad: El software debe funcionar de manera correcta bajo diversas

condiciones y manejar errores de manera adecuada.

1.1.6.3.- Herramientas de la ingeniería de software

• Sistemas de Control de Versiones: Para gestionar cambios en el código

fuente (Como github).

• Entornos de desarrollo (IDE): Ofrecen un entorno unificado para escribir,

probar y depurar código (Visual Studio, Eclipse).

26

1.1.7.- Procesos Creativos

Es la metodología que guía el desarrollo de una idea desde la concepción inicial

hasta la ejecución final, se caracteriza por ser no lineal, iterativo y a menudo,

involucra tanto la inspiración momentánea como el análisis racional, a diferencia de

otros procesos este valora tanto la intuición como la lógica.

1.1.7.1.- Etapas del Proceso Creativo

• Preparación: Recolectar información, investigar y adquirir el conocimiento

necesario sobre el problema o tema en cuestión, se analizan referencias, se

estudian casos previos y se busca entender a fondo el contexto.

• Incubación: Deja que la mente procese la información de manera

subconsciente, durante este periodo las ideas no se trabajan activamente,

pero la mente sigue buscando conexiones.

• Iluminación (Insight): Es cuando surge una idea o una solución, esta fase

a menudo es descrita como la parte más emocionante y reveladora del

proceso creativo.

• Evaluación: Análisis crítico de la idea generada, aquí se evalúa si la idea es

factible, si cumple con los objetivos planteados y si es realmente innovadora.

• Elaboración: Es el desarrollo completo de la idea, aquí se pasa de la fase

conceptual a la práctica, detallando, refinando y concretando la solución o la

obra creativa.

1.1.7.2.- Técnicas y Estrategias Creativas

• Tormenta de ideas (BrainStorming): Reunir un grupo para generarla mayor

cantidad posible de ideas sin juzgarlas, aquí la cantidad se prioriza sobre la

calidad.

• Mapas mentales: Visualizar ideas y conceptos de manera gráfica,

conectándolos de forma jerárquica y encontrando relaciones que no son

obvias a primera vista,

• Pensamiento Lateral: Proponer soluciones fuera de lo convencional, a

diferencia del pensamiento lógico, el pensamiento lateral fomenta la

creatividad al abordar problemas desde ángulos inesperados.

• SCAMPER: Técnica que invita a modificar una idea a través de preguntas

clave: Sustituir, Combinar, Adaptar, Modificar, Poner en otro uso, Eliminar,

Reorganizar.

• Analogías y Metáforas: Utilizar conceptos o situaciones de otros contextos

para encontrar inspiración y generar nuevas ideas aplicables al problema en

cuestión.

1.1.7.3.- Herramientas para el Proceso Creativo

• Software de Mapas Mentales: Permiten estructurar visualmente las ideas

(MindMeister o Xmind).

27

• Plataformas de Colaboración: Para que equipos creativos puedan trabajar

juntos, compartir recursos y desarrollar conceptos (Miro o Notion).

• Diarios Creativos o Cuadernos de Bocetos: Son espacios para capturar

ideas espontaneas, dibujar, escribir o plasmar conceptos sin restricciones.

• Generadores de ideas: Aplicaciones o juegos que presentan desafíos

creativos o sugerencias para inspirar nuevas ideas.

1.1.8.- Optimización

Es un proceso que mejora la eficiencia, rendimiento o efectividad de un sistema,

proceso o solución, implica encontrar la mejor opción posible dentro de un conjunto

de alternativas bajo ciertos criterios específicos como minimizar costos, maximizar

ganancias, reducir tiempo o mejorar la calidad.

1.1.8.1.- Tipos de Optimización

• Matemática: Utiliza métodos matemáticos y algoritmos para encontrar la

mejor solución a problemas formulados como modelos matemáticos, y

subdivide en optimización lineal, que es donde las relaciones entre las

variables son lineales, adecuada para problemas que pueden ser descritos

mediante ecuaciones o desigualdades lineales, la optimización no lineal, que

es cuando las relaciones entre variables no son lineales, es más complejo y

se aplica a problemas con relaciones no proporcionales, Optimización entera,

aquí las variables de decisión solo pueden tomar valores enteros, se utiliza

en problemas donde las soluciones no pueden ser fraccionadas, como la

planificación de recursos o el diseño de rutas, y por ultimo Organización

Dinámica, que se aplica a problemas en los que la decisión optima depende

de una secuencia de eventos a lo largo del tiempo.

• Optimización Heurística: Emplea métodos aproximados que buscan

soluciones venas, pero no necesariamente optimas, es útil cuando el espacio

de búsqueda es demasiado grande para explorar exhaustivamente.

• Optimización Multiobjetivo: Se utiliza cuando un problema tiene varios

objetivos que pueden ser conflictivos entre sí, como minimizar costos

mientras se maximiza la calidad, busca un equilibrio optimo mediante

técnicas como el frente de Pareto, donde se consideran soluciones que no

son superadas simultáneamente en todos los objetivos.

1.1.8.2.- Etapas del Proceso de Optimización

• Formulación del Problema: Definición claro del problema, objetivos,

variables de decisión y las restricciones, es fundamental identificar que es lo

que se quiere optimizar y en qué condiciones.

• Modelo Matemático: Crear un modelo matemático que represente el

problema, incluyendo una función objetivo que debe ser optimizado, así

como las restricciones que limitan las posibles soluciones.

28

• Selección del método de optimización: Elegir la técnica o algoritmo

adecuado según el tipo de problema.

• Resolución del Problema: Aplicar el método seleccionado para encontrar a

solución óptima, en esta fase se implementan los cálculos o simulaciones

necesarios.

• Validación y análisis de resultados: Se comprueba que la solución

obtenida cumple con los objetivos planteados y as restricciones definidas, se

analiza su la solución es razonable y se ajustan los parámetros si es

necesario.

• Implementación y Monitoreo: Implementar la solución en el contexto real y

monitorear su efectividad, si surgen cambios o problemas en el entorno,

podría ser necesario ajustar la optimización.

1.1.8.3.- Técnicas y Métodos de Optimización

• Métodos Exactos: Se encuentra la solución exacta del problema (Método

Simplex y Método de Branch and Bound, por mencionar algunos)

• Métodos Aproximados o Heurísticos: Ofrecen soluciones satisfactorias

cuando los métodos exactos son computacionalmente inviables (Algoritmos

genéticos y recocido simulado).

• Métodos de optimización Convexa: Se aplican a problemas donde la

función objetivo es convexa, lo que asegura que cualquier mínimo local es

también el mínimo global.

• Métodos de Gradiente: Utilizan derivadas para moverse hacia la dirección

de mejora en el espacio de soluciones, como el método del gradiente

descendente.

• Programación lineal y no lineal: Son técnicas clásicas que utilizan

restricciones lineales o no lineales para definir el espacio de búsqueda.

1.1.8.4.- Aplicaciones de la Optimización

• Ingeniería y Diseño: Optimiza estructuras, circuitos electrónicos y procesos

industriales.

• Logística y transporte: Optimización de rutas, planificación de la cadena de

suministro y asignación de recursos para reducir tiempos y costos.

• Finanzas: Maximización de beneficios en inversiones, minimización de

riesgos financieros y gestión optima de carteras de inversión.

• Computación: Optimización de algoritmos para mejorar la eficiencia

computacional, reducir el consumo de recursos y acelerar tiempos de

ejecución.

29

1.1.8.5.- Importancia de la Optimización

• Reducción de Costos: Minimizar el uso de recursos y los costos

asociados sin comprometer la calidad.

• Mejorar la Productividad: Aumentar la eficiencia en procesos y tareas,

reduciendo tiempos y aumentando la calidad del producto final.

• Mejor toma de Decisiones: Ofrecer alternativas claras y precisas para

elegir la mejor opción bajo las circunstancias dadas.

• Sostenibilidad: En el contexto ambiental, la optimización permite el uso

eficiente de recursos naturales, reduciendo el impacto ambiental.

1.1.9.- Optimización de Software

Busca mejorar el rendimiento del código, reducir el consumo de recursos y aumentar

la velocidad de ejecución, manteniendo o mejorando la funcionalidad del programa.

Abarca una serie de técnicas que van desde la optimización a nivel de código fuente

hasta la configuración de hardware en el que se ejecuta la aplicación.

1.1.9.1.- Tipos de Optimización

A) Optimización del Rendimiento

• Optimización de Algoritmos: Mejora la eficiencia de los algoritmos

utilizados, implicando la elección de algoritmos con la menor complejidad

computacional posible (O(n), O (log n), etc.), reduciendo el tiempo de

ejecución y el uso de recursos.

• Paralelización: Dividir tarea en múltiples subprocesos o hilos que se pueden

ejecutar en paralelo, utilizando mejor los recursos del hardware.

• Optimización de Consultas a Bases de Datos: Rediseñar consultas SQL,

optimizar índices y reducir la cantidad de acceso a la base de datos para

mejorar el tiempo de respuesta.

• Compilación y Código Maquina: Ajustar las opciones del compilador para

generar código más eficiente y utilizar optimizaciones específicas de

hardware.

B) Optimización del uso de Memoria

• Manejo Eficiente de la Memoria: Minimizar el uso de la memoria al evitar

fugar de memoria (memory leaks) y utilizar estructuras de datos que ocupen

menos espacio.

• Caching: Guardar temporalmente resultados calculados para evitar cálculos

repetidos, mejorando el rendimiento a costa el uso de memoria.

• Optimización de la Recolección de Basura (Garbage Collection): Ajustar

las configuraciones del recolector de basura en lenguajes con manejo

automático de memoria (Java, C#) para minimizar pausas innecesarias.

30

C) Optimización de Código

• Eliminación de Código Muerto: Quitar código que no se utiliza o que es

redundante, haciendo que el programa sea más limpio y eficiente.

