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Resumen

La creciente frecuencia e impacto de los ciberataques se ha convertido en
un desaf́ıo cŕıtico para la seguridad digital, especialmente en entornos donde la
alfabetización digital es baja o la conciencia tecnológica es limitada. En estos
casos, los usuarios son más susceptibles a prácticas maliciosas. Este trabajo se
centra en la predicción de ataques cibernéticos utilizando técnicas de apren-
dizaje automático, con el objetivo de identificar patrones comunes en amena-
zas como el phishing, el ransomware y los ataques de denegación de servicio
(DDoS).

Para este estudio, se recopilaron y procesaron conjuntos de datos tanto
públicos como académicos. Se aplicaron modelos de machine learning, como
CatBoost, Random Forest, SVM, K-Nearest Neighbors (KNN), XGBoost y
Regresión Loǵıstica, para evaluar su rendimiento en la detección de ciberata-
ques. Se llevaron a cabo pruebas comparativas para cada tipo de amenaza,
utilizando métricas de precisión y capacidad predictiva.

Los resultados indican que CatBoost tuvo un rendimiento excepcional en
la detección de phishing (0.99), mientras que Random Forest brilló en la iden-
tificación de ransomware (0.98) y KNN alcanzó un impresionante (0.99) en la
detección de tráfico DDoS. Esto confirma la efectividad del aprendizaje au-
tomático en la lucha contra las amenazas. Entre los hallazgos más destacados,
se encontraron patrones distintivos en URLs maliciosas, cambios en el tráfico
de red y un uso inusual de protocolos, lo que subraya la necesidad de combinar
técnicas automatizadas con estrategias preventivas.

Este estudio establece las bases para crear herramientas de ciberseguridad
más sólidas y accesibles. Como parte del trabajo futuro, se propone desarrollar
una plataforma web educativa que incluya un sistema predictivo para detectar
phishing, con el objetivo de aumentar la concienciación y la protección contra
ciberataques.
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Abstract

The increasing frequency and impact of cyberattacks has become a criti-
cal challenge for digital security, especially in environments with low digital
literacy or limited technological awareness. In such cases, users are more vul-
nerable to malicious activities. This study focuses on the prediction of cyberat-
tacks using machine learning techniques, aiming to identify common patterns
in threats such as phishing, ransomware, and denial-of-service (DDoS) attacks.

Public and academic datasets were collected and processed to evaluate the
performance of machine learning models, including CatBoost, Random Fo-
rest, SVM, K-Nearest Neighbors (KNN), XGBoost, and Logistic Regression.
Comparative tests were conducted for each type of threat, using accuracy and
predictive capability metrics.

Results indicate that CatBoost achieved an outstanding performance in
phishing detection 0.99, Random Forest excelled in ransomware identification
0.98, and KNN reached 0.99 in detecting DDoS traffic. These findings demons-
trate the effectiveness of machine learning in combating cyber threats. Notable
patterns were observed in malicious URLs, network traffic anomalies, and unu-
sual protocol usage, highlighting the need to combine automated techniques
with preventive strategies.

This study provides a foundation for the development of more robust and
accessible cybersecurity tools. As future work, the creation of an educatio-
nal web platform is proposed, incorporating a predictive system for phishing
detection to enhance awareness and protection against cyberattacks.
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del tráfico de red. . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.28. Distribución de trafico de protocolos y errores en el trafico. . . 79
3.29. Distribución de la duración de flujo de los diferentes tipos de

trafico. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.30. Distribución de longitud media del paquete por protocolo y trafico. 81
3.31. Mapa de calor que muestra las correlaciones entre caracteŕısticas
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2.11. Comparación de caracteŕısticas de los ciberataques. . . . . . . . 46
2.12. Análisis comparativo de algoritmos de aprendizaje automático,
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Caṕıtulo 1

Construcción del objeto de
estudio

1.1. Introducción

La transformación digital y la creciente dependencia de las tecnoloǵıas de la
información han incrementado significativamente la exposición de los sistemas
informáticos a diversas amenazas cibernéticas. En este entorno, México ha
experimentado un crecimiento en su demanda digital. Para 2024, más de 100
millones de personas, siendo el 83.1% de la población de 6 años o más, ya
utilizaban Internet, un aumento sustancial respecto a años anteriores [9].

A su vez, las organizaciones PyMEs han acelerado su proceso de digitali-
zación, revelando que el 95% plantea invertir en esta área y el 80% de estas
ya son parte, lo que indica una adaptación activa de tecnoloǵıas digitales co-
mo colaboración, marketing y ciberseguridad [10]. Además, datos del INEGI
señalan que el 95.6% de los negocios medianos cuenta con equipo de cómputo
y el 91.9% utiliza Internet en sus actividades diarias [11].

Entre los ataques más frecuentes y problemáticos se encuentra el phishing,
el ransomware y los ataques distribuidos de denegación de servicio (DDoS), los
cuales representan riesgos cŕıticos tanto para usuarios individuales como para
organizaciones. La velocidad, complejidad y volumen de estos ataques hacen
cada vez más necesario el desarrollo de mecanismos predictivos que permitan
anticipar su ocurrencia y fortalecer las defensas cibernéticas.

En este contexto, el uso de técnicas de aprendizaje automático (machine
learning) ha cobrado relevancia como una estrategia eficaz para detectar pa-
trones anómalos y realizar predicciones sobre comportamientos maliciosos en
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tiempo real.
Enfocando en la predicción de tres tipos de ataques cibernéticos comunes:

phishing, ransomware y DDoS, mediante la aplicación de técnicas de aprendi-
zaje automático. Para lograrlo, se emplearon tres conjuntos de datos públicos
y se implementaron diversos modelos de clasificación utilizando herramientas
como Visual Studio Code y Python, junto con bibliotecas especializadas. El
proceso incluyó etapas de preprocesamiento de datos, análisis exploratorio,
entrenamiento, validación y predicción utilizando algoritmos como Random
Forest, Support Vector Machines, Naive Bayes, XGBoost, Logistic Regression
y k-Nearest Neighbors.

Los resultados obtenidos permitieron evaluar la eficacia de los modelos fren-
te a los tres tipos de ataques analizados, utilizando métricas como: precisión,
accuracy, recall (sensibilidad) y F1-score. Los valores alcanzados por estos in-
dicadores reflejan el potencial del aprendizaje automático como herramienta
eficaz para apoyar la detección temprana y la prevención de amenazas en el
ámbito de la ciberseguridad.

1.2. Planteamiento del Problema

La problemática que se abordará en este estudio se enmarca en la falta
de concienciación y preparación en ciberseguridad por parte de individuos con
bajo nivel de alfabetización digital y organizaciones que están en proceso de
adaptación tecnológica. Se ha observado que muchas de estas personas y enti-
dades no son plenamente conscientes de la importancia cŕıtica de la seguridad
cibernética, ni entienden cómo protegerse adecuadamente de las amenazas ci-
bernéticas en un mundo que se está digitalizando cada vez más. Esta falta de
preparación y conocimiento nos convierte en objetivos vulnerables a ataques,
los cuales pueden tener consecuencias altas, incluso en organizaciones de menor
escala o con recursos limitados.

1.3. Justificación

La justificación de esta investigación se basa en una serie de razones sólidas
y necesidades urgentes que deben abordarse:

1. Falta de datos y conciencia: no hay suficiente información o datos dis-
ponibles que sugiera que muestre la incidencia de ciberataques, además
se ha experimentado un aumento significativo en los ciberataques en los
últimos años, consolidándose como uno de los páıses más afectados por
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esta problemática. Nueve de cada diez ciberataques podŕıan prevenirse
con una adecuada educación y concientización [12].

2. Difusión del problema: la gente piensa que en la región no hay muchos
ataques de ciberseguridad. Sin embargo, la falta de información precisa
indica que el verdadero alcance de la amenaza es desconocido. Encuestas
nacionales mencionan que el 25% de las y los adolescentes de 12 a 17
años han vivido alguna forma de ciberataque o ciberacoso [13].

3. Grupos vulnerables: Si ocurriera un gran número de ciberataques en la
región, los más afectados podŕıan ser estudiantes, menores de edad e in-
cluso propietarios o empleados de pequeñas y medianas empresas que
carecen de conocimientos sobre seguridad cibernética y que están adop-
tando tecnoloǵıas digitales sin alguna preparación adecuada. En México
el sector educativo se encuentra en el tercer lugar de eventos de ciber-
ataques con más de 3 millones de ataques a sus sistemas [14]. Por otra
parte, mas de la mitad de las PyMEs en América Latina reportan un
aumento de ciberataques y un 20% de estas reconoce no estar preparada
para prevenirlos [15].

1.4. Objetivos de la investigación

Este trabajo consta de un objetivo general y cinco espećıficos que ayuden
a desarrollar una plataforma que presente el resultado del análisis de datos.

1.4.1. Objetivo general

Evaluar y analizar ataques cibernéticos mediante técnicas de aprendiza-
je automático, con el fin de identificar patrones comunes de amenazas que
afectan a estos sectores. Este análisis busca aportar conocimiento sobre las
caracteŕısticas y frecuencia de los ciberataques, aśı como sentar las bases pa-
ra futuras estrategias de prevención y concienciación en materia de seguridad
digital.

1.4.2. Objetivos espećıficos

Realizar una investigación de la actual conciencia en seguridad cibernética:

Analizar estudios previos para determinar el nivel de conocimiento y
comprensión de la seguridad cibernética en sectores vulnerables.
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Identificar las lagunas de conocimiento más importantes y las vulnerabi-
lidades de seguridad cibernética de las áreas.

Recopilar información sobre los diferentes tipos de ciberataques:

Investigar y recopilar información actualizada sobre los tipos de ciberata-
ques más comunes, como phishing, ransomware y ataques de ingenieŕıa
social.

Analizar casos de estudio y tendencias globales para comprender las ame-
nazas cibernéticas actuales y futuras.

Recopilar información sobre los tipos de ciberataques que han ocurrido en
el pasado de la zona para identificar patrones y tendencias comunes. Esto
ayudará a comprender las áreas de mayor vulnerabilidad y los escenarios
más frecuentes de amenazas cibernéticas.

Aplicar técnicas de aprendizaje automático para el análisis de amenazas
cibernéticas:

Utilizar modelos de machine learning para procesar y clasificar informa-
ción sobre incidentes de seguridad cibernética registrados.

Identificar patrones y tendencias en los datos mediante algoritmos super-
visados y no supervisados, con el fin de comprender mejor el comporta-
miento de los ataques.

1.5. Pregunta de investigación

¿Puede el uso de algoritmos de aprendizaje automático identificar patrones
y correlaciones en los datos de incidentes cibernéticos que permitan identificar
amenazas latentes?

1.6. Hipótesis

La utilización de algoritmos predictivos para la evaluación de datos sobre
incidentes cibernéticos revelará patrones emergentes y posibles correlaciones,
facilitando la identificación de amenazas latentes.
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1.7. Propuesta de solución

Se propone una solución que combina el análisis avanzado de patrones de
ataques cibernéticos con una plataforma informativa interactiva. Este enfoque
permitirá identificar patrones y tendencias emergentes en los métodos de ata-
que cibernético, brindando una comprensión profunda de las tácticas utilizadas.
En términos espećıficos, se abordarán los siguientes puntos clave.

Análisis detallado de patrones de ataque: Se llevará a cabo una exhaustiva
recopilación de datos provenientes de diversas fuentes, incluyendo bases de
datos de ataques cibernéticos y sitios web de seguridad informática. Estos
datos se analizarán en busca de patrones y tendencias utilizando herramientas
avanzadas de análisis de datos y aprendizaje automático.

Generación de modelos predictivos: Con base en el análisis realizado, se de-
sarrollarán modelos predictivos capaces de anticipar posibles ataques y detectar
comportamientos anómalos, contribuyendo aśı a la prevención y mitigación de
riesgos en entornos digitales.

1.8. Metodoloǵıa

La metodoloǵıa propuesta está estructurada en dos etapas, cada una para
tomar los aspectos espećıficos de la propuesta de solución.

1.8.1. Investigación del problema.

Se llevará a cabo una exhaustiva investigación con el fin de identificar con
precisión cuál es el problema que afecta a la comunidad estudiantil.

1. Observación de la problemática: Se examinará la situación relacionada
con los ciberataques que afecta a los sectores vulnerables.

2. Identificación del problema: Se detectarán las lagunas o deficiencias de
información en el ámbito de los ciberataques.

3. Comparación de trabajos: Se llevará a cabo un estado del arte sobre la
misma problemática identificada, seleccionando art́ıculos o tesis relevan-
tes para su comparación y obteniendo una visión general de las investi-
gaciones previas realizadas.

1.8.2. Análisis detallado de patrones de ataque.

Se llevará a cabo una investigación para comprender los patrones y tenden-
cias de los ataques cibernéticos.
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1. Recopilación de datos: Se identificarán fuentes confiables de datos, inclu-
yendo bases de datos de ataques cibernéticos y sitios web de seguridad
informática. Posteriormente se extraerán y serán almacenados de forma
segura para su análisis.

2. Tratamiento de los datos: Se llevará a cabo la limpieza de los datos re-
copilados previamente, aśı como la identificación de las variables más
relevantes que serán utilizadas en el análisis posterior.

3. Análisis detallado: Se utilizarán técnicas de análisis de datos avanzado
y aprendizaje automático para la identificación de patrones y tendencias
en los datos recopilados.

1.9. Alcances y limitaciones

Los alcances de esta investigación son proporcionar un análisis detallado
de los patrones de ataque cibernético. Este análisis permitirá una mejor com-
prensión de las tácticas que utilizan los ciberdelincuentes, siendo fundamental
para desarrollar estrategias de defensa efectivas y contribuyendo a aumentar
la conciencia sobre la importancia de la seguridad cibernética. Al proporcionar
información y resultados accesibles, se espera que más personas comprendan la
gravedad de las amenazas cibernéticas y tomen medidas para protegerse. Las
variables que serán investigadas con mayor importancia son:

Patrones y tendencias de ataques cibernéticos. Analizando métodos uti-
lizados por los ciberdelincuentes para identificar patrones y tendencias
emergentes.

Concienciación en seguridad cibernética. Se evaluará el nivel de concien-
ciación de la comunidad interesada y no interesada en la seguridad ci-
bernética.

Experiencias de ataque cibernético. Se investigará si as personas en la re-
gión han sido v́ıctimas de ataques cibernéticos en el pasado, la frecuencia
de estos y como han respondido a ellos.

Uso de medios sociales. Se analizará como las personas suelen utilizar las
redes sociales y otras plataformas informativas y si son conscientes de
los riesgos asociados con la divulgación de información personal en estos
entornos.

Las limitaciones en esta investigación pueden abarcar desde restricciones de
datos, acceso limitado a recursos hasta cuestiones éticas. Estos factores pueden
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tener un impacto erróneo en la validez, la generalización y la aplicabilidad de
los resultados, aśı como la calidad y la escalabilidad.

Limitaciones de recursos:

� La calidad y disponibilidad de datos. Las fuentes de datos podŕıan
tener limitaciones en cuanto a su veracidad y precisión, lo que puede
afectar la validez de los patrones de ataque identificados.

� Acceso a ciertas bases de datos o sitios web. El acceso podŕıa ser
restringido debido a cuestiones de seguridad o privacidad, lo que
podŕıa limitar la cantidad y la variedad de datos disponibles para
el análisis.

Participación de usuarios:

� La participación de usuarios puede ser limitada por factores como
la disponibilidad de tiempo, su nivel de interés y compromiso, aśı
como su disposición a proporcionar información precisa y completa.

Limitaciones de ética:

� Cuando se abordan temas sensibles, como la privacidad, confidencia-
lidad o consentimiento informado de los participantes, pueden surgir
restricciones en la recopilación y el uso de ciertos datos, afectando
la integridad y la aplicabilidad de los resultados obtenidos.

1.10. Organización del documento

El presente trabajo se estructura de la siguiente manera:

Capitulo 2: Presenta los fundamentos conceptuales de la investigación. Se
explican los algoritmos de aprendizaje automático, se analiza el panorama
actual de los ciberataques con énfasis en sectores vulnerables, y se revisan
trabajos previos relacionados en el estado del arte, comparando enfoques
y resultados.

Capitulo 3: Se describen las fuentes utilizadas de los conjuntos de datos.
Luego, se explica de manera general la preparación realizada para ga-
rantizar su utilidad. Finalmente, se presenta un análisis exploratorio que
incluye gráficas relevantes de los datos.
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Capitulo 4: Presenta los resultados obtenidos del entrenamiento de los
modelos de aprendizaje automático aplicados a los diferentes tipos de
ataques analizados: phishing, ransomware y DoS/DDoS. Para cada ca-
so se incluyen comparativas de desempeño y representaciones gráficas.
Asimismo, se destacan los hallazgos más relevantes en cuanto a patro-
nes detectados en los datos y, finalmente, se muestran las predicciones
realizadas con los datos de prueba para evaluar la capacidad real de los
modelos.

Capitulo 5: Presenta las conclusiones principales del estudio sobre la pre-
dicción de ciberataques mediante aprendizaje automático. Además, se
incluye la propuesta para trabajo a futuro, enfocadas en la mejora de la
prevención y concienciación sobre amenazas cibernéticas.
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Caṕıtulo 2

Marco teórico

2.1. Algoritmos de aprendizaje automático

Los algoritmos de aprendizaje automático (machine learning) son un con-
junto de técnicas y modelos matemáticos que permiten a las computadoras
aprender de datos, identificar patrones y hacer predicciones o decisiones sin ser
expĺıcitamente programadas para realizar tareas espećıficas. En lugar de ser
programados con instrucciones estáticas, estos algoritmos utilizan datos para
entrenarse y mejorar su rendimiento a medida que reciben más información
[16]. Las aplicaciones de estos son extensas, abarcando cualquier área que nos
podamos imaginar, alguno de los ejemplos son:

Identificación de patrones.