• Refactorización: Mejorar la estructura del código sin cambiar su

comportamiento, esto incluye modularización, simplificación de funciones

complejas y mejoras de la legibilidad.

• Inlining: Integrar funciones pequeñas directamente en el flujo principal del

programa, evitándolo la sobrecarga de llamadas a funciones.

• Optimización de Ciclos: Minimizar la cantidad de iteraciones en bucles o

simplificar la lógica interna para mejorar la eficiencia.

D) Optimización de la Experiencia de Usuario (UX)

• Optimización del Tiempo de Carga: Minimizar el tiempo que tarda el

software en iniciar o cargar elementos esenciales, optimizando la entrada de

recursos.

• Interacción Fluida: Reducir el tiempo de espera para el usuario al cargar

contenido en segundo plano, usar animaciones suaves y proporcionar

retroalimentación rápida.

• Compresión de Recursos: Reducir el tamaño de los archivos (imágenes,

scripts, etc.) que el software necesita cargar, mejorando la velocidad de

carga.

1.1.9.2.- Etapas del Proceso de Optimización en Software

• Identificación del Problema: Detectar que parte del software necesita la

optimización, esto puede involucrar el análisis del rendimiento, la evaluación

del uso de memoria o la identificación de cuellos de botella específicos.

• Medición y Análisis: Recopilar datos precisos sobre el rendimiento del

software, usando herramientas como profilers, monitores de memoria y

análisis de tiempos de ejecución.

• Modelado y Ajustes: Aplicar técnicas de optimización específicas para

solucionar los problemas identificados, esto puede incluir cambios en el

código, justes en la configuración del sistema o la implementación de nuevas

estructuras de datos.

• Pruebas: Validar que las optimizaciones realizadas funciones correctamente

sin afectar negativamente el comportamiento del software, siendo

fundamental realizar pruebas de regresión para asegurar que no se

introduzcan nuevos errores.

• Monitoreo Continuo: Después de la optimización es importante seguir

monitoreando el rendimiento para detectar posibles problemas futuros o

identificar nuevas oportunidades de mejora.

31

1.1.9.3.- Herramientas de Optimización en Software

• Profilers: Permiten identificar cuellos de botella en el código y áreas que

sonsumen mucho tiempo o recursos (VisualVM, Perf, gprof, JProfiler).

• Analizadores de Memoria: Para identificar fugas de memoria o uso

ineficiente (Valgrind, Memory Analyzer y HeapDump).

• Pruebas de Carga y Rendimiento: Para evaluar cómo responde el software

bajo diferentes cargas de trabajo (JMeter, Gatling o LoadRunner).

• Sistemas de Caching: Permiten implementar caching efectivo para

mejorarel rendimiento (Redis, Memcached, Varnish).

• Minificadores y Compresores: Reducen el tamaño del código JavaScript o

imágenes para mejorar la velocidad de carga (UglifyJS o ImageOptim).

1.1.9.4.- Aplicaciones de la Optimización de Software

• Aplicaciones Web: Mejora del tiempo de carga, optimización de peticiones

HTTP, reducción del tamaño de archivos y optimización del manejo del DOM.

• Aplicaciones Móviles: Minimización del uso de batería, reducción del

tamaño de la aplicación, optimización del rendimiento gráfico y mejora de la

capacidad de respuesta.

• Software Empresarial: Optimización de consultas a bases de datos, gestión

eficiente de la memoria en servidores y mejora de la escalabilidad para

manejar grandes volúmenes de datos.

• Sistemas Embebidos: Uso eficiente de recursos limitados, como memoria

y CPU, optimización del consumo energético y maximización del rendimiento

en dispositivos con hardware restringido.

• Videojuegos: Optimización del rendimiento gráfico, mejora de la física, y

simulaciones en tiempo real, minimización de latencia y optimización del uso

de la GPU.

1.1.10.- Desarrollo de Videojuegos

Es un proceso complejo y multidisciplinario que abarca desde la conceptualización

de una idea hasta la creación de un producto interactivo final que puede ser jugado

en diferentes plataformas.

Involucra a profesionales de diversas áreas, como la programación, el diseño

gráfico, la música, la narrativa y la gestión de proyectos, quienes colaboran para

crear una experiencia de juego envolvente y entretenida.

1.1.10.1.- Fases, elementos clave y técnicas de desarrollo

A) Conceptualización y Preproducción

• Idea inicial: La creación de un videojuego inicia con una idea o concepto en

general, este concepto incluye una revisión básica el tipo de juego, ya sea

acción, aventura, RPG, la historia, ambientación y la estética.

32

• Documento de Concepto: Se elabora un documento que recoge la idea

principal, incluyendo detalles sobre la narrativa, los personajes, el diseño

visual, las mecánicas de juego y los objetivos, este documento sirve como

guía inicial para todo el equipo.

• Prototipado Rápido: Se desarrollan prototipos básicos del juego para probar

las mecánicas fundamentales y verificar si la idea es viable, en esta fase se

experimenta y se ajustan aspectos esenciales del diseño antes de

comprometerse a una producción completa.

• Planificación del Proyecto: Se establece un plan detallado que incluye el

cronograma de desarrollo, la asignación de tareas, los recursos necesarios y

los hitos importantes, esto implica identificar el motor de juego que se

utilizara, plataformas destino, el presupuesto y el tiempo estimados.

B) Diseño del Juego

• Mecánicas de Juego.

• Diseño de Niveles.

• Narrativa y Diseño de Personajes.

• Diseño de Arte y Estilo Visual.

C) Producción

• Programación y Desarrollo de Software: Los programadore implementan

las mecánicas de juego y la lógica que define el comportamiento del mundo

virtual.

• Gráficos y Animación: Los artistas gráficos crean los modelos 3D o los

sprites 2D, texturas y elementos visuales que conformaran el aspecto del

juego.

• Audio y Música: Los diseñadores de sonido crean efectos de audio, diálogos

y ambientaciones sonoras que enriquecen la experiencia del juego.

D) Pruebas y Depuración

• Pruebas de Jugabilidad: Se hace una evaluación de la jugabilidad,

buscando problemas mecánicos.

• Pruebas de Rendimiento: Se realizan pruebas para medir el rendimiento

del juego en diferentes dispositivos.

• Depuración y Corrección de Errores: Se corrigen errores detectados

durante las pruebas, se ajustan las mecánicas de juego y solucionan

problemas de estabilidad.

33

1.2.- Estado del Arte
El proyecto de titulación de Carrasco Juan, Ramírez Luis, Duarte Andrés y Barrera

Jesús tiene como objetivo atraer a potenciales aspirantes a la carrera de ingeniería

de sistemas y computación mediante la creación de un videojuego, ya que se

percataron que la cantidad de aspirantes a dicha carrera ha ido cayendo con el

pasar de los años, mencionando un estudio realizado por MinTic en 2015.

(Rodríguez et al., 2019)

Se menciona que en ese estudio una de las principales causas de que la carrera no

tenga tantos aspirantes como en otros años es por la forma en cómo se está

mostrando la carrera, dando a los potenciales aspirantes una idea totalmente

equivocada sobre esta misma, dando paso a que dichos aspirantes busquen otra

carrera que se les haga más atractiva con respecto a la anteriormente mencionada.

Con eso en mente, desarrollaron un videojuego para demostrar que la carrera de

sistemas y computación no es como se ha llegado a dar entender, incluso

demostrando que puede ser divertida buscando así llegar a personas que no tengan

un total entendimiento de cómo es esa carrera, y demostrar a las que si lo tengan

que no es como imaginaban.

Este trabajo es especial, por la capacidad que tiene de demostrar con la creación y

la implementación de un videojuego que ciertas cosas no son como se pueden llegar

a imaginar o como incluso, se pueden llegar a platicar, además de que demuestra

que los videojuegos no solo funcionan como un medio de entretenimiento o

distracción, si no que también como un medio educativo y de divulgación

informativa.

Félix Etxeberria Balerdi (2009)

El trabajo de Félix Etxeberria Balerdi (2009) llama la atención, ya que a diferencia

de muchos otros trabajos consultados para el proceso de creación de este proyecto,

no habla sobre procesos de desarrollo, ni de metodologías, si no sobre lo que en

realidad es un videojuego, explicando sus inicios, historia, como han ido

evolucionando, ofreciendo tablas de porcentajes desde que tipos de videojuegos

son los enfoques preferidos de las personas, como violencia fantástica, deportivos,

educativos, estando estos últimos en último lugar con un pobre 2%.

También proporciona una tabla de los mejores juegos de 1997 junto con una tabla

que proporciona el gusto tanto de niñas como de niños, aunando una tabla que

proporciona el tiempo de juego de cada uno, de la fuente de Funk (1993).

Pero no solo se queda ahí la investigación de Félix Etxeberria Balerdi, si no que

profundiza más mencionando la psicología del aprendizaje y videojuegos,

mencionando que lo fundamental es que una tarea tenga el suficiente atractivo o

motivación para promover el aprendizaje.

34

Y se considera que esto es cierto, ya que hoy en día muchas personas tildan a los

videojuegos de que no aportan nada bueno dentro del aprendizaje, dejando de lado

que los videojuegos pueden proporcionar muchas facilidades al aprendizaje, y a

actividades motrices, con consolas como la Wii, o los sistemas de realidad virtual.

Aparte de todo esto, también hace una mención sobre influencias negativas que

pueden proporcionar los videojuegos, como la violencia, sexismo, sociabilidad,

creatividad entre varios otros, haciendo que esto en particular sea algo destacable,

ya que no muchos trabajos mencionan estas partes negativas que un videojuego

puede tener si no se sabe manejar de manera correcta, haciendo que se le deba

poner especial atención a estos detalles.

Ana Ma Manrubia Pereira (2015)

En el trabajo de Ana Ma Manrubia Pereira llamado “El proceso productivo del

videojuego: fases de producción” (2015), menciona la importancia de los

videojuegos en los últimos años, haciendo que su proceso de desarrollo sea una

parte fundamental en su creación.