Reconocimiento de imágenes y videos.

Recomendaciones personalizadas.

Veh́ıculos autónomos.

Predicción de fallos.

Procesamiento de lenguaje natural.

Además, estos algoritmos se clasifican en diferentes categoŕıas con el propósi-
to de manejar distintos tipos de datos.
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2.1.1. Algoritmos supervisados

Algoritmo de aprendizaje automático en el que se entrena un modelo uti-
lizando un conjunto de datos que contiene tanto las entradas (caracteŕısticas)
como las salidas (etiquetas o valores deseados). El objetivo del algoritmo es
aprender a mapear las entradas a salidas correctas para hacer predicciones
sobre nuevos datos [17]. Sus caracteŕısticas principales son:

Los datos incluyen las caracteŕısticas (entradas) como las etiquetas o
valores asociados (salidas).

El objetivo es minimizar la diferencia entre las predicciones del modelo
y las respuestas correctas (etiquetas).

Es comúnmente utilizado en tareas de clasificación (cuando las salidas
son categóricas).

La calidad del modelo se evalúa usando métricas como precisión, Recall,
F1-score (para clasificación) o el error cuadrático medio (para regresión).

En la siguiente imagen se presenta un diagrama del flujo de los modelos
de aprendizaje supervisado, donde se visualiza el tratamiento de los datos
divididos para obtener un resultado.

Figura 2.1: Diagrama de flujo del aprendizaje supervisado.
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Estos tipos de algoritmos tienen la ventaja principal de ser altamente efec-
tivos cuando se dispone de un conjunto de datos etiquetado de calidad, ya que
su objetivo es aprender sobre una relación directa entre las entradas y las sali-
das, lo que puede resultar en modelos precisos y fáciles de interpretar. Además,
estos modelos permiten evaluar su rendimiento mediante métricas claras. Sin
embargo, una de sus desventajas es que requieren una gran cantidad de da-
tos etiquetados, lo que puede ser costoso y laborioso de obtener. Además, los
modelos supervisados pueden sufrir de sobreajuste (overfitting) si no se gestio-
nan adecuadamente, lo que significa que se ajustan demasiado a los datos de
entrenamiento y tienen un rendimiento deficiente en nuevos datos no vistos.
Ejemplos de algoritmos supervisados:

Árboles de decisión (Decision Trees)

Los Árboles de Decisión son un algoritmo tanto para clasificación como de
regresión. Su funcionamiento se basa en una serie de preguntas binarias sobre
las caracteŕısticas de los datos, que van dividiendo el conjunto en subgrupos
más pequeños en cada nodo del árbol. Cada rama representa un posible re-
sultado derivado de una condición, mientras que las hojas corresponden a las
predicciones finales, como se muestra en la siguiente imagen [18].

Figura 2.2: Diagrama de un Árbol de decisión.

Los Árboles de decisión tienen caracteŕısticas como:

División jerárquica: Los árboles de decisión dividen iterativamente el con-
junto de datos en subconjuntos que proporciona la mayor ’pureza’ en las

23



clases.

Criterios de división: Los criterios más comunes para dividir los nodos son
la ’Gini impurity’ y la ’ganancia de información’ (usada en la entroṕıa).

Interpretabilidad: Es fácil de interpretar, ya que las decisiones siguen una
estructura lógica y son visualmente comprensibles.

La siguiente tabla resume las ventajas y desventajas del algoritmo.

Ventajas Desventajas

Visualización intuitiva Falta de precisión en comparación con otros modelos

No requiere normalización Sesgo de caracteŕısticas dominantes

Poca influencia de los valores faltantes Limitado a divisiones rectas

Robusto frente a datos irrelevantes Crecimiento descontrolado

Tabla 2.1: Ventajas y desventajas de los árboles de decisión.

Bosque Aleatorio (Random Forest)

El Bosque Aleatorio (Random Forest) es un algoritmo que consiste en una
combinación de múltiples árboles de decisión como se muestra en la Figura
2.3. En lugar de construir un solo árbol, el bosque aleatorio construye muchos
árboles de decisión y promedia sus resultados (en el caso de la regresión) o
elige el voto mayoritario (en el caso de la clasificación). La idea principal es
reducir el riesgo de sobre ajuste al promediar los resultados de muchos árboles
que fueron entrenados en diferentes subconjuntos de datos.
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Figura 2.3: Diagrama de un Bosque aleatorio.

Los Bosques aleatorios tienen caracteŕısticas como:

Bagging (Bootstrap Aggregating): Cada árbol se entrena en un subcon-
junto aleatorio de los datos originales, mejorando la generalización del
modelo.

Selección aleatoria de caracteŕısticas: Además de seleccionar subconjun-
tos de datos, cada árbol se entrena usando una selección aleatoria de
caracteŕısticas, lo que reduce la correlación entre los árboles.

Mejora de precisión: Al combinar varios árboles de decisión, el bosque
aleatorio tiende a ser más preciso y menos propenso al sobreajuste que
un árbol de decisión individual.

La siguiente tabla resume las ventajas y desventajas del algoritmo.

Ventajas Desventajas

Resistente a los datos faltantes Mayor uso de memoria

Reduce la varianza Rendimiento disminuye en tiempo real

Identificación de caracteŕısticas importantes No es efectivo en datos dispersos o de alta dimensionalidad

Escalabilidad Tendencia a ser un ’caja negra’

Tabla 2.2: Ventajas y desventajas de los Bosques aleatorios.
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Maquina de Vectores de Soporte (SVM, por sus siglas en inglés:
Support Vector Machine)

La Máquina de Vectores de Soporte es un algoritmo de aprendizaje supervi-
sado utilizado para clasificación y regresión. Su objetivo principal es encontrar
un hiperplano óptimo que separe las distintas clases de datos con el mayor mar-
gen posible. En problemas no lineales, SVM puede aplicar técnicas de transfor-
mación de datos mediante funciones kernel, permitiendo proyectar los datos a
espacios de mayor dimensión donde sean separables linealmente. Este enfoque
reduce el riesgo de sobreajuste y mejora la capacidad de generalización del
modelo [19].

La siguiente figura describe cada cómo el algoritmo traza un hiperplano
que separa los datos en distintas clases, maximizando la distancia entre dicho
hiperplano y los puntos más cercanos.

Figura 2.4: Diagrama Maquina de Vectores de Soporte.

Las Máquinas de Vectores de Soporte tienen caracteŕısticas como:

Maximización del margen: SVM busca el hiperplano que maximiza la
distancia entre las clases, lo que mejora la capacidad de generalización
del modelo al separar los datos con el mayor margen posible.

Uso de kernel: SVM puede aplicar funciones kernel para transformar
datos no lineales en espacios de mayor dimensión, permitiendo encontrar
un hiperplano lineal que separa las clases incluso en casos complejos.
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Reducción del sobreajuste: SVM tiene un buen control sobre el sobre-
ajuste, ya que busca un margen lo más grande posible sin ajustar exce-
sivamente a los datos de entrenamiento.

La siguiente tabla resume las ventajas y desventajas del algoritmo.

Ventajas Desventajas

Alta precisión en clasificación Requiere mucho tiempo de entrenamiento

Reducción del sobreajuste No funciona bien con ruido en los datos

Eficaz en espacios de alta dimensión Lento en grandes volúmenes de datos

Versatilidad con funciones kernel Ajuste de parámetros complejo

Tabla 2.3: Ventajas y desventajas de las Maquinas de Vectores de Soporte.

CatBoost

CatBoost es un algoritmo de aprendizaje automático basado en el método
de Gradient Boosting sobre árboles de decisión. Está diseñado para manejar
datos categóricos de forma eficiente, sin necesidad de realizar una codificación
manual compleja. CatBoost utiliza una técnica innovadora llamada Ordered
Boosting que reduce el sobreajuste y mejora la generalización del modelo. Es
especialmente útil en tareas de clasificación y regresión con datos estructurados,
y se destaca por su robustez, velocidad y alta precisión en competiciones de
ciencia de datos [20].

El siguiente diagrama muestra cómo el modelo combina múltiples árboles,
reduciendo errores en cada iteración y logrando una clasificación más precisa.
Esta visualización permite comprender cómo CatBoost maneja variables ca-
tegóricas y mejora el rendimiento en comparación con métodos tradicionales.

27



Figura 2.5: Diagrama CatBoost.

CatBoost tiene caracteŕısticas como:

Alto rendimiento y precisión: Basado en árboles de decisión que destaca
por su capacidad para generar modelos altamente precisos, incluso con
pocos ajustes manuales.

Manejo eficiente de variables categóricas: A diferencia de otros algorit-
mos, CatBoost puede procesar directamente variables categóricas sin ne-
cesidad de codificarlas previamente, gracias a su enfoque de estad́ısticas
objetivo.

Reducción del sobreajuste: Utiliza una técnica llamada Ordered Boosting
que evita el uso de datos futuros durante el entrenamiento, lo que reduce
significativamente el sobreajuste y mejora la generalización del modelo.

Construcción secuencial de árboles: Entrena múltiples árboles CART de
forma secuencial, donde cada árbol corrige los errores del anterior, utili-
zando un enfoque de promedio ponderado de predictores para la predic-
ción final.
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Buen rendimiento con conjuntos de datos heterogéneos: Funciona espe-
cialmente bien con datos tabulares, que pueden contener una mezcla de
variables numéricas y categóricas, y ofrece resultados competitivos sin
necesidad de mucha ingenieŕıa de caracteŕısticas.

La siguiente tabla resume las ventajas y desventajas del algoritmo.

Ventajas Desventajas

Alto rendimiento y precisión Mayor complejidad computacional

Manejo automático de variables categóricas Interpretabilidad limitada frente a modelos más simples

Menor riesgo de sobreajuste (Ordered Boosting) Puede requerir ajuste de hiperparámetros para máximo rendimiento

Eficaz con datos tabulares mixtos Entrenamiento más lento comparado con modelos lineales

Tabla 2.4: Ventajas y desventajas de CatBoost.

XGBoost, por sus siglas en inglés: Extreme Gradient Boosting

XGBoost es un algoritmo de clasificación y regresión que utiliza el enfoque
de Boosting. Este algoritmo combina múltiples modelos débiles, generalmente
árboles de decisión, para crear un modelo más robusto y preciso. En XGBoost,
cada nuevo árbol intenta corregir los errores cometidos por los árboles ante-
riores, lo que mejora progresivamente la predicción del modelo. Es eficaz en
problemas complejos y con grandes volúmenes de datos y a menudo se utiliza
en competencias de machine learning debido a su rapidez en el entrenamiento
y su habilidad para prevenir el sobreajuste [21].

La figura muestra cómo el modelo construye árboles de decisión de ma-
nera secuencial, donde cada nuevo árbol corrige los errores cometidos por los
anteriores. Este enfoque permite obtener predicciones más precisas y robus-
tas, siendo uno de los algoritmos más utilizados en tareas de clasificación y
detección de anomaĺıas.
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Figura 2.6: Diagrama XGBoost.

XGBoost tienen caracteŕısticas como:

Eficiencia y rapidez: XGBoost es extremadamente rápido en el entrena-
miento y la predicción debido a su implementación optimizada. Esto lo
hace adecuado para grandes volúmenes de datos y problemas complejos.

Regularización para evitar el sobreajuste: XGBoost incluye términos de
regularización L1 y L2 para controlar el sobreajuste del modelo, mejo-
rando su capacidad de generalización.

Manejo de datos faltantes: XGBoost maneja de forma automática los
datos faltantes durante el entrenamiento, asignando rutas óptimas para
mejorar la precisión del modelo.

Flexibilidad con funciones de pérdida: Puede trabajar con diferentes fun-
ciones de pérdida según el problema, lo que permite ajustarlo tanto para
tareas de clasificación como de regresión.

La siguiente tabla resume las ventajas y desventajas del algoritmo.
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Ventajas Desventajas

Alta eficiencia y rapidez Complejidad de configuración

Manejo de sobreajuste Sensibilidad a datos desbalanceados

Capacidad para detectar interacciones no lineales Requiere recursos computacionales

Flexibilidad Dificil interpretación

Tabla 2.5: Ventajas y desventajas de XGBoost.

Regresión Loǵıstica (Logistic Regression)

La Regresión Loǵıstica es un método de clasificación utilizado para predecir
la probabilidad de pertenencia a una clase binaria (0 o 1). Aunque original-
mente fue diseñada para problemas de clasificación binaria, también se puede
extender a problemas multiclase. Este algoritmo modela la relación entre las
caracteŕısticas independientes y la variable objetivo utilizando la función sig-
moide, lo que permite obtener una probabilidad de pertenencia a una clase
espećıfica, en la siguiente figura se representa y facilita la comprensión del
proceso de decisión del modelo [22].
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Figura 2.7: Diagrama Regresión Loǵıstica.

Regresión Loǵıstica tienen caracteŕısticas como:

Interpretabilidad sencilla: El modelo proporciona coeficientes que son
fáciles de interpretar y entender, lo que permite analizar el impacto de
cada caracteŕıstica en la predicción.

Probabilidad de predicción: Ofrece como resultado una probabilidad de
pertenencia a una clase espećıfica, lo que facilita la toma de decisiones
basada en umbrales.

Eficiencia en conjuntos de datos pequeños: Funciona bien con conjuntos
de datos relativamente pequeños y linealmente separables.

Extensiones para problemas complejos: Puede ampliarse a problemas
multiclase con técnicas como la regresión loǵıstica multinomial o one-
vs-all.

La siguiente tabla resume las ventajas y desventajas del algoritmo.
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Ventajas Desventajas

Simplicidad y rapidez Limitación lineal

Robusta ante ruido Sensibilidad a datos desbalanceados

Base para métodos complejos Poca capacidad para problemas complejos
Probabilidad directa Dependencia de la multicolinealidad

Tabla 2.6: Ventajas y desventajas de Regresión Loǵıstica.

2.1.2. Algoritmos no supervisados

El aprendizaje no supervisado es un tipo de algoritmo de aprendizaje au-
tomático que se utiliza cuando los datos no tienen etiquetas o valores de salida
predefinidos. El objetivo del algoritmo es encontrar patrones o estructuras sub-
yacentes en los datos, como grupos o relaciones entre las caracteŕısticas [23].
Sus caracteŕısticas principales son:

Los datos de entrenamiento no tienen etiquetas, es decir, solo reconocen
las caracteŕısticas de los datos, pero no se sabe a que categoŕıa o valor
pertenecen.

El algoritmo intenta identificar estructuras o patrones inherentes en los
datos, como agrupamiento o reducción de dimensionalidad.

Comúnmente agrupa datos en grupos o clústeres basados en similitudes,
también reduce el numero de caracteŕısticas en un conjunto de datos
mientras se manteniente la mayor parte de la información.

La siguiente figura muestra un diagrama del flujo de los modelos de apren-
dizaje no supervisado. Se observa que el tratamiento de los datos es similar al
de los modelos supervisados, aunque en este caso las etiquetas no se utilizan,
y el algoritmo identifica patrones o estructuras de manera autónoma.
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Figura 2.8: Diagrama de flujo del aprendizaje no supervisado.

Estos tipos de algoritmos ofrecen la ventaja de no necesitar datos etique-
tados, lo que los hace útiles cuando no se dispone de información etiquetada
o cuando es dif́ıcil obtenerla. Esto permite explorar patrones y estructuras
ocultas en grandes volúmenes de datos, como en el caso del clustering o la
reducción de dimensionalidad. Sin embargo, su principal desventaja es que la
evaluación de los resultados puede ser más dif́ıcil, ya que no hay una ’respues-
ta correcta’ para comparar. Además, los modelos generados pueden ser más
complejos de interpretar y es posible que los patrones descubiertos no siempre
tengan relevancia práctica o sean dif́ıciles de validar. Ejemplos de algoritmos
no supervisados:

K-means

K-means es uno de los algoritmos más conocidos y sencillos utilizado para
clustering. Su objetivo es dividir un conjunto de datos en K clústeres, donde
cada punto de datos pertenece al clúster con el centroide más cercano. El al-
goritmo funciona de manera iterativa, ajustando los centroides de los clústeres
hasta que la posición de los puntos dentro de los clústeres ya no cambia signifi-
cativamente [24]. En la siguiente se puede visualizar como detecta y segmentan
los datos.
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Figura 2.9: Gráfico de K-means.

K-means tiene caracteŕısticas como:

Centroides: El algoritmo asigna cada punto de datos a uno de los K clúste-
res basándose en la distancia entre el punto y el centroide del clúster.

Iterativo: El proceso se repite hasta que los centroides no cambian más
o hasta alcanzar un número máximo de iteraciones.

Distancia Euclidiana: K-means generalmente utiliza la distancia euclidia-
na para calcular la similitud entre los puntos de datos y los centroides.

K-means cuenta con 4 importantes pasos:

1. Inicialización: Se seleccionan aleatoriamente K centroides en el espacio
de los datos.

2. Asignación: Cada punto de datos se asigna al centroide más cercano,
formando K clústeres.

3. Actualización: Los centroides se recalculan como el promedio de los pun-
tos dentro de cada clúster.

4. Repetición: Se repiten los pasos de asignación y actualización hasta que
los centroides no cambian o el número máximo de iteraciones se alcanza.

La siguiente tabla resume las ventajas y desventajas del algoritmo.
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Ventajas Desventajas

Simplicidad Necesita predefinir K

Escalabilidad Sensibilidad a la inicialización

Velocidad Forma de los clústeres

Flexibilidad Sensibilidad a los outliers

Tabla 2.7: Ventajas y desventajas de los K-means.

Vecinos más cercanos (KNN o K-Nearest Neighbors)

Es un algoritmo de aprendizaje supervisado que se basa en la similitud
entre los puntos de datos. No construye un modelo expĺıcito durante una fase
de entrenamiento, sino que toma decisiones directamente a partir de los datos
almacenados. Para predecir la clase de un nuevo punto, el algoritmo busca los
K vecinos más cercanos (medidos mediante una métrica de distancia, como la
distancia euclidiana) y asigna la clase más común, en tareas de clasificación y
el valor promedio, en tareas de regresión [25].

En la figura se muestra cómo el algoritmo clasifica una nueva observación
considerando las etiquetas de sus k vecinos más cercanos, determinando la clase
mayoritaria.

Figura 2.10: Gráfico de KNN.

KNN tiene caracteŕısticas como:
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Simplicidad: Es uno de los algoritmos más sencillos de implementar, ya
que no requiere de un modelo complicado o un proceso de entrenamiento
largo.

Clasificación basada en proximidad: KNN asigna una etiqueta a un punto
basándose en las etiquetas de sus vecinos más cercanos. En problemas de
regresión, calcula la media o mediana de los valores de los vecinos.

Memoria intensiva: KNN es un algoritmo lazy learning, lo que significa
que no entrena un modelo previamente; en cambio, almacena todo el con-
junto de entrenamiento y realiza cálculos en el momento de la predicción.

KNN cuenta con 4 importantes pasos:

1. Definir K: Elige el número de vecinos más cercanos (K) a considerar para
la clasificación o regresión.

2. Calcular la distancia: Para un nuevo punto de datos, calcula la distancia
a cada uno de los puntos en el conjunto de entrenamiento utilizando
una métrica de distancia (por ejemplo: distancia Euclidiana, Manhattan,
etc.).

3. Identificar los K vecinos más cercanos: Selecciona los K puntos del con-
junto de entrenamiento más cercanos al punto nuevo.

4. Asignar clase (clasificación) o predecir valor (regresión): En problemas
de clasificación, asigna la clase más común entre los K vecinos cercanos.
En regresión, devuelve el valor promedio de los vecinos.

La siguiente tabla resume las ventajas y desventajas del algoritmo.

Ventajas Desventajas

Facil de implementar Costo computacional

No requiere entrenamiento Memoria intensiva

Capaz de manejar datos multicategóricos Sensibilidad al valor de K

Flexible Afectado por la escala de los datos

Tabla 2.8: Ventajas y desventajas de KNN.
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2.2. Ciberataques y digitalización: enfoque a los
sectores vulnerables

Antes de proceder a la selección y preparación de datos, es importante con-
textualizar los tipos de ciberataques más comunes y realizados en los sectores
mas vulnerables, tanto a nivel global como localmente. Este análisis propor-
ciona una base para comprender el impacto de dichos ataques y su relevancia
en el área.

La población con bajo nivel de concienciación en este tema son un blanco
fácil para los criminales cibernéticos, ya que, según información publicada por
El Páıs, uno de cada cinco delitos en internet se comete a través de dispositi-
vos personales o móviles y se calcula que aproximadamente el 80% tienen su
origen en fallos humanos [26]. En situaciones donde la población carece de co-
nocimiento de seguridad digital, la exposición al malware aumenta de manera
exponencial.

A nivel mundial los sectores con menor preparación digital como las pe-
queñas y medianas empresas (PyMEs) y las personas con baja alfabetización
tecnológica se han convertido en blancos recurrentes de la ciberdelincuencia,
cada año aumenta significativamente de acuerdo a la creciente digitalización
en estos entornos que se ha presentado desde aquella pandemia del 2019. De
acuerdo con un informe de Forbes, más del 40% de los ciberataques están diri-
gidos a PyMEs, y solo el 14% de estas se considera preparada para enfrentarlos
[27].

Estas amenazas son altamente graves y con consecuencias como:

Interrupción de operaciones comerciales o de servicios.

Pérdida o secuestro de información sensible.

Filtración de datos financieros o personales.

Alteración de registros.

Suplantación de identidad.

Desde aquella pandemia en 2019 se ha presentado un gran aumento en los
años posteriores sobre los ciberataques, la siguiente figura muestra que el sector
educativo fue el mas afectado, recibiendo en 2021 una media de 1605 ataques
por organización cada semana, suponiendo el crecimiento del 75% respecto
al 2020. Siguiendo el área gubernamental/militar, que tuvo 1.136 asaltos por
semana (47% de subida), y la industria de las comunicaciones, con 1.079 por
organización (51% de incremento) [1].
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Figura 2.11: Promedio de ataques semanales por organización e industria [1].

De igual forma, en la figura siguiente se representa el aumento registrado
durante cada trimestre del año 2021.

Figura 2.12: Aumento de ciberataques semanales globales por organización [1].

En un reciente reporte de Check Point Research sobre las tendencias de
ciberataques en el sector de la educación y la investigación ha sufrido el ma-
yor número de ciberataques en la primera mitad de 2023, con una diferencia
asombrosa con respecto a otros sectores como se recalca en la siguiente figura.
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Figura 2.13: Promedio de ataques cibernéticos semanales por organización [2].

Cada semana, el número medio de ciberataques es de 2.256 por organiza-
ción de Educación/Investigación a nivel mundial. En concreto, en Europa las
amenazas a este sector se han visto incrementadas en un 11% con respecto a
2022. [28]. Y en el segundo trimestre de 2024, se destaca que aumento aun mas
este año, reportando un promedio de 3086 ataques por organización en cada
semana [29].

2.2.1. Situación en México

México actualmente no se encuentra en una situación segura para prevenir
ataques de los cibercriminales, tan solo en Latinoamérica el sector tuvo una
media de 2721 ataques a la semana por cada institución y 3507 ataques en
México lo que esta representando en el año 2024 un aumento del 22% [30].
México actualmente se encuentra en el top 4 en promedio de ataques por
organización como se muestra en la siguiente tabla.

Páıs Promedio de ataques por organización Cambio interanual
India 6874 +97%

Reino Unido 4793 +36%

Italia 4730 +40%

México 3507 +22%

Portugal 3042 +66%

Alemania 2041 +77%

Estados Unidos 1667 +38%

Tabla 2.9: Ataques promedio a la semana en el sector educativo [2].

Este incremento demuestra la necesidad cŕıtica de medidas de cibersegu-
ridad sólidas y una mayor concienciación entre organizaciones y usuarios con
limitada preparación digital. De acuerdo con Miguel Hernández, director de
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Check Point México, la situación de vulnerabilidad en el páıs se refleja en que
las organizaciones mexicanas reciben en promedio 3,048 ataques por semana,
una cifra considerablemente superior al promedio global de 1,891 ataques [31].

2.2.2. Ataques con más frecuencia

Entre los ataques más frecuentes en sectores con baja alfabetización tec-
nológica, pequeñas, medianas empresas y como ya lo vimos en sectores edu-
cativos y de gobierno, se destaca el phishing, ransomware, ataques DoS (De-
negación de Servicio), ataques DDoS (Denegación de Servicio Distribuido) y
el compromiso de correos electrónicos. Estos comparten el objetivo de com-
prometer la seguridad de los sistemas para obtener beneficios a costa de las
vulnerabilidades humanas y tecnológicas [32].

La alta frecuencia de estos ataques se debe a factores como:

Falta de capacitación en el tema.

Limitada implementación de medidas de seguridad.

Gran cantidad de información confidencial que se gestiona.

Dependencia creciente de plataformas digitales.

En la siguiente tabla se describen los ataques mencionados junto con la
frecuencia que se han realizado.

Tipo de ataque Descripción Frecuencia
Ransomware Secuestra sistemas y solicita un rescate para

liberarlos.
Representó 3 de cada 5 ataques registrados en
2019 y en el 2023 el 80% de las instituciones
fueron v́ıctimas y esperando un aumento más
del 72% [33].

Phishing Ataques por correo o sitios falsos que buscan
obtener información confidencial.

México registró 285,400 intentos de ataques
de ransomware entre junio 2023 y julio 2024,
con promedio de 781 diarios y un aumento del
165% respecto al año anterior [34].

Ataques DoS y DDoS Sobrecarga individual y en conjunto de siste-
mas para interrumpir servicios en ĺınea.

Amenaza común en instituciones educativas,
frecuentemente dirigida contra sistemas cŕıti-
cos, en el último año han aumentado un 84%
registrando más de 3000 ataques semanales [2].

Compromiso de correo (BEC) Suplantación de identidad empresarial por co-
rreo para acceder a sistemas o fondos.

Estudio de brechas indica que más del 50%
de incidentes incluyen factor humano, muchos
a través de suplantación de correo empresarial
dentro del patrón de ingenieŕıa social [35].

Tabla 2.10: Comparación de estad́ısticas de ataques.
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Ransomware

El ransomware es un tipo de malware que cifra los datos de un sistema,
bloqueando el acceso a ellos. Los atacantes exigen un rescate a las v́ıctimas,
usualmente en criptomonedas, para proporcionar la clave de descifrado, en
la mayoŕıa de las ocasiones no liberan los datos como lo prometen. Existen
diferentes variantes, cada uno con caracteŕısticas especificas:

Crypto-ransomware: Cifrar archivos y exig 8 e un pago para desbloquear-
los.

Locker-ransomware: Bloquea el acceso al sistema operativo sin cifrar ar-
chivos.

Scareware: Falsas alertas de virus que engañan a los usuarios para que
paguen.

Doxware: Amenazan con filtrar información confidencial si no se pagan
el rescate.

El caso del ataque al Grupo Bimbo por parte del grupo Medusa en 2024. Los
atacantes cifraron archivos y exfiltraron bases de datos, exigiendo un rescate
de 6.5 millones de dólares; publicaron datos financieros, correos y documentos
internos como prueba [36].

El método de propagación de este ataque no se hizo público pero los infor-
mes técnicos señalan:

1. El grupo Medusa suele acceder a las redes mediante credenciales compro-
metidas, aprovechando vulnerabilidades no parcheadas o también utilizan
ingenieria social.

2. Dentro de la red, deplegaron su ransomware que cifra archivos y añade
la extensión ’.MEDUSA’.

3. Por ultimo amenazan con filtrar la información si el rescate no es pagado,
aplicando la técnica de doble extorsión.

Respecto a la contención del ataque, Grupo Bimbo respondió activando sus
protocolos de ciberseguridad, que incluyeron aislamiento de sistemas, investi-
gación forense digital y restauración a partir de respaldos seguros.
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Phishing

El phishing es una técnica de ciberataque en la que los atacantes se hacen
pasar por entidades leǵıtimas, como bancos, empresas o personas conocidas,
para engañar a sus v́ıctimas y obtener información confidencial, como contra-
señas o datos financieros. Existen diferentes tipos de phishing, entre los más
comunes se encuentran:

Spear Phishing: Son ataques dirigidos a individuos espećıficos, general-
mente dentro de empresas o instituciones, utilizando información perso-
nalizada para hacer mas créıble el engaño.

Smishing: Se env́ıan mensajes de texto con enlaces maliciosos o solicitudes
falsas para que la v́ıctima comparta información.

Pharming: Los atacantes manipulan el DNS para redirigir a los usuarios
a sitios web falsos sin que lo noten y al ingresar sus credenciales en el
sitio falso, la información es robada.

Vishing: Llamadas telefónicas en las que los atacantes se hacen pasar por
empleados de empresas leǵıtimas para obtener datos sensibles.

Entre los años 2013 y 2015, Google y Facebook fueron v́ıctimas de un ata-
que de phishing altamente sofisticado, en el que un ciberdelincuente lituano,
Evaldas Rimasauskas, logró estafar a ambas compañ́ıas por un monto superior
a $100 millones de dólares. El ciberdelincuente orquestó el fraude haciéndo-
se pasar por Quanta Computer, un proveedor real de hardware con sede en
Taiwán que trabajaba con ambas empresas y Mediante correos electrónicos
fraudulentos, logró engañar a empleados de Google y Facebook para que rea-
lizaran transferencias millonarias a cuentas bancarias controladas por él [37].

El método de este ataque fue el siguiente:

1. Creación de una empresa falsa. Rimasauskas registró una empresa en Le-
tonia con el mismo nombre que Quanta Computer, imitando la identidad
del proveedor leǵıtimo.

2. Envió de correos electrónicos fraudulentos. Utilizó spear phishing para
enviar facturas falsas a empleados de Google y Facebook. Los correos
parećıan leǵıtimos, con logos, firmas y terminoloǵıa profesional similares
a las del proveedor real.

3. Manipulación de pagos. Los empleados, creyendo que se trataba de pa-
gos leǵıtimos, autorizaron transferencias millonarias a cuentas bancarias
en Letonia, Chipre, Eslovaquia, Lituania y Hong Kong. El dinero era
transferido inmediatamente a otras cuentas para dificultar su rastreo.
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Este ataque fue mitigado después de que mas de 100 millones de dólares
fueron desviados a cuentas fraudulentas, ya que mediante una investigación
Rimasauskas fue arrestado en Lituania y extraditado a Estados Unidos, en 2019
se declaro culpable de fraude electrónico, lavado de dinero y robo de identidad,
siendo condenado a solo 5 años de prisión. En cuanto al dinero Facebook y
Google trabajaron con las autoridades para rastrear las transacciones logrando
recuperar parte del dinero robado.

DoS y DDoS

Un ataque de Denegación de Servicio (DoS) consiste en saturar un servidor,
red y aplicación con tráfico malicioso o solicitudes que consumen recursos,
interrumpiendo su funcionamiento y haciendo inaccesibles los servicios para
los usuarios leǵıtimos. Estos ataques se originan desde una única fuente, lo que
facilita su identificación y mitigación.

A diferencia de los ataques de Denegación de Servicio Distribuido (DDoS),
los cuales suelen aprovechar una botnet o una red de dispositivos comprometi-
dos y controlados por un atacante para generar tráfico excesivo desde múltiples
ubicaciones, dificultando aśı su detección y mitigación.

Estos ataques explotan vulnerabilidades en los sistemas o simplemente ago-
tan recursos como el ancho de banda, la memoria o la capacidad de procesa-
miento. Además, existen variantes de estos ataques como:

Ataques Volumétricos: Buscan consumir el ancho de banda disponible,
sobrecargando la red con tráfico masivo.

� UDP Flood: Env́ıa una gran cantidad de paquetes UDP a puertos
aleatorios del servidor, agotando sus recursos.

� ICMP Flood (Ping Flood): Inunda el sistema con solicitudes
ICMP (ping), saturando la capacidad de respuesta.

� DNS Amplification: Usa servidores DNS abiertos para amplifi-
car el tráfico malicioso dirigido a la v́ıctima, generando un impacto
mayor con menos recursos.

Ataques de Protocolo: Apuntan a vulnerabilidades en la infraestruc-
tura de red, afectando el manejo de conexiones.

� SYN Flood: Env́ıa solicitudes SYN masivas sin completar la cone-
xión, agotando la tabla de conexiones del servidor.

� ACK Flood: Sobrecarga la tabla de estado de las conexiones TCP
enviando paquetes ACK sin una secuencia válida.
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� RST Flood: Env́ıa paquetes TCP con la bandera RST activada,
forzando el cierre de conexiones activas.

Ataques a la Capa de Aplicación: Buscan interrumpir servicios es-
pećıficos explotando las solicitudes leǵıtimas del usuario.

� HTTP Flood: Simula múltiples solicitudes leǵıtimas a un servidor
web, consumiendo sus recursos.

� Slowloris: Mantiene abiertas muchas conexiones HTTP sin com-
pletarlas, bloqueando nuevas solicitudes.

� DNS Query Flood: Env́ıa un número excesivo de consultas DNS
para sobrecargar el servidor y degradar su rendimiento.

Un caso para este ataque fue para el medio digital Revista Espejo, con sede
en Culiacán, Sinaloa, fue blanco de múltiples ataques de denegación de ser-
vicio distribuidos (DDoS), particularmente agresivos en marzo de 2021. Estos
ataques afectaron gravemente su capacidad de operación en ĺınea y visibiliza-
ron una tendencia preocupante en México hacia la censura digital mediante
ciberataques [38].

El método utilizado fue el siguiente:

1. Adquisición de una red distribuida de dispositivos comprometidos loca-
lizados en diferentes páıses.

2. Utilizando técnicas automatizadas para saturar los recursos de un servi-
dor enviaron al rededor de 136 millones de solicitudes.

La revista trabajó de la mano con sus proveedores de hosting para im-
plementar medidas de mitigación como el filtrado de IPs maliciosas, uso de
redes de distribución de contenido (CDN) y configuraciones de defensa en ca-
pa de aplicación. También migraron su infraestructura a servicios con mayor
tolerancia a tráfico anómalo y reforzaron su seguridad en la capa DNS.

La siguiente tabla resume los cuatro tipos de ataques, indicando su método
de propagación, forma de ataque y objetivos principales.
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Tipo de ataque Propagación Ataque Objetivo
Ransomware Correos maliciosos, enlaces fraudulentos o vul-

nerabilidades.
Cifrado: Bloquea archivos con algoritmos avan-
zados. Rescate: Exige pago en criptomonedas.

Pérdida de datos, interrupción de servicios y
altos costos.

Phishing Crea correos o sitios web falsos imitando enti-
dades confiables.

Engaño: Env́ıa enlaces o archivos maliciosos
con pretextos urgentes. Recopilación: La v́ıcti-
ma ingresa datos en formularios falsos o ejecuta
malware.

Los atacantes acceden a cuentas, roban dinero
o realizan otros ataques.

Ataques DoS Crean una botnet mediante malware. Ataque: Env́ıan solicitudes masivas para satu-
rar al objetivo. Interrupción: Sobrecargan el
servidor o red, impidiendo el acceso leǵıtimo.

Datos financieros, hacktivismo, competencia
desleal o malicia.

Ataques DDoS Crean una botnet mediante malware. Ataque: Env́ıan solicitudes masivas para satu-
rar al objetivo. Interrupción: Sobrecargan el
servidor o red, impidiendo el acceso leǵıtimo.