Explica la proceso de producción de los videojuegos, iniciando por la preproducción

iniciado en el concepto de juego, que es una de las partes más importantes a la

hora de crear un videojuego, ya que aquí es cuando se decide el género, se crea la

historia y se hacen los bocetos de los niveles, o espacios donde el personaje

interactuara así como también el gameplay, que es la parte más importante de un

videojuego, ya que de esta depende si será un videojuego innovador, que aporte

cosas nuevas a los videojuegos, y también de esta dependerá si el juego es un

éxito, o no.

Una vez terminada esta parte es cuando se puede pasar al apartado de producción,

iniciando con el diseño de juego, que es donde se especifican los elementos que

compondrán al juego, y después se inicia el diseño artístico para implementar la

historia, creación de sonidos, música, efectos, etc. Las interfaces que se tendrán en

el producto, y los gráficos.

El trabajo es interesante porque ayudo a ser una guía en el proceso que este

proyecto estaba teniendo, si bien los sprints ayudaron demasiado, tener una

cronología de creación como la de este trabajo, ayudo para poder saber como

guiarse a la hora de ir terminando esos sprints.

35

Capítulo 2 Metodología
1.- Modelo en Cascada

Esta es una de las que fueron las primeras metodologías formales de desarrollo de

software, ocupa un enfoque secuencial que sigue una estructura rígida y

organizada, donde cada fase del proyecto debe de completarse antes de pasar a la

siguiente, se le llama “cascada” por qué tiene la similitud con el agua de una

cascada, ya que el flujo del trabajo avanza en una sola dirección, hacia adelante.

1.1 Fases del Modelo en Cascada

Requisitos

Se recopilan y documentan todos los requisitos del proyecto o producto a

desarrollar.

Los requisitos deben ser totalmente entendidos y ser definidos claramente antes de

continuar.

Diseño del Sistema

A partir del punto anterior, se diseña la arquitectura del proyecto, incluyendo las

especificaciones de hardware y software, así como el diseño de la base de la

estructura de la aplicación.

Implementación

En esta fase, los programadores traducen el diseño en código, creando el sistema

o producto.

Aquí se desarrolla el código fuente y se integran los módulos desarrollados para

formar el sistema completo

Pruebas

Después de que el sistema haya sido implementado se realiza una fase de pruebas

exhaustivas para asegurarse de que el software funcione según los requisitos y esté

libre de errores.

Despliegue

Después de que el sistema ha sido probado y verificado, se implementa en el

entorno real donde será utilizado por los usuarios finales.

36

Mantenimiento

Después del despliegue, el sistema entra en la fase de mantenimiento, donde se

realizan correcciones de errores y mejoras según sea necesario.

El modelo en Cascada presenta varias ventajas y desventajas que deben ser

consideradas. Entre los aspectos positivos, destaca su claridad y estructura; gracias

a su enfoque secuencial, cada fase cuenta con un inicio y un final claramente

definidos, lo que facilita la planificación y el seguimiento del progreso. Además,

fomenta una documentación extensa en cada etapa, lo que mejora la comprensión

del proyecto y facilita la transferencia de conocimiento, sirviendo como referencia

para el futuro.

La naturaleza predecible y lineal del modelo también simplifica la gestión de

proyectos, permitiendo a los integrantes del equipo evaluar hitos específicos y

realizar un seguimiento efectivo del avance y el presupuesto. Este enfoque resulta

especialmente adecuado para proyectos pequeños donde los requisitos son bien

conocidos, claros y poco propensos a cambios.

Sin embargo, el modelo en Cascada también presenta inconvenientes significativos.

Uno de los más destacados es su falta de flexibilidad; si surgen cambios en los

requisitos durante fases posteriores, adaptarse a ellos puede resultar costoso y

complicado, ya que el modelo no contempla la retroalimentación continua ni la

modificación de los procesos en curso. Además, la poca retroalimentación del

cliente puede ser un problema, ya que este solo tiene acceso al producto final una

vez que se ha completado la implementación, lo que puede generar sorpresas o

insatisfacción si los resultados no cumplen con sus expectativas.

Asimismo, dado que las pruebas se realizan solo después de la implementación, los

errores o fallos pueden no detectarse hasta etapas avanzadas del proyecto,

complicando su corrección. Por último, este modelo no es adecuado para proyectos

complejos o con requisitos cambiantes, ya que su estructura secuencial dificulta la

adaptación a cambios imprevistos.

37

2.- Programación Extrema (XP)
Esta es una metodología ágil enfocada en mejorar la calidad del software y la

capacidad de respuesta a los cambios de requisitos, desarrollada en la década de

1990 por Kent Beck y se basa en una serie de buenas prácticas que buscan mejorar

la eficiencia el desarrollo de software a través de ciclos rápidos y comunicación

constante.

2.1.- Fases de la Programación Extrema

Planificación

Se define el alcance del proyecto mediante las llamadas “historias de usuario” que

describen las funcionalidades que el cliente desea, y a partir de esto, el equipo

estima el tiempo necesario para cada tarea y se organizan las iteraciones.

Diseño

En diseño siempre se mantiene lo más simple posible, lo que significa que el equipo

solo construye lo que es necesario para satisfacer al usuario, también se usan las

técnicas llamadas “diseño guiado por pruebas”.

Codificación

El equipo trabaja en pares, lo que significa que dos desarrolladores colaboran en

una misma estación de trabajo, y mientras uno está escribiendo el código, el otro lo

revisa en tiempo real, promoviendo la calidad de dicho código desde un inicio.

Pruebas

Esta metodología tiene un fuerte enfoque en las pruebas, ya que se realizan

pruebas automatizadas y unitarias desde el principio del ciclo de desarrollo, y cada

funcionalidad tiene que pasar dichas pruebas para ser considerada completa.

Entrega

Al final de cada iteración, se entrega una versión funcional del software que puede

ser aprobada y revisada por el cliente, asegurando que el software ese siempre en

un estado utilizable y que se pueda mejorar en función de feedback recibido.

La programación extrema (XP) presenta una variedad de ventajas y desventajas

que vale la pena considerar. Entre sus aspectos positivos, destaca su capacidad de

respuesta rápida a cambios, ya que su flexibilidad permite adaptarse rápidamente

a nuevos requisitos o a cambios en las prioridades del cliente. Asimismo, la mejora

continua del proyecto es fundamental; las entregas frecuentes y la retroalimentación

constante facilitan la realización de ajustes, asegurando que el producto evolucione

conforme a las expectativas del cliente.

38

Además, XP promueve una alta calidad del código. Gracias a la programación en

pareja y al enfoque en pruebas automatizadas, se reducen los errores desde las

primeras etapas del desarrollo. Otro beneficio es la simplicidad en el diseño, que

evita la creación de código innecesariamente complejo, facilitando el mantenimiento

y reduciendo la probabilidad de errores a largo plazo. Finalmente, esta metodología

fomenta un ambiente de trabajo dinámico y participativo, lo que puede incrementar

la motivación y el compromiso del equipo.

No obstante, la programación extrema también presenta desventajas. Una de las

más significativas es que puede ser difícil de implementar en equipos grandes; esta

metodología funciona mejor en grupos pequeños y altamente colaborativos,

mientras que, en equipos más grandes, la coordinación y la comunicación pueden

volverse complicadas.

Además, requiere una alta participación del cliente en el proceso de desarrollo, lo

que puede ser problemático si el cliente no dispone del tiempo o de los recursos

necesarios para colaborar de manera continua.

Otro riesgo es la posible falta de planificación a largo plazo; el enfoque en

iteraciones cortas y entregas rápidas puede llevar a descuidar la planificación futura,

lo que podría ocasionar problemas de escalabilidad o integración en etapas

posteriores del proyecto. Aunque la programación en pareja tiene sus beneficios, no

todos los desarrolladores se sienten cómodos trabajando de esta forma, y en ciertas

circunstancias, puede ralentizar al equipo. Por último, el enfoque intensivo en

pruebas automatizadas y de unidad puede incrementar los costos de desarrollo,

especialmente si se requiere tiempo adicional para crear y mantener los entornos

de prueba.

39

3.- Desarrollo Ágil
Esta metodología se centra en la flexibilidad, colaboración y la entrega incremental

de software funcional, creada debido a las limitaciones de los enfoques más

tradicionales como el modelo en cascada anteriormente mencionado en el

documento, y basado en los principios del manifiesto ágil, el principal objetivo es

entregar valor al cliente de manera rápida y efectiva, ajustándose a los cambios en

los requisitos a lo largo del proyecto.

3.1.- Fases del Desarrollo Ágil

Planificación del Sprint

Esta metodología se organiza en iteraciones cortas llamadas sprints, generalmente

de 1 a 4 semanas, durante la planeación el equipo selecciona las historias de

usuario que se van a desarrollar durante el sprint.

Desarrollo e Implementación

Durante el sprint, el equipo trabaja en la implementación de las historias elegidas,

el equipo tiene autonomía para resolver problemas y ajustar el código en función de

los cambios que se vayan encontrando.

Revisión del Sprint

Al final de cada sprint, el equipo revisa lo que ha completado y presenta un software

funcional al cliente. Esta entrega de software permite que el cliente pruebe el

sistema pueda dar feedback sobre él.

Retrospectiva

Después de la revisión, el equipo se reúne para discutir lo que funciona bien, lo que

no funciona bien y como se puede mejorar en el próximo sprint, con el objetivo de

aprender y mejorar continuamente.

Pruebas

A lo largo del proceso se desarrollan pruebas continuas, a menudo automatizadas

para asegurar la calidad del software, estas pruebas garantizan que cada

funcionalidad agregada no rompa el sistema y cumpla con los requisitos.