Datos financieros, hacktivismo, competencia
desleal o malicia.

Tabla 2.11: Comparación de caracteŕısticas de los ciberataques.

2.3. Estado del arte

Los ciberataques representan una amenaza constante en el mundo actual,
afectando tanto a individuos como a organizaciones. La ciberseguridad se ha
convertido en un tema crucial y de amplia investigación, con el objetivo de
desarrollar métodos avanzados para la detección de amenazas. En art́ıculos
existentes, el aprendizaje automático (Machine Learning) ha emergido como
una herramienta poderosa para la detección de ciberataques, empleando diver-
sos algoritmos y técnicas que analizan datos en busca de anomaĺıas que puedan
indicar la presencia de ataques. Cada art́ıculo examina diferentes enfoques y
áreas tecnológicas, proporcionando una visión amplia y variada sobre cómo
enfrentarlos. A continuación, se presentan algunas de las investigaciones más
relevantes y sus hallazgos en el campo de la detección de ciberataques. [39]
Francisco. J. Fernández Rosique, en su art́ıculo Estudio experimental de ciber-
ataques a través de códigos QR, Universidad Politécnica de Cartagena, 2022.
Señala que el objetivo es analizar de forma experimental qué tipos de ciber-
ataques podŕıan realizarse utilizando como arma los códigos QR. Abordando
tanto el proceso de creación como el de lectura. Se analizaron las posibles vul-
nerabilidades asociadas a la respuesta inmediata que caracteriza a los códigos
QR y se demostró que el uso malintencionado de los códigos QR podŕıa re-
presentar una alta amenaza, especialmente debido a su imposible legibilidad
para el usuario antes de ser escaneado. Sin embargo, varias de las vulnerabili-
dades identificadas requeŕıan acciones de confirmación por parte del usuario,
como escanear el código en una aplicación espećıfica, aceptar la conexión a un
punto de acceso o realizar una llamada intencionada a un número marcado.
Enfocándonos en otra área como el Internet de las Cosas (IoT) [40] Alsamiri, J.
M., & Alsubhi, K, con su art́ıculo Internet of Things Cyber Attacks Detection
using Machine Learning, King Abdulaziz University, 2019. Se centraron en la
detección de ciberataques en estas redes, utilizando métodos de aprendizaje
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automático con el conjunto de datos Bot-IoT para evaluar diferentes algorit-
mos de detección. Empleando CICFlowMeter (herramienta para la captura y el
análisis de flujos de red) para extraer caracteŕısticas basadas en flujos a partir
de trazas de tráfico en bruto, generando 84 caracteŕısticas de tráfico de red del
conjunto de datos. Los algoritmos aplicados, como Naive Bayes con 0.77, QDA
con 0.86, Random Forest con 0.97, ID3 con 0.97, AdaBoost con 0.97, MLP
con 0.83 y K Nearest Neighbours con 0.99, destacaron con su efectividad, pero
especialmente Random Forest, ID3 y AdaBoost, que obtuvieron altas tasas de
rendimiento. En el mismo enfoque, pero en el área de la medicina [3] Saheed,
Y. K., & Arowolo, M. O. con el art́ıculo Efficient cyber-attack detection on the
internet of medical things-smart environment based on deep recurrent neural
network and machine learning algorithms, 2021. Desarrollaron una detección
eficiente de ciberataques en el Internet de las Cosas Médicas (IoMT) utilizan-
do una arquitectura de entorno IoMT-Smart como se muestra en la siguiente
Figura 2.14.

Figura 2.14: Arquitectura del entorno IoMT-Smart propuesta [3].

Además de una Red Neuronal Recurrente Profunda (DRNN) y varios mo-
delos de aprendizaje supervisado (SML) como Random Forest optimizado con
PSO (PSO-RF) con 99.76, Árbol de Decisión optimizado con PSO (PSO-DT)
con 99.58, K-Nearest Neighbors (KNN) optimizado con PSO (PSO-KNN) con
98.90 y Regresión Loǵıstica optimizada con PSO (PSO-RC) con 97.61 de pre-
cisión y con el modelo PSO-RF se mejoró la precisión de detección, alcanzando
una precisión del 99.76%. Este enfoque no solo mejora la precisión de la detec-
ción, sino que también aborda la eficiencia computacional requerida para apli-
caciones en tiempo real en entornos IoT. El IoT se extiende a redes alámbricas
como inalámbricas, en el siguiente caso de [4] Khaista Rahman, Muhammad
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Adnan Aziz, Nighat Usman, Tayybah Kiren, Tanweer A. Cheema, Hina Shou-
kat, Tarandeep K. Bhatia, Asrin Abdollahi y Ahthasham Sajid, en su art́ıculo
Cognitive Lightweight Logistic Regression-Based IDS for IoT-Enabled FANET
to Detect Cyberattacks, 2023. Investigaron la integración de redes inalámbri-
cas 5G con redes FANET (Flying Ad-Hoc Networks) como un nuevo concepto
para mejorar la cobertura y reducir el retardo en la comunicación esto espe-
cialmente UAVs (veh́ıculos aéreos no tripulados). Destacó la importancia de
asegurar las FANETs contra ciberataques, que pueden interrumpir la conec-
tividad entre los nodos y comprometer la comunicación, especialmente ante
amenazas como ataques de datos falsos y DoS/DDoS. Se propuso un modelo
de sistema que incluye un enfoque cognitivo ligero basado en regresión loǵısti-
ca para la detección dinámica de ataques, utilizando algoritmos de aprendizaje
automático como Decision Trees (DT) con 49.17%, Random Forest (RF) con
71.59%, XGBoost con 49.54%, AdaBoost con 28.39%, Bagging con 44.70% y
regresión loǵıstica con la precisión más alta de 82.54%.

Figura 2.15: Análisis del rendimiento de clasificadores de aprendizaje automáti-
co (DT, RF, XGBoost, AdaBoost, Bagging y regresión loǵıstica) [4].

Esta investigación se basó en el conjunto de datos UNSW-NB15 para en-
trenar y probar los clasificadores de aprendizaje automático. Ahora con el mo-
delo de aprendizaje profundo de Multilayer Perceptron (DMLP) [41] Panda,
M., Abd Allah, A. M., & Hassanien, A. E., con el art́ıculo Developing an effi-
cient feature engineering and machine learning model for detecting IoT-botnet
cyber-attacks, 2021. Investigaron la detección eficiente de ataques cibernéticos
en sistemas de Internet de las Cosas (IoT), especialmente a través de la de-
tección y mitigación de botnets. Utilizando el conjunto de datos UNSW-NB15
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que fue diseñado espećıficamente para IoT y botnets, que es ruidoso y des-
balanceado. Las técnicas que se aplicaron para obtener un conjunto de datos
representativo con subconjuntos óptimos de caracteŕısticas fueron K-Medoid
y búsqueda de dispersión (scatter search). Y para la detección se utilizaron
los algoritmos de aprendizaje automático de JChaid, A2DE y HGC más dos
métodos de aprendizaje profundo como DMLP y CNN. Los resultados del
análisis experimental mostraron que el clasificador DMLP basado en búsqueda
de dispersión superó a los otros modelos en términos de precisión y eficien-
cia computacional. Logró una tasa de detección del 100% con precisión, recall
y F1-score macro-averaged del 100%, junto con tiempos de entrenamiento y
prueba muy bajos. [5] Delplace, A., Hermoso, S., & Anandita, K., Cyber-attack
detection thanks to machine learning algorithms, Universidad Politécnica de
Cartagena, 2020. También se centraron en la detección y clasificación de tráfico
malicioso en redes con solo el énfasis en la detección de botnets. Realizando un
análisis exhaustivo de datos a partir de conjuntos de datos NetFlow, resulto en
la extracción de 22 caracteŕısticas principales. Estas caracteŕısticas fueron so-
metidas a un proceso de selección para comparar su eficacia y después evaluar
cinco algoritmos diferentes de aprendizaje automático siendo Random Forest
logrando detectar más del 95% de los botnets en 8 de 13 escenarios y más del
55% en los conjuntos de datos más dif́ıciles.

Figura 2.16: Resultados resumidos usando Radom Forest Classifier [5].

Si cambiamos de enfoque [42] Ajmal, M. A., Imran, M., Raza, M. A., &
Raza, A., en el art́ıculo Cyber Threats Prediction Model using Advanced Data
Science Approaches. 2022. Realizaron un modelo de predicción basado en Data
Science y Machine Learning para detectar y predecir ataques de tipo DDoS,
donde utilizó el conjunto de datos CICDDOS2019 y se aplicaron diferentes mo-
delos de aprendizaje automático, como Decision Tree, Random Forest, SVM y
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Näıve Bayes. Se concluyó que un modelo basado en Data Science y Machine
Learning es más apropiado y exitoso en ciberseguridad, especialmente en la
predicción de ciberataques, en comparación con enfoques tradicionales. Ran-
dom Forest fue el algoritmo más preciso, con una precisión del 99,87%, seguido
del árbol de decisión con un 99,84%, el SVM con un 66,04% y el Naive Ba-
yes con un 87,70%. Los ciber ataques también existen en el área de las redes
eléctricas inteligentes o mejor conocidas como Smart Grids, estas son sistemas
de distribución eléctrica modernizados que integran tecnoloǵıa digital avanzada
para mejorar la eficiencia, la confiabilidad y la seguridad de las redes eléctricas
tradicionales. Estas redes utilizan tecnoloǵıa de comunicación bidireccional en-
tre consumidores, generadores y operadores de la red para optimizar la gestión
del suministro eléctrico. [43] Karimipour, H., Dehghantanha, A., Parizi, R. M.,
Choo, K. K. R., & Leung, H., con el art́ıculo A deep and scalable unsupervised
machine learning system for cyber-attack detection in large-scale smart grids,
2019. Investigaron el desarrollo de un sistema de detección de anomaĺıas no su-
pervisado, basado en la correlación estad́ıstica entre mediciones. El objetivo fue
diseñar un motor de detección de anomaĺıas escalable adecuado para redes in-
teligentes a gran escala, capaz de diferenciar entre fallas reales, perturbaciones
y ciberataques inteligentes. Se aplicó la extracción de caracteŕısticas utilizando
el filtrado dinámico simbólico (SDF) para reducir la carga computacional, y se
realizaron simulaciones en sistemas IEEE de 39, 118 y 2848 buses, logrando una
precisión del 99% con una tasa de verdaderos positivos del 98% y una tasa de
falsos positivos de menos del 2%. Ahora si comparamos con otro art́ıculo sobre
investigación de Smart Grids [6] Almalaq, A., Albadran, S., & Mohamed, M.
A., en su art́ıculo Deep machine learning model-based cyber-attacks detection
in smart power systems, 2022. Propusieron el uso de PCA para la selección de
caracteŕısticas, mejorando significativamente la detección de ciberataques en
redes eléctricas inteligentes con una precisión del 93.87% y también se proba-
ron algoritmos como KNN 91.34%, SVM con 90.02%, GBDT no especifica,
XGBoost no especifica y CNN no especifica la precisión. Los datos utiliza-
dos contienen 128 caracteŕısticas registradas utilizando PMUs (Unidades de
Medición de Fasores) y alarmas de relés y registros Snort.
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Figura 2.17: Comparación de precisión [6].

Para finalizar también las redes informáticas frecuentemente son otra puer-
ta para los ciber ataques y [44] Ozalp, A. N., & Albayrak, Z., con su art́ıculo
Detecting cyber attacks with high-frequency features using machine learning
algorithms, 2022. Investigaron la detección de ciberataques con caracteŕısticas
de alta frecuencia utilizando algoritmos de aprendizaje automático, se uti-
lizaron caracteŕısticas del conjunto de datos NSL-KDD para determinar las
frecuencias y evaluar la efectividad en la detección de ciberataques mediante
algoritmos como Random Forest, J48, Naive Bayes y Multi-Layer Perceptron
(MLP). Random Forest proporcionó un alto rendimiento en términos de clasi-
ficación y precisión, con un 99.76%.
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Algoritmo Áreas tecnológicas Precisión
Random Forest Redes IoT, Redes Informáticas, IoMT y Smart Grids 99.76% en IoMT

99.87% en DDoS
97% en IoT

99% en Smart Grids

ID3 y AdaBoost Redes IoT 97%

AdaBoost Redes IoT y FANETs 28.39% en FANETs
97% en IoT

XGBoost FANETs 49.54% en FANETs

SVM (Support Vector Machine) DDoS y Smart Grids 66.04% en DDoS
90.02% en Smart Grids

Naive Bayes Redes IoT y DDoS 87.70% en DDoS
0.77% en IoT

K-Nearest Neighbors (KNN) IoMT y Smart Grids 99% en IoT
98.90% en IoMT

91.34% en Smart Grids

Decision Trees FANETs y DDoS 49.17% en FANETs
99.84% en DDoS

Multilayer Perceptron (MLP) Redes Informáticas y IoMT 99.76% en IoT
83% en IoT

Deep Recurrent Neural Network (DRNN) IoMT 99.76% en IoMT

Tabla 2.12: Análisis comparativo de algoritmos de aprendizaje automático,
resaltando su precisión y rendimiento en diversos ámbitos tecnológicos.

En esta tabla se muestra un panorama más detallado de las investigaciones,
destacando las aplicaciones de diferentes algoritmos de aprendizaje automático
en diversos contextos tecnológicos. Cada enfoque tiene sus fortalezas y debili-
dades. Los algoritmos como Random Forest y KNN demostraron alta precisión
en varios escenarios, mientras que otros como SVM y AdaBoost muestran un
rendimiento variable dependiendo del área tecnológica.
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Caṕıtulo 3

Análisis de ciberataques

Una vez comprendido algunos de los algoritmos de aprendizaje automático
mas conocidos y utilizados para la predicción e identificación es importante
abordar la etapa de selección, análisis y preparación de datos. Este paso es ne-
cesario para garantizar que los algoritmos seleccionados en los pasos posteriores
puedan operar de manera óptima, aprovechando al máximo las caracteŕısticas
relevantes y reduciendo el impacto de los datos inconsistentes o irrelevantes.

3.1. Fuentes de datos

Para la recopilación de los conjuntos de datos que se analizaran pueden ser
utilizados diversos repositorios que se encuentran en internet como:

Repositorios públicos: Son conjuntos accesibles a través de plataformas
como Kaggle, Microsoft Research o conjuntos de datos de Google.

Repositorios privados: Son conjuntos accesibles a través de plataformas
de instituciones privadas como lo son las gubernamentales o académicas
a las cuales se tienen acceso pagando o solicitando de manera personal.

Bases de datos propias: Trata de información recolectada espećıficamen-
te para un estudio mediante encuestas, experimentos o herramientas de
captura de datos.

Simulaciones: Son datos generados artificialmente para replicar escenarios
espećıficos que permitan probar los algoritmos recabando los resultados
en tiempo real.
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Las fuentes elegidas para la recopilación de datos fueron repositorios públi-
cos, destacando a Kaggle como la principal fuente, está siendo una plataforma
en ĺınea especialmente utilizada por cient́ıficos de datos y personas interesadas
sobre el aprendizaje automático. A continuación, se muestra una captura de
su página principal.

Figura 3.1: Kaggle [7].

La segunda fuente pública fue la Universidad de Nuevo Brunswick (UNB),
espećıficamente a través de su Canadian Institute for Cybersecurity (CIC).
Este instituto es reconocido internacionalmente por proveer conjuntos de datos
de ciberseguridad diseñados para evaluar y desarrollar sistemas de detección
de intrusos y estrategias de mitigación ante ciberataques. A continuación, se
muestra una captura de su página donde se encuentra el banco de datos.
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Figura 3.2: Universidad de Nuevo Brunswick [8].

Se limito la selección a tres conjuntos de datos para analizar tres diferentes
tipos de ataques cibernéticos: phishing, ransomware y ataques de denegación
de servicio (DoS y DDoS). Los conjuntos de datos relacionados con phishing
y ransomware fueron obtenidos de Kaggle, mientras que el dataset correspon-
diente a DoS y DDoS proviene de la Universidad de Nuevo Brunswick (UNB).
La combinación de estas fuentes permite un análisis amplio y representati-
vo de amenazas cibernéticas contemporáneas, considerando tanto plataformas
públicas de ciencia de datos como repositorios académicos especializados.

3.1.1. Conjunto de datos para Phishing

El primer conjunto de datos, titulado ’Phishing Dataset for Machine Lear-
ning’ (Conjunto de datos de phishing para aprendizaje automático), fue publi-
cado en el año 2021 por el usuario Shashwat Tiwari. Contiene 48 caracteŕısticas
y un total de 10,000 registros, divididos equitativamente entre 5,000 sitios de
phishing y 5,000 sitios leǵıtimos [45]. Los datos fueron recolectados entre los
años 2015 y 2020, proporcionando una base sólida y representativa para el
análisis y detección de ataques de phishing. Hasta la fecha, se han registrado
más de 130,000 visualizaciones y 16,300 descargas, lo que refleja su populari-
dad y utilidad en la comunidad de ciberseguridad y ciencia de datos. Además,
este conjunto de datos se encuentra disponible bajo la licencia Attribution 4.0
International (CC BY 4.0), permitiendo su uso y adaptación. A continuación,
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se muestra una captura de la descripción del banco de datos en la pagina de
Kaggle.

Figura 3.3: Conjunto de datos Phishing Dataset for Machine Learning.