El desarrollo ágil ofrece múltiples ventajas y desventajas que es importante

considerar. Entre sus pros, la flexibilidad ante el cambio se destaca como una de

las mayores fortalezas, ya que permite adaptarse a modificaciones en los requisitos

en cualquier momento del proyecto. Además, la entrega continua es un aspecto

fundamental; cada sprint genera un software funcional, lo que significa que el cliente

puede recibir avances incrementales a lo largo del desarrollo, permitiendo realizar

ajustes basados en una retroalimentación rápida.

40

La mejora continua es otra ventaja, ya que las reuniones de retrospectiva permiten

identificar problemas y optimizar procesos, aumentando la eficiencia del equipo.

Además, la alta colaboración y transparencia son características esenciales; el

cliente está involucrado activamente en cada fase del proyecto, lo que genera una

comunicación fluida y proporciona visibilidad sobre el estado de este.

Finalmente, esta metodología tiende a aumentar la satisfacción del cliente, ya que

las entregas frecuentes y la participación en el desarrollo le otorgan un mayor control

sobre el producto final, reduciendo el riesgo de que el resultado no cumpla con sus

expectativas.

Sin embargo, el desarrollo ágil también presenta desventajas. Una de ellas es la

falta de previsión a largo plazo; al centrarse en sprints cortos y entregas rápidas,

puede haber una carencia de planificación estratégica, lo que podría generar

problemas en la integración o escalabilidad del sistema. Además, requiere un

compromiso activo del cliente, ya que el éxito de la metodología depende de su

participación frecuente. Si el cliente no tiene tiempo para colaborar o proporcionar

retroalimentación, el proyecto puede desviarse de su rumbo.

Otro inconveniente es la dificultad para estimar el tiempo y el costo total del

proyecto. La naturaleza iterativa del proceso complica la predicción precisa de

cuánto tiempo y presupuesto serán necesarios para completarlo. Asimismo, la

priorización de la creación de software funcional sobre la documentación puede

resultar en una falta de información detallada, lo que puede dificultar el

mantenimiento a largo plazo del sistema. Por último, si no se gestiona

adecuadamente, el enfoque ágil puede dar lugar a una sensación de caos o

desorganización, especialmente en equipos que no están familiarizados con esta

metodología.

41

Cuadro Comparativo

Cuadro Comparativo: Metodologías de Desarrollo de Software en
Videojuegos en 2D

42

Elección de Metodología
La metodología elegida para este proyecto fue la metodología ágil, ya que se

adaptaba bien a los objetivos y resultados que se buscaban alcanzar. Esta

metodología se caracteriza por su enfoque en la documentación no excesivamente

detallada y la realización de sprints iterativos para la producción de cada

componente del proyecto. Sin embargo, se realizaron algunas modificaciones para

alinearla con el proceso creativo mencionado anteriormente, evitando así posibles

fricciones y permitiendo un trabajo continúo, llamándola “Proceso Creativo Ágil” o

DCA para abreviar dentro de este documento. Aunque se presentaron ligeras fallas,

el enfoque se mantuvo funcional y no impactó negativamente en los tiempos ni en

la producción del proyecto.

43

Capítulo 3 Diseño y

Desarrollo
La metodología que se escogió fue la metodología ágil modificada para el DCA, hay

que tener en cuenta que el proyecto fue hecho por una sola persona, así que cada

vez que nos refiramos al equipo creativo, el equipo de desarrollo o el compositor de

música, será la misma persona.

También resaltar que algunos de los assets se tomaron de un curso que se compró

en Domestika, ya que por falta de conocimiento en el píxel art, y tiempo de desarrollo

se optó por hacerlo así, pero no sin antes dar gracias a Domestika por la gran ayuda

que esto proporciono al prototipo de videojuego en 2D que se planteó.

1.-Planificación del sprint

Durante 2 semanas se estuvo analizando que es lo que se quería lograr con la

metodología anteriormente mencionada, haciendo esas modificaciones para que el

proceso creativo pudiera ir de la mano junto con la ingeniería de software sin tener

que esperar a saber que se había hecho o que no, lo primero fue ajustar fechas

para cada parte del proyecto, incluyendo diseños de nivel, escenarios, jugabilidad,

mecánicas de juego, diseño de enemigos, diseño de plataformas y diseño de

fondos, por decir lo más importante.

El equipo creativo tuvo como meta planificar como seria la mecánica de juego, ya

que analizo que sin eso no tendrían un punto de salida para el desarrollo total del

juego, el prototipo de juego se basó en una mecánica de mundo libre, no lineal,

queriendo decir que podrías ir de un punto A, a un punto C, o de un punto B a un

punto A, no que forzosamente se tuviera que seguir un orden lineal, para así, poder

hacer más dinámica la jugabilidad de exploración.

También se optó por diseñar una mecánica plataformera como los clásicos juegos

en 2D, tales como Kirby, Mario Bros, o Hollow Night, por mencionar algunos, aparte

de que se buscó que fuera por niveles, como se mencionó antes, así que se tenía

que diseñar cada nivel, y lo más importante, como se pudiera avanzar o regresar a

otro nivel.

El equipo de desarrollo, o de ingeniería de software, se dedicó a hacer la

programación en base a las mecánicas de jugabilidad que el equipo creativo

planteo, si bien se encontraron con varios problemas que más adelante se van a

abordar, el trabajar mediante sprints iterativos hizo que esto no significara una

demora que afectara los tiempos propuestos para el calendario que se planteó.

44

2.- Desarrollo e Implementación

Ilustración 1 Diseño de Nivel 1

El primer nivel conceptualizado fue un escenario ambientado en un bosque (véase

Ilustración 1), ya que, según la historia desarrollada para el protagonista, este debía

atravesar un bosque antes de llegar a los siguientes niveles. Para este nivel se

diseñó una mecánica de plataformas sencilla, con saltos y enemigos básicos, con

el objetivo de que el jugador pudiera familiarizarse con las mecánicas del juego. Los

enemigos fueron seleccionados cuidadosamente para armonizar con la

ambientación del bosque.

El primer enemigo diseñado fue una criatura tipo Slime (Ilustración 2), que podía ser

eliminada al saltar sobre ella. Se introdujo una variación en la que algunos Slimes

requerían un segundo salto para ser derrotados. Como es habitual en los

videojuegos, eliminar a estos enemigos otorgaba puntos al jugador. El daño que

infligen ocurre únicamente cuando el jugador se acerca demasiado, quitándole un

corazón de vida.

45

El siguiente enemigo diseñado para este nivel fue una flama (Ilustración 3), una

versión mutada del Slime que, de ser inofensiva, se convirtió en una amenaza

peligrosa.

La mecánica propuesta para este enemigo se centraba en evitarlo a toda costa, ya

que no podía ser eliminado. Al contrario, cualquier contacto con la flama resultaría

en la eliminación instantánea del jugador.

Ilustración 3 Enemigo Slime de Fuego

Ilustración 2 Enemigo Slime

46

Aunque los enemigos principales eran solo dos, el equipo sintió que el prototipo

necesitaba un mayor desafío. Para lograrlo, decidieron agregar obstáculos, como

los pinchos (Ilustración 4). Al igual que la flama, estos eliminaban al jugador con

solo tocarlos, pero tenían la ventaja de ser estáticos, lo que permitía al jugador

esquivarlos con mayor facilidad y continuar explorando el nivel sin complicaciones.

El siguiente obstáculo diseñado fueron plataformas que requerían saltos, como es

común en este tipo de juegos (Ilustración 5). Sin embargo, al implementarlas,

surgió un error que llevó al equipo creativo a buscar una solución. Como resultado,

se introdujo una nueva mecánica en el juego: el doble salto, activado solo cuando

el jugador estuviera cerca de una pared. Además, se estableció un límite de un

salto extra por plataforma, permitiendo repetirlo solo después de volver a tocar el

suelo.

Ilustración 5 Obstáculo Plataformas Elevada

Ilustración 4 Obstáculo Pinchos

47

El equipo creativo también consideró que explorar un nivel sin una motivación

adicional resultaría monótono. Por ello, decidieron incorporar elementos que

incentivaran la exploración completa del escenario. se añadieron monedas de oro,

que los jugadores podrían recolectar, así como corazones que restaurarían 1 punto

Ilustración 7 Objeto Corazón

Ilustración 6 Objeto Amatista

48

de vida, además, se incluyeron objetos más valiosos, las amatistas, que otorgarían

una mayor cantidad de puntos y vidas adicionales (Ilustraciones 6 y 7).

Inicialmente, para los cambios de nivel, se había pensado en un "botón" que, al

saltar sobre él, transportara al jugador al siguiente nivel vinculado. Sin embargo, se

consideró que esto rompía con la estética de mundo abierto del juego. En su lugar,

se optó por implementar una zona que, al tocarla, teletransportara al jugador al nivel

programado (Imagen 8). Esta solución aumentaba la inmersión, permitiendo que el

Ilustración 8 Punto de transporte 1

49

jugador accediera a los nuevos niveles ya sea caminando o cayendo, haciendo la

mecánica más dinámica.

Para señalizar estos puntos de transporte, se añadió un cartel (Ilustración 9), de

manera que el jugador pudiera identificar estas áreas sin ser tomado por sorpresa.

 Y finalmente, pero no menos importante, el personaje principal (Ilustración 10).

Para su diseño, el equipo creativo decidió utilizar un asset adquirido en un curso de

Domestika (véase en referencias), ya que encajaba con la visión que tenían para el

juego. Aunque originalmente se consideró crear un personaje desde cero, debido a

Ilustración 10 Punto de Transporte 2

Ilustración 9 Personaje del Juego

50

las complicaciones mencionadas al inicio de este apartado, se optó por usar este

recurso, agradeciendo nuevamente a Domestika por el material proporcionado.

El personaje principal contaría con diversas mecánicas: la habilidad de saltar,

moverse tanto hacia la derecha como hacia la izquierda, realizar un doble salto

cuando estuviera cerca de una pared para alcanzar zonas más altas del nivel, y una

hitbox de recolección. Esta hitbox permitiría al personaje tanto dañar a los enemigos

susceptibles al ataque, como recoger monedas de oro, corazones y amatistas

distribuidas por los diferentes niveles.

Creación de Código
Una vez definido todo lo anterior, fue el turno del equipo de desarrollo para convertir

las ideas del equipo creativo en algo funcional. Para ello, eligieron Unity como la

plataforma en la que comenzarían a crear el entorno y desarrollar las mecánicas

planteadas. Unity, al utilizar C# como lenguaje de programación por defecto, facilitó

que el equipo continuara con este lenguaje, aprovechando sus beneficios para el

desarrollo de juegos. El código fue editado y creado en Visual Studio, seleccionado

por su simplicidad y practicidad, lo que permitía un mejor control sobre el proceso

de programación.

El primer paso fue programar al personaje, ya que este constituiría la base sobre la

cual se implementaría el resto de las funcionalidades. El equipo se aseguró de que

todo lo demás interactuara correctamente con el código del personaje, realizando

ajustes para corregir errores o afinar ciertos detalles, con el objetivo de mantener

un código limpio y eficiente.

51

El código denominado "Player" (Ilustración 11) fue el más extenso de todos los que

se programaron, ya que centralizaba la mayor parte de las interacciones del jugador.

La primera parte son todas las librerías que Unity necesita para poder compilar y

hacer funcionar lo que se llegue a programar, se pueden añadir más librerías para

diferentes casos, como lo veremos más adelante.

En la segunda parte de más abajo se programaron todas las variables que el

personaje iba a tener, como las vidas, variables booleanas para saber si se estaban

en ciertos estados, fuerza de salto, el radio del hitbox que se mencionó

anteriormente, animaciones para poder hacer que el personaje tenga un dinamismo

y no solo este estático como una imagen, y textos de vida y puntaje.

En la función Start (Ilustración 12) se cargan todos los parámetros iniciales, que

serían las animaciones, el rigidbody para las físicas, tipo gravedad del personaje,

colisiones, etc.

 En la función update, es para el apartado que va a ir actualizando el

comportamiento del personaje, como el movimiento, ya que la mayor parte del

Ilustración 11 Código Player 1 Parte 1

52

código que aquí podemos ver es del movimiento, y que pasa cuando hacemos click

sobre la tecla asignada para que el personaje salte o se mueva de manera horizontal

Ilustración 12 Código Player Parte 2

53

o verticalmente click sobre la tecla asignada para que el personaje salte o se mueva

ya sea de manera horizontal o verticalmente.

La función FixedUpdate (Ilustración 13) funciona para corregir algunos errores de

movimiento que puedan llegar a ocurrir al momento que la función Update hace el

compilado dentro del prototipo de videojuego.

La función Jump controla la velocidad de salto, tanto de inicio como de caída, la

función flip hace que el personaje detecte cuando se quiere ir a la izquierda y se

“voltee” hacia la izquierda y viceversa, si voltea hacia la derecha, girara hacia la

derecha.

La función getDamage funciona para que el contador de vidas baje si el personaje

recibe daño, al igual que tiene un condicional que si el personaje llega a 0 vidas el

juego se reinicie.

La función get vidas (Ilustración 14) funciona para que se pueda agregar en la

función UpdateLivesText para poder poner un texto con un contador de vidas visible

en la interfaz de la pantalla que se actualiza al momento de recibir daño con la

Ilustración 13 Código Player 3 Parte 3

54

función antes mencionada, o que se actualice también con la función addLives que

sería cuando el personaje recoge una vida adicional, también teniendo un

condicional que para que no llegue a más de una cantidad establecida dentro de los

parámetros del personaje que se declararon mucho más arriba

El siguiente código que se programo fue el de los enemigos (Ilustración 15), como

se puede observar tiene las mismas librerías que la de Player, pero en algunos

parámetros cambian, ya que aquí se coloca que tenga movimiento por sí solo,

Ilustración 14 Código Player 4 Parte 4

55

respetando de izquierda a derecha, que el enemigo haga un check si aún hay

plataforma delante de él, y si no, que cambie de dirección.

Se le asigno un RaycastHit para que pueda ir analizando si no hay un precipicio

delante de él y no se caiga alterando así la experiencia de juego que se buscaba

conseguir.

Este código fue uno de los más complejos de programar por las mecánicas que se

le buscaron dar al enemigo, que sería el hecho de que cheque si aún queda

plataforma delante de él, que pueda revisar si hay un precipicio delante de él y la

más importante que el equipo de desarrollo pensó, que cambie de dirección cada

Ilustración 16 Código Enemigo Parte 2

Ilustración 15 Código enemigo parte 1

56

vez que se encuentre con otro enemigo, para que así no se queden atascados a la

mitad de una plataforma (Ilustración 16).

En este apartado (Ilustración 17) ya se trabajan los comportamientos que se tendrán

al interactuar con el enemigo, desde que te haga daño en la función

OnCollisionEnter2D, que el enemigo sea eliminado con la función

OnTriggerEnter2D y dentro de esta función se tiene un condicional para que el

Ilustración 17 Código Enemigo Parte 3

57

enemigo sea eliminado y te dé el puntaje que se haya establecido en la parte de

más arriba.

Y, por último, la función getKilled funcionaria para “desactivar” al enemigo y que no

siga apareciendo.

58

Este código (Ilustración 18) se hizo para poder controlar parámetros dentro del

juego, como que se actualice la puntación cada vez que se elimine un enemigo y

que se vaya mostrando en pantalla en tiempo real.

Ilustración 18 Código Parámetros del Juego

59

La función gameOver se hizo para que reiniciara el nivel y se pudiera volver a

intentar, también dentro del código se coloca la cantidad de vidas máximas que el

personaje va a poder tener, cada vez que el juego se llegase a pausar, entre varias

otras cosas que se complementan con otros códigos que se van a ir mencionando

o que ya se mencionaron.

El siguiente código que se programo fue el del enemigo flama (Ilustración 19), ya

que como se mencionó en el apartado de proceso creativo se buscaba que su

comportamiento fuera diferente al del enemigo común, así que en algunas cosas se

va a parecer al enemigo común, como el hecho de que haga un check para saber

si hay enemigos delante de él, o si hay un precipicio y cambie de dirección, la

velocidad de movimiento que va a tener, etc.

En esta parte es muy parecido a lo que tiene el enemigo común (Ilustración 20), con

algunas modificaciones para que no sea parecido, ya que sigue teniendo el efecto

de que no caiga en un precipicio, o cambie de dirección en una pared, y también

cambie de dirección cuando choque con un enemigo, pero tiene la función agregada

de flip, ya que por el diseño que se obtuvo del enemigo flama, cada vez que

cambiaba de dirección solo quedaba viendo hacia un lado, así que se le puso la

mecánica de que rotara el sprite como lo hace el personaje, pero se tuvo el reto de

hacerlo de cierta manera automático, ya que el enemigo flama al igual que el común,

Ilustración 19 Código enemigo flama Parte 1

60

se mueve por sí solo, y a diferencia con el personaje Player, no tenía una tecla que

se pudiera vincular con ese cambio de posición.

Todo el trabajo que se hizo para poder lograr ese cambio de dirección en el enemigo

se logró en la función flip (Ilustración 21), que funciona de manera similar a la del

personaje player, pero se modificó para que detectara cada vez que el enemigo

cambiaba de dirección para que también pudiera trabajar el cambio de vista del

sprite, rotándolo 180 grados dando la sensación de que el personaje gira y tiene un

uso de razón pequeño, aparte de que como se mencionó, se buscaba que el

enemigo eliminara el personaje con solo tocarlo, así que dentro de la función es

OnTriggerEnter2D, se le coloco que haga una comparación de la Tag del Personaje

para así poderlo eliminar con solo tocarlo que es lo que se quería.

El siguiente código que se programo fue en de los obstáculos con picos que se

mencionaron más arriba (Ilustración 22), el código por sí solo solo fue un copy paste

Ilustración 20 Código enemigo Flama Parte 2

Ilustración 21 Código Enemigo Flama Parte 3

61

de la función que se programó más arriba llamada getKilled, solamente haciéndole

unas modificaciones para que funcione de manera correcta.

Los siguientes códigos que se programaron fueron los de las vidas y de las monedas

que se podían ir recogiendo a lo largo del nivel

Este código es para las monedas (Ilustración 23), y como se puede observar solo

se les agrego una función OnTriggerEnter2D para que reaccionen cuando el Player

pase por sobre ellas y así puedan dar el puntaje que se le haya colocado,

Ilustración 22 Código Obstáculo con Picos

Ilustración 23 Código Objeto Monedas

62

añadiéndolo al texto que se tiene en la interfaz y desactivando dicho objeto para

que no vuelva a aparecer en el juego.

Y este otro código es para las vidas (Ilustración 24), como se puede apreciar, da

puntaje, pero también agregar una vida al contador de vidas dentro de la interfaz

Ilustración 24 Código Objeto Vidas

Ilustración 25 Código Objeto Amatista

63

con un condicional cada vez que se toque, pero, así como con la moneda, se

eliminara del juego para que no se pueda volver a tomar.

El código de la amatista es el mismo que el de la vida (Ilustración 25), pero con el

parámetro scoreGive modificado para que dé más puntaje, pero en general no

cambia en nada más que no sea eso.

Y por último se programó el cambio de nivel (Ilustración 26), para poder viajar de

cualquier nivel que se quisiese a otro nivel, siempre y cuando se encontrase el punto

de ese cambio.

En este código se añadió la librería SceneManagement, que ayudaría con ese

cambio de nivel que se buscaba poder lograr, y al igual que en otros códigos se usó

una función OnTrigerEnter2D para poder activarla y poder ir al nivel que tenga

ingresado en el parámetro nombreDeLaEscena.