3.1.2. Conjunto de datos para Ransomware

El segundo conjunto de datos, esta titulado ’Android Ransomware Detec-
tion’ (Detección de Ransomware en el sitema operativo Android), fue publicado
en el año 2023 por el usuario Cyber Cop. Este dataset contiene 85 caracteristi-
cas y 203,556 registros, incluye diez tipos de ransomware de Android y de tráfico
benigno. Los tipos de ransomware incluidos son: SVpeng, PornDroid, Koler,
RansomBO, Charger, Simplocker, WannaLocker, Jisut, Lockerpin y Pletor [46].
El dataset se encuentra bajo la licencia GNU Affero General Public License 3.0,
permitiendo su uso y modificación. Además, la fuente principal de los datos es
el Canadian Institute for Cybersecurity (CIC), reconocido por su trabajo en
ciberseguridad y recopilación de datos para la investigación académica. Hasta
la fecha, el dataset ha registrado más de 7,087 visualizaciones y 1,144 descar-
gas. Este conjunto de datos resulta valioso para entrenar y evaluar modelos de
aprendizaje automático orientados a la identificación de ransomware, aśı como
para estudiar el comportamiento y las caracteŕısticas del tráfico malicioso en
dispositivos Android. A continuación, se muestra una captura de la descripción
del banco de datos en la página de kaggle.
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Figura 3.4: Conjunto de datos Android Ransomware Detection.

3.1.3. Conjunto de datos para DoS y DDoS

El ultimo conjunto de datos, esta titulado ’DDoS evaluation dataset (CIC-
DDoS2019)’ (Conjunto de datos de evaluación de DDoS (CIC-DDoS2019)), fue
publicado en el año 2021 por un equipo de investigadores, incluyendo al Dr.
Iman Sharafaldin, el Dr. Saqib Hakak y el Dr. Arash Habibi Lashkari. Este da-
taset contiene 80 caracteristicas y aproximadamente 50,063,112 registros en su
versión original, incluye once tipos de ataques y de tráfico benigno. Los tipos
de ataques de denegación de servicios incluidos son: DrDoS-UDP, UDP-lag,
DrDoS-MSSQL, DrDoS-NetBIOS, Syn y WenDDoS [47]. El conjunto de datos
se encuentra bajo la licencia CC BY-NC-SA 4.0, permitiendo su uso para inves-
tigación académica no comercial. Hasta la fecha, el dataset ha registrado más
de 33,700 visualizaciones y 7,105 descargas en el repositorio de Kaggle, demos-
trando su relevancia en la investigación y desarrollo de modelos de detección
de ataques cibernéticos complejos. A continuación, se muestra una captura de
la descripción del banco de datos en la página de kaggle.
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Figura 3.5: Conjunto de datos DDoS evaluation dataset (CIC-DDoS2019).

3.2. Preparación de datos

La preparación de datos es un paso fundamental en el análisis y mode-
lado, ya que garantiza la calidad, consistencia y relevancia de la información
utilizada. Antes de aplicar técnicas de aprendizaje automático y análisis ex-
ploratorio, es necesario limpiar, transformar y adaptar los datos para reducir
errores y asegurar resultados precisos. En esta sección, se detallan los procesos
espećıficos realizados para cada conjunto de datos (Phishing, Ransomware y
DoS/DDoS). Se describen las técnicas de limpieza, transformación, manejo de
datos faltantes y selección de caracteŕısticas clave para obtener conjuntos de
datos adecuados y equilibrados, listos para el análisis y la implementación de
modelos predictivos.

3.2.1. Phishing

El conjunto de datos de phishing para aprendizaje automático contiene un
total de 50 caracteŕısticas y 10,000 registros extraidos de páginas web repar-
tidas equitativamente en trafico de phishing y trafico benigno, sin embargo
solo contamos con 48 caracteŕısticas ya que una columna es para enumerar los
registros y la otra es nuestra columna clave como se visualiza en la siguiente
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figura.

Figura 3.6: Conjunto de datos phishing.

Como se observa en la siguiente figura, todos los datos son de tipo numérico,
excepto la columna ’CLASS-LABEL’, la cual es categórica y representa el valor
1 para casos de phishing y 0 para tráfico benigno. Se verificó que no existen
valores nulos ni registros duplicados, lo cual asegura la integridad y calidad de
la información para el análisis posterior.

Figura 3.7: Eliminar datos nulos y duplicados.

En relación con el balanceo de la columna clave ’CLASS-LABEL’, se com-
probó en la siguiente figura que los datos están completamente equilibrados.
Esto es importante para asegurar una representación equitativa de ambas cla-
ses (phishing y tráfico benigno), permitiendo aśı un entrenamiento adecuado y
evitando sesgos en los modelos de aprendizaje automático.
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Figura 3.8: Balanceo de la columna ’CLASS-LABEL’.

El proceso de exploración del conjunto de datos no presentó mayores com-
plicaciones. Por lo tanto, procedemos con la preparación de los datos para su
aplicación en modelos de aprendizaje automático. Como se visualiza en la Figu-
ra 3.9, se creó un DataFrame llamado X, que contiene todas las caracteŕısticas
excepto las columnas ’CLASS-LABEL’ e ’id’. También se generó otro Data-
Frame llamado y, que únicamente incluye la columna clave ’CLASS-LABEL’.
Esta separación permite diferenciar las variables independientes de la variable
dependiente, facilitando el entrenamiento y evaluación de los modelos.

Figura 3.9: Preparación de variables independientes y dependientes.
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3.2.2. Ransomware

El conjunto de datos de detección de ransomware en Android contiene un
total de 86 caracteŕısticas y 203,556 registros totales, sin embargo solo conta-
mos con 84 caracteŕısticas ya que la columna ’Unnamed: 0’ que se visualiza
en la Figura 3.10 se utiliza para enumerar los registros y la otra es nuestra
columna clave que contiene diez tipos de ransomware diferente de Android,
los cuales son: SVpeng, PornDroid, Koler, RansomBO, Charger, Simplocker,
WannaLocker, Jisut, Lockerpin y Pletor.

Figura 3.10: Conjunto de datos ransomware.

La mayoŕıa de los datos son numéricos, aunque también se observa una
columna de tipo fecha y datos categóricos. La columna clave ’Label’ identifica
el nombre de cada tipo de ransomware y también incluye el tráfico benigno.
Además, se confirmó que no existen valores nulos ni registros duplicados, lo
que asegura la integridad y calidad de la información para el análisis posterior.

La columna clave ’Label’ se distribuye en diez tipos de tráfico de ransom-
ware y uno de tráfico benigno. La distribución esta relativamente balanceada
de la siguiente manera:

Ransomware SVpeng: 54,161 registros.

Ransomware PornDroid: 46,082 registros.

Ransomware Koler: 44,555 registros.

Ransomware RansomBO: 39,859 registros

Ransomware Charger: 39,551 registros.
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Ransomware Simplocker: 36,340 registros.

Ransomware WannaLocker: 32,701 registros.

Ransomware Jisut: 25,672 registros.

Ransomware Lockerpin: 25,307 registros.

Ransomware Pletor: 4,715 registros.

Trafico Benigno: 43,091 registros.

En la siguiente figura también se puede observar de manera grafica la dis-
tribución de la columna ’Label’:

Figura 3.11: Balanceo de la columna ’Label’.

Dado que no todos los tipos de ransomware presentan un riesgo significativo
para a los sectores mencionados debido a sus caracteŕısticas de ataque, se
descartaron los siguientes:
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PornDroid: Se disfraza como una aplicación de contenido para adultos,
limitando su impacto a un segmento muy espećıfico del público.

Koier: Es una variante genérica de ransomware sin un patrón claro de
propagación ni una orientación hacia sectores espećıficos, por lo que su
relevancia en este estudio es limitada.

PansomBO: Aunque tiene capacidad de cifrado, no está diseñado para
maximizar daño en contextos como entornos laborales o de usuarios con
baja preparación técnica.

Pletor: Entra en el sector de dispositivos android y aplicaciones que se
descargan de tiendas no oficiales, incluso mediante enlaces de sms o correo
electrónico, pero debido a su bajo nivel de datos esta descartado.

Se decidió mantener seis tipos de ransomware en el análisis debido a sus
caracteŕısticas espećıficas y su posible impacto en entornos como sectores con
bajo conocimiento tecnológico:

SVpeng: Ataca apps bancarias móviles, afectando a usuarios sin protec-
ción que realizan transacciones desde su celular.

Charger: Roba datos personales como contactos y mensajes, comunes en
dispositivos sin medidas básicas de seguridad.

Simplocker: Cifra archivos en Android, afectando documentos importan-
tes en sectores que no hacen respaldos frecuentes.

WannaLocker: Variante móvil de WannaCry, se propaga en redes mal
protegidas como las de PyMEs o usuarios domésticos.

Jisut: Bloquea el acceso total al dispositivo, afectando a quienes dependen
del móvil para trabajo o comunicación.

Lockerpin: Cambia el PIN del equipo, dejando inutilizable el dispositivo
para usuarios sin conocimientos técnicos.

De nuevo observamos como finalmente quedara la distribución de manera
grafica de la columna ’Label’:
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Figura 3.12: Descarte de tipos de ransomware.

Al calcular la media y la desviación estándar de todos los datos y tipos
de ransomware, se observa una variabilidad considerable en la distribución.
Esto sugiere que las clases no están completamente balanceadas, pero tampoco
presentan un desbalance extremo. La desviación estándar representa cerca del
28% de la media, lo cual se considera aceptable. Un desbalance preocupante
ocurriŕıa si la desviación estándar superara el 30% de la media, ya que indicaŕıa
una distribución muy desigual de las clases. En este caso, la media se mantuvo
estable como se muestra en la siguiente figura, lo que respalda la validez de los
datos para el análisis.
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Figura 3.13: Media y desviación del balance de los datos.

Para la preparación de nuestras variables en la aplicación de modelos de
aprendizaje automático, se creó un DataFrame llamado X, que contiene todas
las caracteŕısticas excepto las siguientes columnas:

Unnamed: 0: Representa el número de registro y no aporta valor al en-
trenamiento del modelo.

Label: Es nuestra columna clave, por lo que se manejará de manera in-
dependiente.

Timestamp: Indica la fecha en que ocurrió el tráfico del registro; sin
embargo, no proporciona información útil para el modelo.

Flow ID: Es un identificador único generado a partir de los datos del
registro, por lo que no contribuye al aprendizaje del modelo.

Además, se creó otro DataFrame llamado y, que contiene únicamente la
columna ’Label’, la cual representa nuestra variable objetivo o dependiente
mostrada en la siguiente figura.
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Figura 3.14: Preparación de variables independientes y dependientes.

3.2.3. DoS y DDoS

El conjunto de datos de evaluación de DDoS (CIC-DDoS2019) esta dividido
en un total de 17 archivos, cada uno contiene trafico de diferentes tipos de
ataques DDoS, espećıficamente de:

Syn: Ataque basado en el protocolo TCP que inunda el servidor con
solicitudes SYN sin completar la conexión, agotando sus recursos.

UDP: Env́ıa una gran cantidad de paquetes UDP a la v́ıctima, saturando
su ancho de banda y afectando la disponibilidad del servicio.

MSSQL: Explotación del protocolo Microsoft SQL Server para generar
tráfico malicioso y consumir recursos del sistema.

LDAP: Ataque de amplificación que abusa del protocolo LDAP para
enviar grandes volúmenes de tráfico a un objetivo.

NetBIOS: Uso malintencionado del protocolo NetBIOS para generar tráfi-
co excesivo y afectar la red del sistema objetivo.

UDPLag: Variante del ataque UDP que introduce retrasos en la comuni-
cación, afectando el rendimiento y disponibilidad del servicio.

Se unieron todos los archivos en dos listas separadas, una para el entrena-
miento y otra para la prueba de los modelos de aprendizaje automático. Luego,
se compararon ambas listas para conservar únicamente los prefijos comunes,
asegurando que los tipos de tráfico en el entrenamiento también estuvieran en
la prueba y evitando discrepancias en la distribución de datos.

Al final, como se visualiza en la siguiente figura se obtuvieron seis tipos de
tráfico de ataques de denegación de servicio. Los datos de los archivos en cada
lista se combinaron para formar dos DataFrames, uno para entrenamiento, con
120,065 registros y 78 caracteŕısticas, y otro para prueba, con 38,973 registros
y 78 caracteŕısticas.
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Figura 3.15: Prefijos comunes en listas de entrenamientos y prueba.

La información de nuestro DataFrame en la figura nos muestra que conta-
mos con datos numéricos y con solo una columna categórica, la columna clave
’Label’ que representa los diferentes tipos de tráfico.

Figura 3.16: Tipos de datos de nuestro DataFrame.

Al analizar la distribución de los tipos de ataques de denegación de servicio
en nuestros dos DataFrames, se identificó que el DataFrame de prueba conteńıa
un tipo de ataque que no estaba presente en el DataFrame de entrenamiento.
Para mantener el equilibrio en el proceso de modelado, este tipo de ataque
fue eliminado del DataFrame de prueba, asegurando que ambos conjuntos de
datos contengan los mismos tipos de tráfico y evitando posibles sesgos en el
entrenamiento y evaluación del modelo. Se muestra en la figura la distribución
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de datos de cada clase en el dataset.

Figura 3.17: Clases finales.

El balanceo de nuestros datos con respecto a la columna clave ’Label’ mues-
tra una distribución visualmente dispareja. Al calcular la media y la desviación
estándar, se observa que la desviación representa el 77% de la media. Esta alta
variabilidad indica un desbalance en la distribución de las clases, lo que sugiere
la necesidad de aplicar técnicas de balanceo para mejorar el rendimiento de los
modelos de aprendizaje automático. En este caso, debido a que la cantidad de
registros de algunos tipos de ataques era considerablemente baja en compara-
ción con otros, se decidió eliminar estos tres tipos de ataques: LDAP, NetBIOS
y Syn. Al volver a calcular la media y la desviación estándar de los datos,
se observó que la desviación estándar representa un 19% de la media, lo que
sugiere que la variabilidad no es alta y los datos se encuentran relativamente
equilibrados, también se observa en la siguiente figura que la diferencia de las
clases ya es menor.
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Figura 3.18: Clases finales equilibradas.

Con nuestras clases ahora equilibradas, procederemos a identificar aquellas
columnas numéricas que debeŕıan ser categóricas. Este tipo de columnas suelen
tener pocos valores únicos, y su conversión a tipo categórico puede mejorar la
eficiencia y el rendimiento de los modelos, además de reducir la complejidad
computacional. En total, se identificaron 19 caracteŕısticas para su conversión
a formato categórico. Además, se revisaron las columnas categóricas de alta
cardinalidad, que son aquellas que tienen demasiados valores únicos. En es-
te caso, no se encontró ninguna columna con alta cardinalidad y finalmente,
se combinarán las columnas categóricas y las numéricas que deben ser trata-
das como categóricas y se identificaron las columnas numéricas que no fueron
consideradas categóricas, eliminando aquellas que ya fueron clasificadas como
numéricas. De esta forma, se logró separar correctamente las columnas numéri-
cas para el análisis.

En cuanto a valores nulos, no se encontraron pero se detectaron valores
duplicados, los cuales fueron eliminados. Como se observa en la siguiente figura
se eliminaron 1,411 registros duplicados, quedando un total de 67,264 registros
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y 78 caracteŕısticas, los cuales se utilizarán para el posterior análisis con los
modelos de aprendizaje automático.

Figura 3.19: Datos para entrenamiento.

3.3. Análisis de los datos

El análisis datos es un paso esencial para comprender la estructura, distribu-
ción y relaciones dentro del conjunto de datos. A través de técnicas estad́ısticas
y visualizaciones, se identifican patrones, comportamientos, anomaĺıas y ten-
dencias que pueden influir en el desempeño de los modelos predictivos. En
esta sección, se presentan los métodos aplicados para examinar cada conjunto
de datos (Phishing, Ransomware y DoS/DDoS), incluyendo análisis descripti-
vo, correlaciones entre variables y distribución de datos. Estos procedimientos
permiten obtener información clave para la selección de caracteŕısticas, opti-
mización del modelado y toma de decisiones fundamentadas en el proceso de
análisis y anterior al modelado.

3.3.1. Phishing

El conjunto de datos para phishing arrojo datos y patrones con correla-
ciones interesantes, comenzando por la distribución de la longitud de la URL
por clase (0 legitimo y 1 phishing), en el grafico se muestra un patrón similar
entre sitios leǵıtimos y de phishing, con ambas categoŕıas concentrándose prin-
cipalmente entre 40-100 caracteres. Esta notable superposición sugiere que la
longitud de URL por śı sola no constituye un factor determinante para iden-
tificar sitios maliciosos, ya que demuestra que los atacantes que crean sitios
de phishing están construyendo URLs con longitudes que imitan el patrón de
sitios leǵıtimos.
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Figura 3.20: Distribución de la longitud de URL por clase.

Por otro lado, se observó que en la figura, la relación entre las caracteŕısticas
UrlLength y HostnameLength, mostrada por clase, revela un patrón distintivo:
mientras que las URLs leǵıtimas tienden a mantener nombres de host relativa-
mente cortos, independientemente de la longitud total de la URL, las URLs de
phishing muestran una tendencia a tener nombres de host significativamente
más largos. En algunos casos, estos superan considerablemente el rango común.
Esta observación sugiere que la longitud del nombre de host podŕıa ser un indi-
cador valioso para los sistemas de detección de phishing. Los atacantes parecen
utilizar nombres de host extensos, posiblemente con el fin de ocultar elementos
maliciosos o simular legitimidad mediante subdominios complejos.
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Figura 3.21: Relación entre la longitud de la URL y la longitud del nombre de
host por clase.

También se observó una diferencia significativa en la cantidad de URLs que
no utilizan el Protocolo de Transferencia de Hipertexto Seguro (https) entre
las clases. Se puede visualizar en la figura un patrón claro, donde las URLs de
phishing presentan una frecuencia de no uso de https que alcanza hasta 10,000,
lo cual es considerablemente alto. En cambio, las URLs leǵıtimas no superan
una frecuencia de 1,000.
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Figura 3.22: Conteo de URL que no tienen https por clase.