Para la música se usó la plataforma online BandLab (Ilustración 28), porque fue la

que más se prestaba al uso de plugins y dispositivos midi que se necesitaban para

la creación de audio, y para la masterización, mezcla de audios y edición se usó el

software FL Studio (Ilustración 27), con la música lo que se buscó conseguir era que

Ilustración 26 Código Cambio de Nivel

64

sintiera adecuada a lo que estaba pasando en los diferentes niveles también

añadiendo un poco de la imaginación del compositor de cada canción que se usó.

Ilustración 27 Interfaz de FL Studio

Ilustración 28 interfaz BandLab

Para el segundo nivel se pensó en la idea de un nivel de destreza (Ilustración 29),

que se tuviera que saltar en el tiempo correcto, y se terminó de idealizar en un nivel

de ciudad intentando esquivar camiones que estuvieran sobre las plataformas, para

65

así poder ir avanzando, y a diferencia de los enemigos del nivel 1, en el nivel 2 no

desaparecerían, haciendo un poco más complejo el hecho de que se tenga que

investigar todo el nivel.

Ilustración 29 Nivel 2

Se siguieron usando las vidas, monedas y amatistas que más arriba se

mencionaron, únicamente se diseñó a manera de que las plataformas significaran

un desafío para el jugador, ya que en este nivel no habría enemigos, pero si habrá

obstáculos, que en este caso serian camiones, que no se eliminan del juego, solo

se pueden evitar saltando a tiempo para evitar ser golpeados por ellos.

El diseño el camión se pensó simple (Ilustración 30), pero pensado para que

encajase en lo que se buscaba transmitir al jugador, una sensación de que pudiera

o no pudiera llegar a esquivarlo si no saltaba a tiempo, para su código de

Ilustración 30 Enemigo Camión

66

funcionamiento se reutilizo el del enemigo flama, únicamente desactivando los

parámetros que quitara todas las vidas al tocarlo.

Para el tercer nivel y siguiendo la historia que se planteó (Ilustración 31), se diseñó

el nivel en base a un castillo que, los enemigos serian murciélagos y esqueletos, y

las plataformas estarían un poco acomodadas dando la alusión a las torres de

vigilancia que tenían los castillos

Los enemigos tienen las mismas mecánicas que el nivel 1, solo se pueden eliminar

a los esqueletos cayendo sobre ellos (Ilustración 33), y los murciélagos no se

pueden eliminar (Ilustración 32) y también te quitarían todos tus corazones con solo

Ilustración 32 Nivel 3

Ilustración 31 Enemigo Murciélago

67

tocarte, así que igual que, con el enemigo flama, sería mejor solo correr y tratar de

esquivarlos

Ilustración 33 Enemigo Esqueleto

68

Capítulo 4 Resultados
Como se mencionó, se buscó que la ingeniera de software pudiera trabajar de la

mano con el proceso creativo creando una metodología hibrida tomando las buenas

prácticas de cada apartado, así que como se mostrara en la Ilustración 34, se creó

un modelo UML a seguir para poder trabajar y respetar esto mismo que se quería

conseguir.

El prototipo se terminó en un tiempo aproximado de 9 a 10 semanas, haciendo

reuniones cada 4 semanas para informar avances, depurar errores y compartir

nuevas ideas, o hacer observaciones.

Ilustración 34 Modelo UML

69

Ilustración 35 Inicio del prototipo de juego

El prototipo de videojuego 2D funciono de manera correcta en su primer apartado

que sería el menú principal (ilustración 35), mediante el ratón se puede seleccionar

un nuevo juego, ir a las opciones o a los créditos.

Al iniciar un nuevo juego, se empieza el tutorial por el cual el jugador conocerá

cuales son los controles del juego (Ilustración 36).

70

Ilustración 36 Tutorial del prototipo

El tutorial explica mecánicas del prototipo para que el jugador pueda conocer cuáles

son los controles del juego, así como conocer algunas mecánicas del juego, y una

vez terminado el tutorial se puede jugar el prototipo con normalidad.

Ilustración 37 Prototipo nivel 1

Como se puede observar en la ilustración 37, el prototipo funciona con normalidad,

se puede ver el puntaje y cuantas vidas se tienen, al igual que el mapa que se

implementó para poder saber a dónde se puede ir.

71

Ilustración 38 Primer punto de transporte

En la imagen 38 se puede ver uno de los puntos de transporte para poder llegar al

siguiente nivel si el jugador así lo desea, o puede seguir explorando el nivel para

poder encontrar el segundo punto de transporte del nivel.

Ilustración 39 Prototipo Nivel 2

En la ilustración 39 se muestra el segundo nivel, aquí se busca aclarar que se tuvo

un problema con algunos assets del prototipo y se perdieron los fondos del segundo

y tercer nivel, pero se pudo rescatar el nivel funcional.

72

Ilustración 40 Punto de transporte del segundo nivel

Ilustración 41 Prototipo Tercer nivel

Como se puede ven en las ilustraciones 40 y 41, al usar los puntos de transporte y

puede llegar a otro nivel, no siendo al azar, si no teniendo ese nivel vinculado para

poder saber a dónde se está yendo cuando se vuelva a llegar a ese punto de

transporte.

73

4.1- Encuestas Realizadas
Se realizo una encuesta en Google Forms a personas que ocuparon la metodología

propuesta, para poder saber en que pudiera mejorar y en qué aspectos pudo ayudar

más a los desarrolladores que optaron por el uso de esta metodología en sus

proyectos.

Se usaron diferentes preguntas de control, tales como:

- ¿El DCA se acoplo a tu metodología de trabajo?

- ¿Facilito el proceso creativo dentro de tu proyecto?

Y algunas otras preguntas de satisfacción:

-En escala de 1 a 10, ¿Qué tan probable es que recomiendes el uso de este tipo de

desarrollo?

- ¿Usarías el DCA para futuros proyectos tuyos donde se vea involucrado más el

proceso creativo?

Se hizo esto con el fin de poder saber que beneficios tiene la metodología

propuesta, en que partes puede no ser muy apta para el desarrollo de aplicaciones,

y en que otras partes puede ser muy buena para este tipo de propósito.

Se buscaron desarrolladores que iniciaban con algún proyecto pequeño, o que ya

tenían un proyecto iniciado y que pudieran incorporar partes de esta metodología,

esto con el fin de que se pudiera tener una clara idea de en qué ayudo, y en que

beneficio a un desarrollo, así como también poder saber las debilidades que tiene

esta metodología y para que también se pudiera poner a prueba en otro tipo de

proyectos que no sean solo videojuegos.

Aparte de que no se buscaba que este trabajo estuviera solo fundamentado en el

trabajo que se propuso en el aplicativo que se realizó, si no tener más feedback

sobre esta metodología de diferentes tipos de desarrolladores, ya que no todos

trabajan de la misma manera, o trabajan solos. Siendo eso una gran ayuda para

poder impulsar el crecimiento de esta metodología enfocada al proceso creativo.

74

4.2- Estadísticas
Se les dio a 5 desarrolladores independientes contestar la encuesta después de

que pudieran implementarla en algún proyecto pequeño, o introducirlas dentro de

proyectos que ya tuvieran algún tiempo de desarrollo para saber que tan flexible

fue el trabajar con la metodología.

De los 5 desarrolladores 3 proyectos integraron la metodología desde 0, se

desconoce si fue solo esa metodología o la combinaron con otro tipo de

metodologías que pudieran afectar o beneficiar a la productividad de la

metodología propuesta en este documento.

La primera pregunta fue:

Como se puede apreciar en el gráfico, 4 de los 5 desarrolladores pudieron acoplar

la metodología al tipo de proyecto que estaban trabajando.

De las 4 respuestas afirmativas 3 fueron de desarrollos iniciales y la restante fue

de un desarrollo que ya estaba en curso.

La única respuesta negativa fue de un proyecto que igual estaba en pleno

desarrollo y fue muy difícil poder hacer la introducción en ciertas partes para el

desarrollo por la metodología que se manejó.

Ilustración 42 Primera pregunta

75

La segunda pregunta fue sobre la facilidad del proceso creativo con la

metodología

Como se puede observar se respondió solo con un no a la pregunta sobre la

facilidad con la que el proceso creativo se pudo trabajar dentro del proyecto,

dando a entender que la metodología propuesta ayuda mucho para el proceso

creativo.

Como tercera pregunta se quiso analizar la productividad que tiene la

metodología:

Ilustración 43 Segunda pregunta

76

En el caso de las 5 respuestas, todas fueron afirmativas para el ahorro de tiempo

usando la metodología propuesta, en el caso especial del proyecto que se manejó

en este documento, fueron un total de 2 meses y 2 semanas, o un total de 10 sprints.

Como cuarta pregunta se hizo un control sobre los diferentes proyectos con los

cuales se usó, o realizo una integración de la metodología propuesta:

Ilustración 44 Tercera pregunta

Ilustración 45 Cuarta pregunta

77

Como se puede observar 2 respuestas fueron afirmativas sobre proyectos que se

iniciaron desde 0 con la implementación de esta metodología.

Las otras 3 respuestas fueron un tal vez, siendo 1 con desarrollo desde 0 y los 2

restantes fue con la implementación en una etapa avanzada de dicho proyecto.

Dejando sin contestar el apartado de no, demostrando que esta metodología

pudiera llegar a ser más flexible en diferentes tipos de proyectos y no solo para el

desarrollo de videojuegos.

Como quinta pregunta se analizó el si se recomendaría esta metodología a otros

desarrolladores para que las usen en sus diversos proyectos:

Como se puede observar, en un 100% estadístico recomendaría esta metodología

a otros desarrolladores, demostrando que puede ser muy versátil a la hora de

desarrollar proyectos.

La sexta pregunta fue para poder saber que tanto los desarrolladores seguirían

usando la metodología propuesta:

Ilustración 46 Quinta pregunta

78

Como se puede observar, un 60% usaría esta metodología para futuros proyectos,

y un 40% tal vez la volvería a usar, esto demuestra que, para más de la mitad de

desarrolladoras encuestados, la metodología propuesta fue cómoda para trabajar.

Como séptima pregunta se quiso saber si la metodología implementaba bien el

proceso creativo dentro del desarrollo y planeación del proyecto o en su caso, la

introducción de este:

Ilustración 47 Sexta pregunta

Ilustración 48 Séptima pregunta

79

Como se puede observar, todos los desarrolladores aceptaron que el DCA involucra

de una buena manera el proceso creativo dentro del proyecto desarrollado, o lo

introduce de una buena manera al desarrollo de un proyecto en curso.

Como octava pregunta se quiso conocer si los sprint propuestos en la metodología

DCA estuvieron bien desarrollados:

Como se puede observar 4 desarrolladores aceptaron de manera positiva a la

pregunta, y solo 1 contesto con un tal vez dentro de la encuesta que se realizó, esto

demuestra que la planeación de los sprints dentro de la metodología está bien

desarrollada.

La penúltima pregunta se hizo con el motivo de saber si aparte de ser útil, el DCA

puede hacer que el usuario se sienta cómodo, o “a gusto”:

Ilustración 49 Octava pregunta

80

Ilustración 50 Novena pregunta

Como podemos observar tuvo una total aprobación a hacer sentir cómodos a todos

los encuestados a pesar de que no todos lo usaron, o les facilito el trabajo,

demostrando que no solo con más adaptabilidad, el DCA podría ser una

metodología óptima para el desarrollo de varios proyectos.

Y como última pregunta se pidió que los evaluadores calificaran el DCA, para así

poder sacar un promedio de calificación de usuarios:

Ilustración 51Decima pregunta

81

Como se puede apreciar, 4 usuarios de la DCA la calificaron con un 8 y solo 1 la

califico con 10, esta última pregunta nos demuestra que con una calificación

promedio de 8.4, el DCA es una metodología que pudiera ser ampliamente aceptada

por diferentes tipos de proyectos.

4.3.- Retrospectiva y Pruebas
Tras completar las primeras cuatro semanas de sprints, se realizó una prueba de

funcionamiento e integración del código y la jugabilidad para evaluar los siguientes

pasos a seguir. Sin embargo, al ejecutar el juego, el equipo de desarrollo se

encontró con varios errores que afectaban la experiencia planeada.

Uno de los principales problemas fue la disposición de las plataformas en el nivel,

que no estaban correctamente alineadas, lo que impedía que el jugador pudiera

saltar de una a otra como se había previsto. Para corregir esto, se llevó a cabo un

rediseño del nivel, aumentando el tamaño de las plataformas y ajustando ciertos

parámetros del personaje para hacer la mecánica más eficiente sin que resultara

excesivamente poderosa, evitando lo que el equipo denominaba "broken" o

desbalanceado.

No obstante, al realizar estos ajustes, se detectó otro problema: las plataformas

ubicadas por encima del personaje eran inalcanzables sin un rediseño completo del

nivel. En lugar de rediseñar todo de nuevo, el equipo creativo propuso una solución:

permitir que el personaje realizara un doble salto, justificándolo como si se agarrara

del borde de una plataforma, lo que le permitiría alcanzar zonas más altas.

Esta idea no solo fue bien recibida por el equipo de desarrollo, sino que, tras

implementarla, mejoró significativamente la jugabilidad. Se modificó el código y se

ajustaron hitboxes tanto en enemigos como en plataformas, logrando una versión

funcional del juego en sus primeros niveles.

El siguiente paso en el calendario del equipo creativo fue el diseño de los niveles

dos y tres, además de la creación de la música que acompañaría cada nivel para

enriquecer la experiencia de juego. Mientras tanto, el equipo de desarrollo depuró

algunos errores adicionales y quedó a la espera de las nuevas mecánicas que se

podrían incorporar en los siguientes niveles en desarrollo.

82

Capítulo 5 Conclusiones

y trabajo futuro
 El desarrollo de un videojuego en 2D desde una perspectiva de ingeniería de

software y proceso creativo nos permite entender mejor los retos y beneficios de

aplicar metodologías de desarrollo estructurado en un campo que a menudo

depende de la innovación y la creatividad.

A través de este trabajo se exploró y aplico principios de metodologías que

combinadas ofrecen un enfoque robusto y flexible, siendo esto necesario para

afrontar las demandas técnicas y creativas de un videojuego moderno.

Uno de los principales aprendizajes fue la de adaptar una metodología ágil

modificada para este proyecto, el uso de iteraciones cortas y ciclos de feedback

continuo resulto fundamentar para ajustar el prototipo en tiempo real, permitiendo

correcciones tempranas y sobre todo la construcción de este mismo en la forma y

tiempo estipulado. La agilidad del desarrollo también permitió enfrentar desafíos y

cambios imprevistos sin comprometer gran avance del proyecto en general.

Otro aprendizaje de gran valor fue el de una planificación inicial clara y detallada,

que no solo establece las bases de los objetivos, sino que también permite la

adaptación con forme se detectaban nuevas necesidades o con forme surgían

nuevas innovaciones durante el proceso. La flexibilidad que se pudo conseguir fue

la clave que permitió a los equipos enfocarse en crear la experiencia de juego que

se buscaba desde un inicio, priorizando elementos riticos que aportaban valor

directo al prototipo.

Este proyecto también permitió aprender sobre el impacto de la colaboración activa

y el trabajo en equipo, sobre todo al momento de hacer las reuniones al final de

cada sprint donde se demostró que el compartir ideas y buscar resolver problemas

en conjunto aumenta la calidad de código y diseño y fomenta una cultura de

aprendizaje continuo. La retroalimentación entre compañeros y el apoyo en el

desarrollo técnico, tanto en diseño como en implementación fue esencial para

mejorar la comprensión de las soluciones, para así evitar errores, y en última

instancia, crear un prototipo funcional.

El uso de la metodología ágil modificada permitió no solo cumplir con los requisitos

técnicos, sino que además demostró ser una herramienta poderosa para mejorar la

eficiencia del equipo y potenciar la creatividad. Al balancear la estructura de la

ingeniería de software con la libertad que tiene el proceso creativo, se pudo obtener

una metodología capaz de maximizar el valor del producto final.

83

Esto mismo genera una experiencia de usuario enriquecida y que cumple con las

expectativas cambiantes del mercado de los videojuegos en 2D.

84

Glosario
A

Asset

Recurso utilizado dentro de un proyecto digital o videojuego. Puede incluir

imágenes, sonidos, modelos, animaciones, scripts o cualquier elemento necesario

para la construcción del producto final.

B

BanLab

Plataforma o entorno colaborativo orientado a la creación y edición musical, que

permite a los usuarios producir, compartir y gestionar proyectos de audio.

C

Caching

Técnica que almacena temporalmente datos para acelerar accesos futuros y

optimizar el rendimiento de sistemas, aplicaciones y servicios web.

Check

Verificación o condición empleada en programación para validar que un proceso,

función o estado se encuentre en el estado correcto antes de continuar.

CPU (Central Processing Unit)

Unidad central de procesamiento. Componente principal de un sistema informático

encargado de ejecutar instrucciones, coordinar tareas y controlar el flujo de

operaciones.

D

DOM (Document Object Model)

Modelo de representación estructurada de documentos HTML o XML, que permite

la manipulación programática de su contenido y estilo mediante lenguajes como

JavaScript.

85

Domestika

Plataforma de cursos en línea enfocada en disciplinas creativas como diseño,

ilustración, animación, fotografía y artes digitales.

F

FL Studio

Estación de trabajo de audio digital (DAW) que permite componer, grabar, editar y

mezclar música utilizando instrumentos virtuales, sintetizadores y herramientas de

secuenciación.

G

Gameplay

Conjunto de mecánicas, reglas, interacciones y experiencias que definen cómo el

jugador se relaciona con el videojuego y cómo se desarrolla la acción.

GPU (Graphics Processing Unit)

Unidad de procesamiento gráfico especializada en el cálculo paralelo y en el

renderizado de imágenes, fundamental en aplicaciones visuales y videojuegos.

H

Hitbox

Área invisible asociada a un objeto o personaje en un videojuego que se utiliza para

detectar colisiones, impactos o interacciones.

HTTP (Hypertext Transfer Protocol)

Protocolo de comunicación utilizado para el intercambio de información entre

clientes y servidores en la web.

L

Latencia

Tiempo que tarda una señal o dato en desplazarse desde su origen hasta su destino.

En videojuegos influye en la velocidad de respuesta y la sincronización en entornos

en línea.

86

M

Mecánicas de juego

Reglas, acciones, sistemas y comportamientos que determinan cómo interactúa el

jugador con el mundo del videojuego y qué posibilidades de acción existen.

Modularización

Proceso de dividir un sistema en partes o módulos independientes para facilitar su

desarrollo, mantenimiento, reutilización y escalabilidad.

P

Píxel Art

Estilo visual caracterizado por gráficos formados por píxeles perceptibles, común en

videojuegos retro y producciones inspiradas en la estética de 8 y 16 bits.

Plugins

Complementos o extensiones que añaden nuevas funciones a un software o motor

sin modificar su estructura principal.

Profilers

Herramientas que permiten medir y analizar el rendimiento de un sistema o

videojuego, proporcionando información sobre uso de CPU, GPU, memoria,

tiempos de carga y ejecución.

R

Rigidbody

Componente utilizado en motores de videojuegos, como Unity, que permite que un

objeto se comporte según las leyes de la física, incluyendo gravedad, colisiones y

fuerzas.

S

Slime

En videojuegos, criatura enemiga común representada como una masa gelatinosa;

también puede referirse a su estilo de animación o comportamiento dentro del juego.

87

Sprite

Imagen o conjunto de imágenes 2D empleadas para representar personajes,

objetos, decoraciones o animaciones dentro de un videojuego.

Sprint

Periodo de tiempo corto utilizado en metodologías ágiles, especialmente en Scrum,

en el que se planifican, desarrollan y entregan funcionalidades específicas del

proyecto.