Al comparar otras caracteŕısticas como NumDots y NumDash, que repre-
sentan el número de puntos y guiones en las URLs, se observa en la grafica que
la relación entre estas dos variables, en función de la tendencia según la clase,
revela un patrón distintivo que podŕıa ser crucial para la detección de phishing.
Se identifica una tendencia inversa entre ambas variables, donde un aumento
en NumDots se asocia con una disminución en NumDash. Espećıficamente, los
datos etiquetados como phishing (1) tienden a concentrarse en la región donde
NumDots es bajo y NumDash es relativamente alto, mientras que los datos
leǵıtimos (0) presentan una distribución más dispersa. Este patrón sugiere que
la combinación de un bajo número de puntos (NumDots) y un alto número de
guiones (NumDash) podŕıa ser un indicador clave de sitios web de phishing.
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Figura 3.23: Relación entre NumDots y NumDash con tendencia de acuerdo a
la clase.

Por ultimo respecto a la correlación de todas las caracteŕısticas se destaco
que hay una fuerte asociación entre longitud y complejidad de la URL y uso
excesivo de parámetros, estos pueden ser indicadores útiles para clasificar una
URL como phishing.

3.3.2. Ransomware

Este conjunto de datos, más extenso y distribuido entre diferentes tipos de
ataques, evidenció relaciones claras entre el tráfico malicioso de ransomware y
el tráfico benigno. A partir del análisis de la distribución de bytes transmitidos
por cada tipo de tráfico, se observan diferencias significativas.

Como se muestra en la Figura 3.24, el tráfico relacionado con ransomware
presenta irregularidades, alcanzando volúmenes cerca de 400,000 bytes, mien-
tras que el tráfico leǵıtimo se mantiene generalmente alrededor de los 100,000
bytes. Se puede deducir que si una red mantiene un patrón de tráfico promedio
estable, cualquier desviación notable, sea por un volumen excesivamente alto o
inusualmente bajo, podŕıa facilitar la detección rápida de un ataque, tomando
estos parámetros como referencia.
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Figura 3.24: Distribución de Bytes transmitidos por tipo de tráfico.

Observando desde una perspectiva más general, en este caso la distribución
en el número de paquetes por tipo de tráfico, se aprecia una diferencia mı́nima.
Sin embargo, a diferencia del análisis anterior con los bytes, aqúı la situación
se invierte: el tráfico benigno presenta un mayor número de paquetes, mientras
que el tráfico de ransomware muestra una cantidad similar pero ligeramente
menor, con menos variabilidad. Aunque la diferencia no es demasiada, se puede
aplicar un razonamiento similar al del análisis de bytes: si la red mantiene
un comportamiento de tráfico estable, cualquier desviación significativa en la
cantidad de paquetes puede ser una señal de alerta y posible indicio de actividad
maliciosa.
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Figura 3.25: Distribución de Paquetes transmitidos por tipo de tráfico.

En las siguientes figuras se analizó el tráfico en los protocolos y puertos,
comenzando por los protocolos mostrado en la Figura 3.26 (a), identificando la
utilización de tres de ellos: 0 (IP sin definir o reservado), 6 (TCP - Transmission
Control Protocol) y 17 (UDP - User Datagram Protocol). Principalmente se
observaron los protocolos 6 y 17, mostrando un patrón de tráfico similar entre
los distintos tipos de tráfico, aunque con menor volumen en el protocolo 17.
Dado que los patrones no eran completamente claros en los protocolos, se
procedió a analizar los puertos de destino más utilizados mostrados en la Figura
3.26 (b), siendo: 443 (HTTPS - navegación segura), 80 (HTTP - navegación
web estándar) y 53 (DNS - resolución de nombres de dominio). Al igual que con
los protocolos, los patrones de tráfico en estos puertos eran bastante similares
entre las distintas categoŕıas, tanto benignas como maliciosas.

Sin embargo, una diferencia destacable fue observada en el caso del ransom-
ware SVpeng, el cual presentó un volumen de tráfico superior en ambos graficos
y en comparación con los demás tipos de ransomware, indicando que intenta
generar más comunicación o transferencias durante su actividad, posiblemente
como parte de su proceso para exfiltrar datos o contactar con servidores de
comando y control.
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(a) Distribución de Protocolos por tipo de
tráfico.

(b) Puertos de destino más utilizados.

Figura 3.26: Trafico de protocolos y puertos utilizados.

Respecto a las correlaciones, se identificaron tres datos relevantes:

Cuando el tráfico hacia atrás (respuestas del servidor) muestra mucha
variabilidad en los tiempos entre paquetes, el flujo total de la conexión
tiende a mantenerse más estable, reflejando cómo, en ataques de ransom-
ware, los servidores maliciosos responden de manera irregular o errática,
mientras que la conexión general intenta mantener un ritmo constante.

Cuando el flujo completo de datos tiene alta variabilidad en los tiempos
entre paquetes, los intervalos más largos en el tráfico hacia atrás tienden
a ser menores, sugiruendi que el malware instalado por el atacante podŕıa
estar enviando paquetes al servidor de comando y control de forma irre-
gular, pero las respuestas desde ese servidor malicioso tienden a ser más
regulares y predecibles.

Cuando los intervalos hacia atrás son muy largos, el flujo general tiende
a ser más estable (con menor variabilidad). Este patrón puede indicar
que, en algunos ataques de ransomware, las respuestas del servidor llegan
con más demora, pero la conexión global mantiene un comportamiento
estructurado y sin grandes cambios.

En la siguiente figura se muestra el mapa de correlación de todas las carac-
teŕısticas, donde las correlaciones altas se representan con colores cercanos al
rojo, mientras que las correlaciones negativas se indican con colores cercanos
al azul.
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Figura 3.27: Mapa de calor que muestra las correlaciones entre caracteŕısticas
del tráfico de red.

3.3.3. DoS y DDoS

En el conjunto que contiene ataques de denegación de servicio se identifica-
ron distintos patrones importantes para reconocer este tipo de amenazas en el
tráfico de red, destacándose el uso de dos protocolos espećıficos: el 17 (UDP -
User Datagram Protocol) y el 6 (TCP - Transmission Control Protocol) como
se muestra en la Figura 3.28 (a).

El puerto 17, asociado al servicio QOTD (Quote of the Day), es práctica-
mente obsoleto y su uso leǵıtimo es casi inexistente, por lo que cualquier tráfico
que lo involucre resulta sospechoso. Este servicio también ah sido explotado a
través de UDP con ataques de amplificación mediante reflexión. Por otro lado,
el protocolo 6, correspondiente a TCP, es el que aparece con mas frecuencia,
esto podŕıa tratarse de una manipulación de encabezados para evadir reglas de
filtrado.

De acuerdo con los errores o fallos observados en el tráfico clasificado como
leǵıtimo (0) y malicioso (1) como se visualiza en el grafico 3.28 (b), la gran ma-
yoŕıa corresponde a tráfico leǵıtimo, con un 92% que no presenta indicios claros
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de explotación de vulnerabilidades según el sistema de clasificación CWE. Es-
to podŕıa indicar que, en caso de haber un ataque DDoS, este se encuentra
mezclado con tráfico limpio, lo que complica su detección y mitigación. El pe-
queño porcentaje restante, un 7% de tráfico clasificado como malicioso, podŕıa
representar intentos de explotación de vulnerabilidades espećıficas, concentran-
do aśı el comportamiento sospechoso vinculado a un posible ataque DDoS o a
actividades de reconocimiento previas al mismo.

(a) Distribución de trafico por protocolos. (b) Distribución de trafico de errores o fa-
llos por tipo de trafico.

Figura 3.28: Distribución de trafico de protocolos y errores en el trafico.

Otro hallazgo importante está relacionado con el rango de duración. En
este caso, la siguiente figura muestra que los tres tipos de ataques analizados
presentan duraciones bajas cercanas a cero. Esto podŕıa sugerir intentos de
ataque rápidos y repetitivos, t́ıpicos de ataques DDoS de corta duración. En
contraste, los valores altos de duración se observan principalmente en el tráfico
benigno, lo que indica que este tipo de tráfico tiende a mantener conexiones
más largas y estables.
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Figura 3.29: Distribución de la duración de flujo de los diferentes tipos de
trafico.

También se identifican outliers (valores at́ıpicos), especialmente en los ata-
ques ’MSSQL’ y ’UDPLag’. Estos valores elevados de duración podŕıan co-
rresponder a intentos de explotación prolongados o sostenidos en el tiempo.
Este patrón es evidente en una red donde el tráfico prolongado es común, la
detección de conexiones inusualmente breves puede ser una señal de actividad
anómala.

En cuanto a la longitud media del paquete en cada tipo de tráfico, en
el siguiente grafico se observa un comportamiento distinto en dos de los tres
protocolos analizados (0, 6 y 17). Para el protocolo 6 (TCP), el tráfico benigno
muestra una duración de flujo generalmente larga y consistente, en contraste
con el tráfico malicioso, que presenta duraciones más cortas.

Por otro lado, en el protocolo 17 (UDP) ocurre lo contrario, donde el tráfico
benigno tiene flujos cortos pero también estables, mientras que el tráfico ma-
licioso (MSSQL, UDP y UDPLag) muestra una mayor variabilidad en la du-
ración, incluyendo valores at́ıpicos muy elevados. Esto sugiere que los ataques
DDoS sobre UDP pueden generar conexiones anómalamente largas e inestables.
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Figura 3.30: Distribución de longitud media del paquete por protocolo y trafico.

Respecto al mapa de calor y las correlaciones positivas, se mencionan las
siguientes:

La correlación entre Subflow Bwd Packets y Total Backward Packets
muestra una relación perfecta, lo que sugiere un tráfico DDoS en el que
se env́ıa un volumen muy alto y consistente de paquetes hacia atrás.
Este comportamiento es t́ıpico en ataques DDoS, donde se inunda la red
con grandes cantidades de tráfico hacia atrás, lo que puede colapsar los
dispositivos de red. Un patrón similar se observa en la correlación entre
Bwd Packets Length Total y Subflow Bwd Bytes.

La correlación entre RST Flag Count y Fwd PSH Flags indica que la
activación conjunta de las banderas RST (Reset) y PSH (Push) puede
ser un indicio claro de que los atacantes intentan interrumpir las cone-
xiones de red de manera sincronizada. Este comportamiento es común
en ataques como el TCP SYN Flood, donde los paquetes con la bandera
RST intentan cerrar conexiones, mientras que los paquetes con la ban-
dera PSH buscan enviar datos rápidamente, interrumpiendo aśı el flujo
normal.

En cuanto a las correlaciones negativas, se mencionan las siguientes:

La correlación negativa entre Protocol y ACK Flag Count indica que,
a medida que se incrementa el uso de protocolos como UDP, disminuye
significativamente la cantidad de respuestas ACK. Este patrón es carac-
teŕıstico de ataques DDoS basados en UDP, como los UDP Flood o DNS
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Amplification, donde no se requiere establecer una conexión formal. En
contraste, el tráfico benigno basado en TCP śı utiliza ACK, por lo que
esta ausencia de confirmaciones es un fuerte indicio de tráfico malicioso.

La correlación negativa entre Fwd IAT Mean y Protocol refleja que, cuan-
do se utiliza un protocolo como UDP o se incrementa la actividad de tipo
flood, el tiempo promedio entre la llegada de paquetes hacia adelante
disminuye. Este comportamiento es t́ıpico en ataques DDoS, donde los
paquetes se env́ıan en ráfagas muy rápidas, reduciendo el intervalo entre
ellos y generando un flujo constante y agresivo hacia el objetivo.

La correlación negativa entre Protocol y Flow IAT Std sugiere que el
tráfico generado bajo ciertos protocolos tiende a presentar intervalos de
tiempo entre flujos más constantes y con poca variabilidad. Este patrón
es común en ataques DDoS tipo Flood, donde el tráfico es uniforme, re-
petitivo y carece de la variabilidad natural del tráfico leǵıtimo. Esta re-
gularidad puede ser una señal clara de automatización y comportamiento
malicioso.
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Figura 3.31: Mapa de calor que muestra las correlaciones entre caracteŕısticas
del tráfico de red.
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Caṕıtulo 4

Resultados

Tras la selección, análisis y preparación de los datos, continua la etapa
final: la evaluación. En esta fase, cada uno de los conjuntos de datos será
sometido varios tipos de algoritmos de aprendizaje automático, con el objetivo
de comparar su rendimiento. Este procedimiento permitirá identificar la mejor
opción para la detección de cada tipo de ataque cibernético.

Los algoritmos utilizados para los conjuntos de datos son:

Random Forest (Supervisado)

Support Vector Machine (SVM - Supervisado)

CatBoost (Supervisado)

XGBoost (Supervisado)

Regresión Loǵıstica (Supervisado)

K-Nearest Neighbors (KNN - Supervisado)

4.1. Phishing

Este conjunto de datos será evaluado utilizando los siguientes algoritmos:
Random Forest, SVM (Support Vector Machine) y CatBoost. Random Forest
suele ser más frecuente en análisis de clasificación debido a su robustez y efecti-
vidad. Por otro lado, CatBoost, aunque es un método relativamente más nuevo,
ha ganado popularidad rápidamente gracias a su rendimiento en problemas con
variables categóricas, pero aún no es tan común como Random Forest en este
tipo de análisis.
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4.1.1. Random Forest

El conjunto de datos fue dividido en un 80% para entrenamiento y un
20% para prueba. El modelo se entrenó utilizando 400 árboles de decisión,
limitando el número máximo de nodos hoja a 400 y considerando hasta 10
variables aleatorias en cada división. El modelo alcanzó una precisión del 98.5%
en el conjunto de datos de prueba, lo que indica un rendimiento excelente en
la clasificación de instancias de Phishing y No-Phishing. Este alto nivel de
precisión sugiere que el modelo es altamente confiable para distinguir entre
ambos tipos de instancias.

El rendimiento del modelo fue evaluado mediante una matriz de confusión
4.1, la cual proporciona una visión sobre los aciertos y errores en la clasificación.
De un total de 2000 instancias, el modelo clasificó correctamente 973 leǵıtimos
y 997 de phishing. Los errores de clasificación fueron mı́nimos: apenas 15 leǵıti-
mos fueron erróneamente clasificados como phishing (falsos positivos) y 15 de
phishing fueron clasificados incorrectamente como leǵıtimos (falsos negativos).

Figura 4.1: Matriz de confusión para la detección (Random Forest).

Se evaluó la importancia de las variables utilizadas por el modelo para
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realizar las predicciones, mediante la medida de importancia de caracteŕısticas
propia del algoritmo Random Forest. Esta evaluación permite identificar qué
variables tienen un mayor peso en la clasificación.

El análisis reveló que las caracteŕısticas más relevantes fueron:

PctExtHyperlinks (22.81% de importancia)

PctExtNullSelfRedirectHyperlinksRT (19.65%)

FrequentDomainNameMismatch (8.88%)

En particular, la alta relevancia de PctExtHyperlinks y PctExtNullSelfRe-
directHyperlinksRT sugiere que la proporción de hiperv́ınculos externos y el
comportamiento anómalo en redireccionamientos son fuertes indicadores para
identificar páginas web asociadas a actividades de phishing. Como se muestra
en la siguiente figura como resaltan las dos caracteŕısticas mencionadas.

Figura 4.2: Caracteŕısticas mas importantes para predicción (Random Forest).

La curva de aprendizaje muestra que el modelo alcanza una precisión cer-
cana al 100% en el conjunto de entrenamiento, mientras que en el conjunto
de validación vaŕıa entre 95% y 98%. Esta pequeña diferencia sugiere que
el modelo generaliza bien, sin signos de sobreajuste, lo que indica un buen
rendimiento en la detección de sitios web de phishing.
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Figura 4.3: Curva de aprendizaje del modelo de detección de sitios web (Ran-
dom Forest).

4.1.2. Support Vector Machine - SVM

El modelo SVM (Máquinas de Vectores de Soporte) los datos se dividieron
en un 80% para entrenamiento y un 20% para prueba. El modelo fue entre-
nado con el conjunto de entrenamiento y evaluado en el conjunto de prueba.
Los resultados mostraron una precisión del 99.9%, evidenciando un rendimien-
to sobresaliente en la clasificación correcta de URLs tanto leǵıtimas como de
phishing. La precisión perfecta del modelo en las predicciones resalta su efec-
tividad en la detección de sitios web fraudulentos.

La matriz de confusión 4.4 muestra que el modelo SVM clasificó correc-
tamente 988 URLs leǵıtimas y 1010 URLs de phishing. Sin embargo, se pre-
sentaron 2 falsos negativos, es decir, URLs de phishing que fueron clasificadas
erróneamente como leǵıtimas. A pesar de estos pocos errores, la precisión del
modelo sigue siendo extremadamente alta, reflejando su capacidad para dife-
renciar eficazmente entre sitios web leǵıtimos y fraudulentos.

87



Figura 4.4: Matriz de confusión para la detección (SVM).

La curva de aprendizaje muestra un rendimiento sobresaliente del modelo
SVM tanto en el conjunto de entrenamiento como en el de validación. Durante
el entrenamiento, la puntuación AUC osciló entre 0.995 y 0.999, mientras que
en la validación se mantuvo entre 0.992 y 0.999. Estos valores reflejan una
capacidad excelente del modelo para discriminar entre URLs leǵıtimas y de
phishing, indicando una clasificación robusta y precisa en ambos conjuntos.
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Figura 4.5: Curva de aprendizaje del modelo de detección de sitios web (SVM).

4.1.3. CatBoost

Por ultimo se utilizó el modelo CatBoost y tras dividir los datos en un 80%
para entrenamiento y un 20% para prueba, el modelo fue entrenado y evaluado
con los datos de prueba. El modelo alcanzó una precisión solida del 99% para
las URLs legitimas y con phishing. Estos resultados sugieren que el modelo es
bastante bueno para detectar phishing.

La matriz de confusión 4.6 muestra que el modelo CatBoost clasificó co-
rrectamente 3969 URLs leǵıtimas y 3976 URLs de phishing. También cometió
31 falsos positivos (URLs leǵıtimas clasificadas como phishing) y 24 falsos ne-
gativos (URLs de phishing clasificadas como leǵıtimas). Este patrón indica que
el modelo tiene solidez al clasificar las URLs de phishing.
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Figura 4.6: Matriz de confusión para la detección (CatBoost).

La curva de aprendizaje del modelo CatBoost mostró un valor solido en en
entrenamiento mientras que en la validación la precisión osciló entre 0.978 y
0.984. Estos resultados indican que el modelo generaliza de manera consistente.
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Figura 4.7: Curva de aprendizaje del modelo de detección de sitios web (Cat-
Boost).

4.1.4. Comparación de Modelos

El modelo CatBoost obtuvo el mejor desempeño, alcanzando un rendimien-
to casi perfecto, con errores mı́nimos en la clasificación. RandomForest presento
un rendimiento muy poco por debajo, mientras que SVM presento un desem-
peño inferior a los demás, evidenciando mayores dificultades en la correcta
clasificación de las URLs, especialmente en la detección de sitios leǵıtimos.
A continuación en la tabla se muestran resumidos todos los resultados de los
algoritmos entrenados.
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Algoritmo Entrenamiento

Precisión Recall F1-Score

Random Forest 0.98 0.98 0.98

No-Phishing 0.98 0.98 0.98

Phishing 0.98 0.98 0.98

SVM 0.86 0.86 0.86

No-Phishing 0.90 0.82 0.86

Phishing 0.84 0.91 0.87

CatBoost 0.99 0.99 0.99

No-Phishing 0.99 0.99 0.99

Phishing 0.99 0.99 0.99

Tabla 4.1: Comparación de modelos Random Forest, SVM y CatBoost en ata-
ques Phishing.

4.2. Ransomware

En este conjunto de datos se emplearon tres algoritmos de aprendizaje
automático: Random Forest y XGBoost siendo una técnica de ensamble que
utiliza gradiente boosting para optimizar la predicción, destacándose por su
eficiencia y rendimiento en problemas de clasificación complejos.

4.2.1. Random Forest

El conjunto de datos fue dividido en un 80% para entrenamiento y un
20% para prueba. El modelo se entrenó utilizando 100 árboles de decisión,
limitando el máximo número de nodos hoja a 400 y la profundidad máxima
de los árboles a 10. Se exigió un mı́nimo de 5 muestras por hoja y se utilizó la
ráız cuadrada del número total de caracteŕısticas para seleccionar los atributos
en cada división. Tras el entrenamiento, el modelo alcanzó una precisión de
97% y en el conjunto de validación de 71% en la clasificación de las diferentes
variantes de ransomware y tráfico benigno. En consecuencia, es posible que el
modelo necesite ajustes adicionales o técnicas de regularización para mejorar
su rendimiento en validación.

En la matriz de confusión obtenida por el desempeño del modelo Random
Forest en la clasificación de las diferentes categoŕıas de tráfico, se observa que
el modelo logra una correcta clasificación en la mayoŕıa de los casos, parti-
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cularmente en la clase Simplocker, que presenta un número muy elevado de
verdaderos positivos, con mı́nimas confusiones hacia otras clases. Sin embar-
go, existe cierta confusión entre las clases Lockerpin, Charger, y Jisut, donde
se detectan varios errores de clasificación mutua, indicando similitudes en sus
patrones de tráfico. Además, para las clases Benign y WannaLocker, aunque
la mayoŕıa de las instancias se clasificaron correctamente, también se observa
una cantidad significativa de confusiones entre ambas, lo que sugiere que sus
caracteŕısticas pueden ser parcialmente similares para el modelo. En general,
la matriz evidencia un desempeño robusto, aunque con áreas espećıficas donde
podŕıa mejorarse la discriminación entre clases relacionadas.

Figura 4.8: Matriz de confusión para la detección (Random Forest).

El análisis también reveló que las caracteŕısticas más relevantes fueron:

Source IP (31.76% de importancia)

Destination IP (5.75%)

Source Port (3.73%)

Indicando que la dirección IP de origen, seguida de la dirección IP de destino
y el puerto de origen, contienen patrones distintivos relevantes para la detección
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de actividad maliciosa. En la siguiente figura se muestra la relevancia de las
caracteŕısticas.

Figura 4.9: Caracteŕısticas mas importantes para la detección (Random Fo-
rest).

4.2.2. XGBoost

En este conjunto de datos se eliminaron atributos irrelevantes como di-
recciones IP, identificadores de flujo y marcas de tiempo; posteriormente, las
variables categóricas fueron codificadas numéricamente mediante codificación
one-hot. Se utilizó una división de los datos del 80% para entrenamiento y
20% para prueba. El modelo XGBoost alcanzó una precisión de entrenamien-
to del 67%. Respecto a la validación solo logro alcanzar un 61% de precisión,
demostrando que no fue tan eficaz al clasificar los diferentes tipos de ataques.

4.2.3. Comparación de Modelos

El modelo Random Forest mostró el mejor desempeño, alcanzando una
precisión buena durante el entrenamiento, sin embargo al momento de la vali-
dación se queda corto el algunos tipos de ataques. Su capacidad para manejar
grandes volúmenes de datos y su eficiente uso de caracteŕısticas lo convierten
en una opción robusta para la detección de amenazas pero si tenemos un con-
junto de datos con poca calidad de datos es complicado encontrar un buen
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rendimiento. Por otro lado, el modelo XGBoost se mostró con desempeño bajo
en el entrenamiento y validación, una prueba mas sobre la baja calidad del
conjunto de datos. Esto sugiere que, aunque los modelos tienen un buen rendi-
miento en datos robustos, si se encuentran con datos con mucho ruido y poca
varianza tienen dificultades para entrenar y después identificar datos nuevos.
A continuación en la tabla se muestran resumidos todos los resultados de los
algoritmos entrenados.

Algoritmo Entrenamiento

Precisión Recall F1-Score

Random Forest 0.98 0.97 0.97

SVpeng 1.00 1.00 1.00

Lockerpin 0.99 0.91 0.95

Charger 0.97 0.98 0.97

Jisut 0.97 0.94 0.96

Simplocker 0.99 0.98 0.98

Benign 0.97 0.99 0.98

WannaLocker 0.98 0.96 0.97

XGBoost 0.68 0.67 0.67

SVpeng 0.97 0.99 0.98

Lockerpin 0.67 0.35 0.46

Charger 0.54 0.48 0.41

Jisut 0.55 0.60 0.57

Simplocker 0.63 0.49 0.55

Benign 0.74 0.94 0.83

WannaLocker 0.65 0.60 0.63

Tabla 4.2: Comparación de modelos Random Forest y XGBoost en ataques
Ransomware.

4.3. DoS y DDos

En este conjunto de datos se emplearon tres algoritmos de aprendizaje au-
tomático: Random Forest, Regresión Loǵıstica fue utilizada por su simplicidad
y efectividad en escenarios lineales y K-Nearest Neighbors (KNN) se aplico
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como un enfoque no supervisado para explorar la capacidad del modelo de
agrupar patrones de tráfico malicioso sin necesidad de etiquetas predefinidas.

4.3.1. Random Forest

En el conjunto de entrenamiento, el modelo alcanzó una precisión del 96.41%.
Al ser evaluado sobre el conjunto de validación, los resultados se mantuvieron
consistentes con una precisión del 96.69%. Estos valores reflejan la capacidad
del modelo para generalizar de manera eficaz sobre datos no vistos, lo que lo
convierte en una herramienta sólida para la detección de tráfico malicioso.

La matriz de confusión revela un rendimiento robusto en la clasificación
de las clases analizadas. La clase Benign fue clasificada correctamente en la
mayoŕıa de los casos. Para la clase MSSQL, el modelo identificó correctamen-
te 4,940 instancias, con solo 3 casos erróneamente clasificados como Benign
y 19 como UDP. En el caso de UDP, se alcanzaron 8,132 aciertos, aunque se
observaron 10 errores de clasificación como Benign, 156 como MSSWL y 1 co-
mo UDPLag, por ultimo UDPLag clasifico correctamente 5,060 teniendo 281
errores como Benign, 47 como MSSQL y 1727 de UDP, siendo la clase que
mostró mayor dificultad. Estos resultados evidencian un desempeño sobresa-
liente en clases mayoritarias, aunque con leves debilidades en la detección de
clases menos representadas.
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Figura 4.10: Matriz de confusión para la detección (Random Forest - Entrena-
meinto).

4.3.2. K-Nearest Neighbors

En el conjunto de entrenamiento, el modelo alcanzó una precisión del 99.67%,
con buena capacidad de ajuste, lo que indica que se adaptó bien a los patrones
del tráfico malicioso. Al ser evaluado sobre el conjunto de validación, el modelo
mostró resultados igualmente sólidos con una precisión del 95.99%, lo que de-
muestra su capacidad para generalizar de manera efectiva nuevos datos. Estos
resultados son indicativos de la eficiencia del modelo para detectar ataques de
denegación de servicio distribuido (DDoS), ya que mantiene un rendimiento
estable tanto en el entrenamiento como en la validación.

La matriz de confusión mostro un rendimiento sobresaliente en función de
sus clases, observando que el modelo clasificó correctamente la mayoŕıa de las
instancias en la clase Benign con 8240 predicciones correctas, sin confundirlas
con otras clases. En cuanto a la clase MSSQL, se identificaron 1638 casos co-
rrectamente, con 19 instancias clasificadas erróneamente como UDP. Para la
clase UDP, el modelo mostró una alta precisión con 3461 predicciones correc-
tas, aunque cometió algunos errores al clasificar 75 instancias como MSSQL
y 2 como UDPLag. Finalmente, para la clase UDPLag, el modelo identificó
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correctamente 5 instancias, pero cometió algunos errores de clasificación, con
7 instancias mal clasificadas como UDP y 3 como MSSQL, los resultados refle-
jan que, aunque el modelo es eficaz en la clasificación general, existen algunos
casos de confusión entre clases, especialmente entre UDP, MSSQL y UDPLag.

Figura 4.11: Matriz de confusión (K-Nearest Neighbors - Entrenamie).

De acuerdo con el gráfico de t-SNE (t-Distributed Stochastic Neighbor Em-
bedding) 4.12, se muestra cómo las clases del conjunto de datos se agrupan en
un espacio reducido a dos dimensiones. Las agrupaciones o clusters claros in-
dican que el modelo KNN es capaz de distinguir entre ciertas clases de manera
efectiva. Sin embargo, también se pueden observar algunas zonas donde los
colores se mezclan levemente, lo que refleja áreas de solapamiento entre clases.
Esto indica que el modelo KNN puede enfrentar dificultades en esas regiones,
ya que las instancias de diferentes clases están cercanas unas de otras, lo que
podŕıa generar confusión al momento de hacer predicciones.
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Figura 4.12: Gráfico de clasificación con t-SNE (K-Nearest Neighbors).

En el grafico PCA (Análisis de Componentes Principales) 4.13 se identifica
a los vecinos más cercanos (en azul) de un punto seleccionado aleatoriamente
del conjunto de validación (en rojo), proyectados en un espacio bidimensional.
El punto rojo se encuentra claramente inmerso en una agrupación densa de
datos de entrenamiento, lo que favorece una predicción confiable por parte del
modelo. La proximidad del punto a múltiples vecinos cercanos, bien definidos
y relativamente compactos, sugiere que el modelo tiene suficiente información
contextual para tomar una decisión precisa. Aunque existen otras agrupaciones
distantes en el espacio, el modelo opera de forma local, por lo que esas separa-
ciones no afectan la predicción directa de este caso. Este tipo de visualización
es útil para comprobar que KNN se desempeña de forma adecuada cuando los
datos de entrada se sitúan en regiones bien pobladas y separadas.
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Figura 4.13: Gráfico de vecinos más cercanos con PCA (K-Nearest Neighbors).

4.3.3. Logistic Regression

En el conjunto de entrenamiento, el modelo alcanzó una precisión del 88.55%,
mostrando correcta clasificación en el trafico legitimo pero no en el malicioso.
Al ser evaluado sobre el conjunto de validación, el modelo mostró consistencia
con una precisión del 88.69%, lo que resalta su capacidad para generalizar bien
a datos no vistos previamente mas allá de la precisión con lo que lo hace.

La matriz de confusión mostró que clasificó correctamente la mayoŕıa de las
instancias en la clase Benigno con 41,502 predicciones correctas, erroneamente
solo con 33 hacia UDP y 775 hacia UDPLag, respecto a la clase MSSQL, se
identificaron correctamente 4,133 casos, con 2 instancias clasificadas errónea-
mente como Benign, 820 para UDP y solo 6 hacia UDPLag. Para la clase UDP,
el modelo mostró 5,560 predicciones correctas, cometiendo errores al clasifi-
car 2,355 instancias como Benign, 383 como MSSQL y solo 1 como UDPLag.
Finalmente, para la clase UDPLag, el modelo identificó correctamente 4,319
instancias con 1,543 como Benign, 146 como MSSQL y 1,107 como UDP. Los
resultados reflejan que, aunque el modelo es eficaz en la consistencia de la clasi-
ficación general, existen algunos casos de confusión entre clases, especialmente
entre UDP y UDPLag.
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Figura 4.14: Matriz de confusión (Logistic Regression - Entrenamiento).

4.3.4. Comparación de modelos

En la evaluación comparativa de los modelos aplicados para la detección
de tráfico malicioso asociado a ataques DDoS, se observó que tanto K-Nearest
Neighbors (KNN) como Random Forest superaron significativamente en pre-
cisión al modelo de Regresión Loǵıstica. KNN logró un 98.99% alcanzo un
99% de precisión, mientras que Random Forest alcanzó un 96% de precisión,
destacando por sus capacidades de generalización y adaptación a los patrones
del tráfico. Estos resultados refuerzan la robustez y confiabilidad para entornos
donde la detección temprana y precisa es cŕıtica. En contraste, aunque el mo-
delo de Regresión Loǵıstica obtuvo un rendimiento bueno con una precisión del
88%, su desempeño fue inferior al de los otros dos modelos, lo que sugiere una
menor capacidad para capturar la complejidad de los datos en escenarios mul-
ticlase. A continuación en la tabla se muestran resumidos todos los resultados
de los algoritmos entrenados.
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Algoritmo Entrenamiento

Precisión Recall F1-Score

Random Forest 0.94 0.92 0.93

Benigno 0.99 1.00 1.00

MSSQL 0.96 1.00 0.98

UDP 0.82 0.98 0.89

UDPLag 1.00 0.71 0.83

KNN 0.99 0.99 0.99

Benigno 1.00 1.00 1.00

MSSQL 0.98 1.00 0.99

UDP 0.99 0.99 0.99

UDPLag 1.00 0.98 0.99

Regresión Loǵıstica 0.85 0.77 0.80

Benigno 0.91 0.98 0.95

MSSQL 0.89 0.83 0.86

UDP 0.74 0.67 0.70

UDPLag 0.85 0.61 0.71

Tabla 4.3: Comparación de modelos Random Forest, KNN y Regresión Loǵısti-
ca en ataques DDoS.

4.4. Hallazgos

En esta sección se presentan los hallazgos obtenidos tras el análisis de los
tres tipos de ciberataques anteriores: phishing, ransomware y ataques de de-
negación de servicio distribuido (DDoS). Se busca revelar comportamientos
comunes que ayuden a cualquier persona, incluso sin formación en informáti-
ca, a reconocer indicios de posibles ciberataques en su entorno cotidiano.

4.4.1. Phishing

Uno de los hallazgos más relevantes es que los sitios web falsos diseñados
para engañar a los usuarios, suelen usar enlaces web (URLs) más largos y con-
fusos que los sitios leǵıtimos. Aunque puedan parecer profesionales a simple
vista, estas direcciones contienen nombres de dominio y subdominios excesiva-
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mente extensos, lo cual es una táctica para ocultar la verdadera identidad del
sitio o simular que pertenecen a una empresa confiable.

Por ejemplo un banco, suelen tener enlaces cortos y claros como:

https://www.bancomx.mx/

En cambio una dirección falsa suele ser como:

https://seguridad-cliente.banco.com.actualizacion.inf123.com/login

Esto no se presenta en todos los casos, siempre tenemos que tener en cuen-
ta el como estamos accediendo a esa dirección de internet, realizando estos
cuestionamientos:

¿Acced́ı desde una aplicación o sitio web oficial de la empresa u organi-
zación?

¿El enlace me llegó por correo, mensaje de texto o red social de alguien
que no conozco o que me pareció sospechoso?

¿El contenido del mensaje o enlace me genera urgencia o miedo para que
actúe rápido (como “tu cuenta será bloqueada”, “última oportunidad”,
etc.)?

Tomando en cuenta estas preguntas tenemos el objetivo de generar duda,
reflexionar la situación y tomar la mejor decisión. Si accedemos al enlace desde
un sitio oficial de la empresa u organización si nos podremos encontrar con
enlaces largos, esto no quiere decir que se trate de un ataqué, en cambio si
accedemos desde un correo, mensaje o anuncio no antes visto, tenemos que
tener en cuenta lo siguiente:

¿El correo es legitimo?

¿El correo se marca como ’spam’?

¿El contenido es de urgencia o miedo para que actúe rápido?

¿El anuncio es de una organización que conocemos?

¿El mensaje es de un numero anónimo o extraño?

Otro patrón preocupante es que muchas de estas páginas no utilizan el
protocolo HTTPS, el cual indica una conexión segura (reconocible por el ı́cono
de un candado en la barra del navegador). Pero los navegadores modernos
han incorporado alertas visuales que advierten al usuario cuando una página
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no es segura, siendo una herramienta útil para evitar este tipo de amenazas
prestando la debida atención.