U

Unity

Motor de videojuegos multiplataforma que permite desarrollar experiencias 2D, 3D

y de realidad interactiva mediante herramientas visuales y scripting con C#.

88

Referencias

“Creación de videojuegos de plataformas con Unity”. Un curso online de 3D y

Animación de Steve Durán | Domestika. (2024, September 22). Domestika.

https://www.domestika.org/es/courses/910-creacion-de-videojuegos-de-

plataformas-con-unity/course

Arbonés, Á. (2018, July 20). Del 2D al 3D: cómo el videojuego pasó de la

imaginación a sólo valorar los números. Canino. https://www.caninomag.es/del-2d-

al-3d-o-como-el-videojuego-paso-de-la-imaginacion-a-solo-valorar-los-numeros/

Atlassian. (n.d.). ¿Qué es ágil? | Atlassian. https://www.atlassian.com/es/agile

Campus, C. (2024, April 22). Proceso creativo: en qué consiste y características.

Universidad Europea Creative Campus.

https://creativecampus.universidadeuropea.com/blog/fases-proceso-creativo/

Caurin, J. (2019, April 26). Videojuegos 2D | ¿Qué significa Videojuegos 2D?

Geekno. https://www.geekno.com/glosario/videojuegos-2d

"Ciclo de vida del software: todo lo que necesitas saber." (“Ciclo de vida del

software: todo lo que necesitas saber - Intelequia”) (n.d.). Intelequia.

https://intelequia.com/es/blog/post/ciclo-de-vida-del-software-todo-lo-que-

necesitas-saber

Cortizo, J. C. (2022, October 20). "Si hay una industria que no es un juego, esa es

la de los Videojuegos." (“Si hay una industria que no es un juego, esa es la de los

Videojuegos ...”) Product Hackers. https://producthackers.com/es/blog/industria-

videojuegos

Definición de Optimizar software o hardware (informática). (2023, July 9).

Alegsa.com.ar. https://www.alegsa.com.ar/Dic/optimizar.php#gsc.tab=0

Delgado, M. (2022, September 8). Videojuegos y creatividad - The Good Gamer.

The Good Gamer. https://thegoodgamer.es/videojuegos-y-creatividad

Diaz, D. (2024, May 17). 11 herramientas de ingeniería de software que debe

conocer como programador. Geekflare Spain. https://geekflare.com/es/software-

engineering-tools/

Estos son los 10 mejores videojuegos 2D de la historia | Tokio. (n.d.). Tokio

School. https://www.tokioschool.com/noticias/videojuegos-2d/

Estrada, J., Salazar, A., & Wightman, P. (2017, June 2). Diseño e Implementación

de un videojuego bajo la propuesta de La Leyenda del Guerrero Malibú. (“Diseño e

https://www.domestika.org/es/courses/910-creacion-de-videojuegos-de-plataformas-con-unity/course
https://www.domestika.org/es/courses/910-creacion-de-videojuegos-de-plataformas-con-unity/course
https://www.caninomag.es/del-2d-al-3d-o-como-el-videojuego-paso-de-la-imaginacion-a-solo-valorar-los-numeros/
https://www.caninomag.es/del-2d-al-3d-o-como-el-videojuego-paso-de-la-imaginacion-a-solo-valorar-los-numeros/
https://www.atlassian.com/es/agile
https://www.geekno.com/glosario/videojuegos-2d
https://thegoodgamer.es/videojuegos-y-creatividad
https://www.tokioschool.com/noticias/videojuegos-2d/

89

Implementación de un videojuego bajo la propuesta de La ...”) Universidad Del

Norte. https://manglar.uninorte.edu.co/handle/10584/7298

Evad. (2020, October 12). EL PROCESO CREATIVO DE UN VIDEOJUEGO.

EVAD Escuela Superior De Videojuegos Y Arte Digital.

https://evadformacion.com/proceso-creativo-videojuego/

Feed. (n.d.). BandLab. https://www.bandlab.com/feed

Global, R. A., & Global, R. A. (2018, May 22). La arquitectura y su importancia en

los videojuegos | Arcus Global. Arcus Global. https://www.arcus-global.com/wp/la-

arquitectura-y-su-importancia-en-los-videojuegos/

Guevara, L. A., & Peña, F. F. (2024). "Desarrollo de un Algoritmo Procedimental de

Generación de Estructuras para su Implementación en el Desarrollo de un

Videojuego 2D." (“Desarrollo de un algoritmo procedimental de generación de

estructuras ...”) Ciencia Latina Revista Científica Multidisciplinar, 7(6), 7736–7748.

https://doi.org/10.37811/cl_rcm.v7i6.9305

Guzman, H. C. (n.d.). Las 7 fases más importantes en el desarrollo de juegos |

Escuela de Videojuegos | Hektor Profe.

https://docs.hektorprofe.net/escueladevideojuegos/articulos/fases-del-desarrollo-

de-videojuegos/

Historia de los videojuegos. (n.d.). https://www.fib.upc.edu/retro-

informatica/historia/videojocs.html

https://dialnet.unirioja.es/servlet/tesis?codigo=312707

Laoyan, S. (2024, February 6). Qué es la metodología waterfall y cuándo utilizarla

[2024] • Asana. Asana. https://asana.com/es/resources/waterfall-project-

management-methodology

Ledmon. (2022, February 3). Herramientas del proceso creativo para optimizar

resultados | Ledmon. Ledmon. https://ledmon.com/6-herramientas-del-proceso-

creativo-para-optimizar-resultados/

Los 6 niveles de optimización de software | Mejora tu código | Go4IT Solutions.

(n.d.). https://www.go4it.solutions/es/blog/los-6-niveles-de-optimizacion-de-

software-mejora-tu-codigo

Miguel, P. D. S. (2019, August 6). Las plataformas 2D - 33bits. 33bits.

https://portal.33bits.net/los-plataformas-bidimensionales/

Porto, J. P., & Gardey, A. (2023, May 17). Optimización - Qué es, definición y

concepto. Definición.de. https://definicion.de/optimizacion/

Ros, I. (2021, November 18). "Cinco problemas a los que nos han acostumbrado

los desarrolladores de videojuegos, y que deberíamos superar cuanto antes."

https://manglar.uninorte.edu.co/handle/10584/7298
https://evadformacion.com/proceso-creativo-videojuego/
https://www.bandlab.com/feed
https://www.arcus-global.com/wp/la-arquitectura-y-su-importancia-en-los-videojuegos/
https://www.arcus-global.com/wp/la-arquitectura-y-su-importancia-en-los-videojuegos/
https://doi.org/10.37811/cl_rcm.v7i6.9305
https://docs.hektorprofe.net/escueladevideojuegos/articulos/fases-del-desarrollo-de-videojuegos/
https://docs.hektorprofe.net/escueladevideojuegos/articulos/fases-del-desarrollo-de-videojuegos/
https://www.fib.upc.edu/retro-informatica/historia/videojocs.html
https://www.fib.upc.edu/retro-informatica/historia/videojocs.html
https://dialnet.unirioja.es/servlet/tesis?codigo=312707
https://asana.com/es/resources/waterfall-project-management-methodology
https://asana.com/es/resources/waterfall-project-management-methodology
https://portal.33bits.net/los-plataformas-bidimensionales/

90

(“Cinco problemas a los que nos han acostumbrado los desarrolladores de ...”)

MuyComputer. https://www.muycomputer.com/2021/07/01/errores-problemas-

videojuegos/

Sanz, C. V., & Suemay, M. Y. C. (2020). "Metodologías de diseño y desarrollo para

la creación de juegos serios digitales." (“Descripción: Metodologías de diseño y

desarrollo para la creación de ...”) https://sedici.unlp.edu.ar/handle/10915/111123

Sara, C. G. (2022). Diseño creativo en la preproducción y difusión de videojuegos

independientes: estudio de caso de Hollow Knight (Team Cherry). Dialnet.

https://dialnet.unirioja.es/servlet/tesis?codigo=312707

Stsepanets, A., Stsepanets, A., & Stsepanets, A. (2024, March 26). Modelo

cascada, qué es y cuándo conviene usarlo. Gantt Chart GanttPRO Blog.

https://blog.ganttpro.com/es/metodologia-de-cascada/

Unity Essentials Pathway - Unity Learn. (n.d.). Unity Learn.

https://learn.unity.com/pathway/unity-essentials

VivesBarcelona, J. (2020, February 21). La parte creativa de los videojuegos. La

Vanguardia. https://www.lavanguardia.com/vida/junior-

report/20200219/473657943447/parte-creativa-videojuegos.html

Wilsom, N. B., & Armando, R. P. D. (2020, May 28). "Desarrollar una herramienta

software para atraer potenciales aspirantes al programa de ingeniería de sistemas

y computación." (“Desarrollar una herramienta software para atraer potenciales

aspirantes ...”) Universidad Del Norte.

https://manglar.uninorte.edu.co/handle/10584/8864

Zendesk. (2023, February 15). ¿Qué es la metodología ágil? ¿Para qué sirve?

https://www.zendesk.com.mx/blog/metodologia-agil-que-es/

Félix, E. B. (2001). Videojuegos y educación. Universidad De Salamanca.

https://gredos.usal.es/handle/10366/56438

Pereira, A. M. M. (2014). El proceso productivo del videojuego: fases de

producción/The production process of the game: production phases. Historia y

comunicación social, 19, 791-805.

https://sedici.unlp.edu.ar/handle/10915/111123
https://blog.ganttpro.com/es/metodologia-de-cascada/
https://learn.unity.com/pathway/unity-essentials
https://www.lavanguardia.com/vida/junior-report/20200219/473657943447/parte-creativa-videojuegos.html
https://www.lavanguardia.com/vida/junior-report/20200219/473657943447/parte-creativa-videojuegos.html
https://manglar.uninorte.edu.co/handle/10584/8864
https://www.zendesk.com.mx/blog/metodologia-agil-que-es/