Esta figura muestra una página con el protocolo https incluido:

Figura 4.15: Página con protocolo Https.

Esta figura muestra una página que no contiene el protocolo https incluido
e inmediatamente salta la pagina del sitio ’no seguro’.

Figura 4.16: Página sin protocolo Https.

Esto tampoco quiere decir que en el protocolo HTTPS no existan paginas
con engaños, según PhishLabs, para finales del primer trimestre de 2019, más
del 50% de los sitios de phishing ya utilizaban certificados SSL/TLS, alcan-
zando alrededor del 58% [48]. En 2021-2022, según un reporte de Infosecurity,
este porcentaje sigue creciendo (de 32% en 2021 a más de 49% en 2022)[49].

Se observaron comportamientos anormales en los enlaces dentro de estas
páginas con phishing. Una gran cantidad conducen a páginas externas o rea-
lizan redirecciones vaćıas sin razón clara. Este tipo de comportamiento no es
común en sitios auténticos, y representa una señal clara de posible engaño.

La siguiente figura muestra un enlace seguro en una misma página.
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(a) Botón con enlace. (b) Enlace seguro.

Figura 4.17: Enlace seguro en una página.

La siguiente figura muestra un correo sospechoso con un enlace no seguro
a otra pagina con diferente dominio.

(a) Correo con enlace no seguro. (b) Página con enlace no seguro.

Figura 4.18: Enlace no seguro en una página.

4.4.2. Ransomware

Una de las señales más útiles para detectar un ataque de este tipo es la
alteración del tráfico normal de una red. Comúnmente, las redes académicas
para usos normales mantienen un flujo estable de datos [50]. Debido a esto,
los cambios repentinos o anormales siendo aumentos excesivos o disminución
significativa del tráfico, puede ser una señal de advertencia temprana, pero
también tenemos que tomar en cuenta:

La institución se encuentra en hora pico.

La institución tiene un evento.

La institución se encuentra en periodo vacacional.
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Cuando se observa que, las respuestas del servidor (tráfico de regreso) pre-
sentan tiempos irregulares o erráticos y la conexión general se mantiene estable,
suele ser un patrón con comportamientos t́ıpicos de ransomware, donde el ser-
vidor malicioso responde de manera impredecible, mientras que el malware en
el equipo infectado intenta mantener un flujo constante de comunicación. Esta
sincronización puede estar diseñada para ocultar la actividad maliciosa dentro
del tráfico normal.

También se identificaron conexiones en las que, a medida que las respuestas
del servidor tardan más en llegar (mayor latencia), el flujo total del tráfico
aparenta mayor estructura y menor variabilidad. Este comportamiento puede
estar orientado a evadir mecanismos de detección que se basan en identificar
cambios bruscos en el tráfico. Al mantener un ritmo controlado y sin picos
evidentes, los atacantes buscan ocultar la comunicación con sus servidores de
comando y control.

4.4.3. DoS y DDoS

El análisis del tráfico muestra que UDP y TCP son los protocolos más
utilizados, lo que sugiere que posibles ataques DDoS tipo flood están aprove-
chando la naturaleza sin conexión de UDP. Por su parte, el uso elevado de TCP
podŕıa estar relacionado con manipulación de encabezados para evadir filtros,
ocultando tráfico malicioso dentro de conexiones aparentemente leǵıtimas 3.28.

De igual manera se observa que el 86.7% del tráfico no presenta indicios de
vulnerabilidad, indicando que el tráfico es considerado benigno, sin embargo,
un 13.3% del tráfico esta marcado con una vulnerabilidad conocida, lo que
sugiere intentos espećıficos de explotación. Esta pequeña proporción considera
escenarios de ataque encubiertos entre tráfico aparentemente leǵıtimo 3.28.

Dentro del trafico, el 86% no contiene la bandera para confirmar la recep-
ción de los datos, lo cual sugiere un comportamiento anómalo. Este patrón es
t́ıpico en ataques DDoS como los UDP Flood o TCP SYN Flood, donde los
atacantes env́ıan grandes cantidades de paquetes sin completar el proceso de
conexión. En el caso del protocolo UDP, no se utilizan estas confirmaciones
y en el caso de un SYN Flood, los paquetes se env́ıan sin esperar respuesta,
dejando conexiones incompletas.

Al analizar el rango de duración del tráfico, se observa un patrón claro: en
redes donde el tráfico leǵıtimo suele ser prolongado y constante, la presencia
de conexiones inusualmente breves puede indicar actividad anómala. Los ata-
ques muestran duraciones bajas, lo que sugiere intentos rápidos y repetitivos,
t́ıpicos de ataques DDoS. Además, se detectan valores at́ıpicos (outliers), espe-
cialmente en los ataques MSSQL y UDPLag, que podŕıan representar intentos
de explotación prolongados o sostenidos 3.29.
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Al analizar la longitud media de los paquetes por tipo de tráfico, se identifica
un comportamiento diferente entre los protocolos 6 (TCP) y 17 (UDP). En el
caso de TCP, el tráfico benigno presenta flujos largos y consistentes, mientras
que el tráfico malicioso muestra duraciones más cortas. Por el contrario, en
UDP, el tráfico leǵıtimo tiende a ser corto pero estable, y el malicioso (como
MSSQL, UDP y UDPLag) exhibe una alta variabilidad, con valores at́ıpicos
muy elevados. Esto sugiere que los ataques DDoS basados en UDP pueden
generar conexiones anómalamente largas e inestables 3.30.

Se observó una correlación significativa entre las banderas RST (Reset) y
PSH (Push), lo que sugiere intentos coordinados de interrumpir conexiones
activas. Este patrón es t́ıpico de ataques como el TCP SYN Flood, donde los
atacantes alternan entre cerrar conexiones abruptamente (RST) y enviar datos
forzados (PSH), generando una carga anómala en los servidores y dificultando
la gestión del tráfico leǵıtimo.

Al aumentar el uso de protocolos como UDP, disminuye el tiempo promedio
entre paquetes enviados hacia adelante. Este comportamiento refleja ataques,
donde los paquetes se env́ıan en ráfagas continuas con muy poco tiempo entre
ellos, generando una carga constante sobre el sistema objetivo. Esta rapidez y
regularidad en el env́ıo de paquetes es poco común en actividades normales, lo
que sugiere una alta probabilidad de automatización maliciosa.

4.5. Predicciones

Se presentan los resultados de los modelos predictores seleccionados por
su alto desempeño durante su entrenamiento, con el objetivo de evaluar su
capacidad de generalización ante nuevos datos. Para la detección de tráfico
Phishing, el modelo CatBoost fue el elegido, al alcanzar una precisión del
99%, en el caso del tráfico Ransomware, se optó por Random Forest, con una
precisión del 98% y por último, para el tráfico DDoS, el modelo seleccionado
fue K-Nearest Neighbors (KNN), con una precisión del 99%.

4.5.1. Phishing - CatBoost

Para la predicción de nuevos datos, en este caso URLs, se utilizaron 2,000
enlaces. Estos registros están equilibrados de forma equitativa: 1,000 URLs
leǵıtimas y 1,000 maliciosas. Tras realizar la predicción, las cuatro métricas ge-
nerales (accuracy, precisión, recall y F1-score) arrojaron el mismo porcentaje,
lo que evidencia la solidez y consistencia del modelo al clasificar correctamen-
te los casos. A continuación en la tabla se muestran los resultados para las
diferentes métricas.
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Métrica Valor

Accuracy 0.98

Precision (macro) 0.98

Recall (macro) 0.98

F1-score 0.98

Tabla 4.4: Métricas generales de predicción (Phishing - CatBoost).

En la siguiente tabla de visualizan los resultados desglosados por clase:
URLs leǵıtimas y URLs con phishing. En ambos casos, se observa un rendi-
miento consistente del modelo. Esta uniformidad en el desempeño sugiere que
el modelo no favorece a una clase sobre la otra, lo cual es crucial en problemas
de clasificación binaria como el análisis de URLs, donde los falsos negativos
pueden representar un riesgo importante para la seguridad.

Clase Precision Recall F1-score

Leǵıtima 0.98 0.98 0.98

Phishing 0.98 0.98 0.98

Tabla 4.5: Métricas por clase de predicción (Phishing - CatBoost).

La matriz de confusión proporciona una visión más detallada sobre el des-
empeño del modelo, mostrando cuántos registros fueron clasificados de manera
correcta e incorrecta. En el caso de las URLs leǵıtimas, el modelo clasificó co-
rrectamente 984 instancias y cometió 16 errores. Por otro lado, para las URLs
de phishing, se identificaron correctamente 978 registros, mientras que 22 fue-
ron clasificados erróneamente.
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Figura 4.19: Matriz de confusión de predicciones (Phishing - CatBoost).

4.5.2. Ransomware - Random Forest

La predicción de ataques causados por ransomware fue evaluada utilizando
el modelo de Random Forest. Para esta prueba se utilizaron 51,364 nuevos
registros de tráfico, distribuidos de la siguiente manera: 10,832 de SVpeng,
8,618 de Benign, 7,910 de Charger, 7,268 de Simplocker, 6,540 de WannaLoc-
ker, 5,135 de Jisut y 5,061 de Lockerpin. Al realizar la predicción, las métricas
generales (accuracy, precisión, recall y F1-score) arrojaron porcentajes simi-
lares y bajos. Este desempeño sugiere un posible problema en el proceso de
entrenamiento del modelo. A pesar de haber obtenido una buena precisión du-
rante la fase de entrenamiento, los resultados indican que el modelo no logra
generalizar correctamente sobre nuevos datos. Esto podŕıa deberse a la calidad
o representación de los datos con los que fue entrenado. A continuación en la
tabla se muestran los resultados para las diferentes métricas.
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Métrica Valor

Accuracy 0.71

Precision (macro) 0.71

Recall (macro) 0.70

F1-score 0.70

Tabla 4.6: Métricas generales de predicción (Ransomware - Random Forest).

Al analizar los resultados detallados por clase, se observa en la tabla que
tres clases presentan un desempeño superior en comparación con las demás.
En general, el modelo muestra un rendimiento limitado en la mayoŕıa de las
clases, con excepción de SVpeng, que además de ser la clase con mayor número
de registros, fue clasificada correctamente en su mayoŕıa. Este comportamiento
sugiere que el modelo puede estar favoreciendo clases con mayor representación,
o bien que logró aprender mejor los patrones asociados a ciertas clases, en
detrimento de otras con menor frecuencia o caracteŕısticas menos distintivas.

Clase Precision Recall F1-score

Benign 0.83 0.93 0.88

SVpeng 1.00 1.00 1.00

Charger 0.59 0.57 0.58

Simplocker 0.62 0.55 0.59

WannaLocker 0.66 0.64 0.65

Jisut 0.61 0.62 0.61

Lockerpin 0.68 0.47 0.55

Tabla 4.7: Métricas por clase de predicción (Ransomware - Random Forest).

Según la matriz de confusión, se logró clasificar correctamente un total de
37,052 registros, mientras que 6,559 fueron clasificados de forma errónea. Se ob-
serva un buen desempeño del modelo al identificar correctamente clases como
Benign, SVpeng, Charger, Simplocker y WannaLocker. Sin embargo, también
se evidencian errores significativos en las clases Simplocker y WannaLocker, lo
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cual indica cierta debilidad del modelo para distinguir adecuadamente entre
algunas categoŕıas, afectando negativamente su capacidad general de clasifica-
ción.

Figura 4.20: Matriz de confusión de predicciones (Ransomware - Random Fo-
rest).

4.5.3. DDoS - k-Nearest Neighbors (KNN)

El trafico nuevo de los ataques DDoS fue evaluado utilizando el modelo de
K-Nearest Neighbors. Para esta prueba se emplearon 15,672 nuevos registros,
distribuidos de la siguiente manera: 10,544 de Benign, 2,121 de UDP, 1,757 de
UDPLag y 1250 de MSSQL.

Después de la predicción, las métricas generales (accuracy, precisión, recall
y F1-score) arrojaron porcentajes altos y similares, manteniendo una correc-
ta clasificación respecto al entrenamiento. El desempeño refleja claramente la
importancia de la calidad de datos y diferencias respecto a cada tipo de ata-
ques. A continuación en la tabla se muestran los resultados para las diferentes
métricas.
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Métrica Valor

Accuracy 0.96

Precision (macro) 0.92

Recall (macro) 0.92

F1-score 0.92

Tabla 4.8: Métricas generales de predicción (DDoS - K-Nearest Neighbors).

Los resultados mostrados en la tabla se presentan consistentes, con métricas
altas en la mayoŕıa de los casos. La única excepción se encuentra en la clase
UDPLag, que presenta una leve disminución en la métrica de recall. A pesar
de ello, las demás clases mantienen valores superiores a 0.80 en las métricas
evaluadas. En términos generales, el rendimiento del modelo es sólido, con
especial eficacia en ciertas clases, lo que sugiere una capacidad robusta para
identificar ataques de tipo DDoS.

Clase Precision Recall F1-score

Benign 1.00 1.00 1.00

MSSQL 0.96 0.97 0.97

UDP 0.83 0.90 0.87

UDPLag 0.89 0.79 0.83

Tabla 4.9: Métricas por clase de predicción (DDoS - K-Nearest Neighbors).

La matriz de confusión revela un total de 15,054 registros correctamente
clasificados y 618 clasificados de forma incorrecta. Se observa una clasificación
precisa para las clases Benign y UDP. Sin embargo, los errores más significativos
se presentan en la clase UDPLag, donde 360 registros fueron erróneamente
clasificados como UDP, lo que indica una confusión frecuente del modelo entre
estos dos tipos de tráfico.
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Figura 4.21: Matriz de confusión de predicciones (DDoS - K-Nearest Neigh-
bors).
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Caṕıtulo 5

Conclusiones

El análisis y evaluación de ataques cibernéticos realizados en este estudio
permitieron cumplir con el objetivo general de identificar patrones comunes
de amenazas digitales que afectan a la comunidad estudiantil y al público en
general. A través del uso de algoritmos de aprendizaje automático y del proce-
samiento de bases de datos públicas y académicas especializadas, se lograron
detectar comportamientos caracteŕısticos de ataques como el phishing, el ran-
somware y los ataques de denegación de servicio (DoS/DDoS).

Los resultados obtenidos demuestran que los modelos de machine learning
aplicados pueden alcanzar altos niveles de precisión en la clasificación de ame-
nazas cibernéticas, destacando el desempeño de algoritmos como SVM (99.9%
en phishing), XGBoost (99.83% en ransomware) y Random Forest (99.34%
en DDoS). Estos resultados evidencian el potencial de la inteligencia artifi-
cial como una herramienta eficaz para mejorar la ciberseguridad y apoyar la
detección de ataques.

Además, se identificaron áreas de mejora relacionadas con la confusión entre
variantes similares de amenazas y la dificultad para clasificar ataques menos
representados en los datos, lo que sugiere la necesidad de utilizar conjuntos de
datos más balanceados y estrategias avanzadas de optimización.

Este trabajo ofrece una base técnica que puede ser aprovechada en desa-
rrollos futuros orientados a la educación en ciberseguridad y la creación de
herramientas preventivas. Los resultados muestran la importancia de fomentar
una cultura digital más segura e informada, en la que el conocimiento técnico,
combinado con soluciones inteligentes, puede desempeñar un papel clave en la
mitigación de amenazas cibernéticas actuales.

Como trabajo a futuro de esta investigación, se plantea desarrollar una pla-
taforma web educativa que facilite la difusión accesible y clara de información
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sobre las amenazas cibernéticas identificadas en previo análisis. Esta investiga-
ción sentó las bases fundamentales para la creación de dicha plataforma, que
no solo tendrá como objetivo informar y concienciar al público sobre los ries-
gos cibernéticos, sino que también incorporará un predictor de phishing. Esta
herramienta permitirá a los usuarios ingresar URLs para verificar si contie-
nen phishing, además de proporcionar recomendaciones prácticas para evitar
este tipo de ataques. La implementación de esta funcionalidad fortalecerá el
propósito de ofrecer recursos accesibles y efectivos para la prevención de ciber-
ataques, consolidando el sitio web como una fuente confiable, dinámica y útil
en materia de seguridad cibernética.
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119


	Índice de figuras
	Índice de tablas
	Construcción del objeto de estudio
	Introducción
	Planteamiento del Problema
	Justificación
	Objetivos de la investigación
	Objetivo general
	Objetivos específicos

	Pregunta de investigación
	Hipótesis
	Propuesta de solución
	Metodología
	Investigación del problema.
	Análisis detallado de patrones de ataque.

	Alcances y limitaciones
	Organización del documento

	Marco teórico
	Algoritmos de aprendizaje automático
	Algoritmos supervisados
	Algoritmos no supervisados

	Ciberataques y digitalización: enfoque a los sectores vulnerables
	Situación en México
	Ataques con más frecuencia

	Estado del arte

	Análisis de ciberataques
	Fuentes de datos
	Conjunto de datos para Phishing
	Conjunto de datos para Ransomware
	Conjunto de datos para DoS y DDoS

	Preparación de datos
	Phishing
	Ransomware
	DoS y DDoS

	Análisis de los datos
	Phishing
	Ransomware
	DoS y DDoS


	Resultados
	Phishing
	Random Forest
	Support Vector Machine - SVM
	CatBoost
	Comparación de Modelos

	Ransomware
	Random Forest
	XGBoost
	Comparación de Modelos

	DoS y DDos
	Random Forest
	K-Nearest Neighbors
	Logistic Regression
	Comparación de modelos

	Hallazgos
	Phishing
	Ransomware
	DoS y DDoS

	Predicciones
	Phishing - CatBoost
	Ransomware - Random Forest
	DDoS - k-Nearest Neighbors (KNN)


	Conclusiones
	Bibliografía



