UNIVERSIDAD AUTONOMA DEL ESTADO DE HIDALGO
InsTITUTO DE CIENCIAS BAsicAS E INGENIER{A
AREA AcADEMICA DE MATEMATICAS Y Fisica

Caracterizacion de los principios
de seleccion casi Menger y
débilmente Menger en
hiperespacios
Tesis que para obtener el titulo de

LICENCIADO EN MATEMATICAS APLICADAS

presenta

Froylan Gonzalez Gomez

bajo la direcciéon de
Dr. Ricardo Cruz Castillo

Pachuca, Hidalgo. Mes de afio.



Universidad Auténoma del Estado de Hidalgo

Instituto de Ciencias Basicas e Ingenieria
Scheol of Engineering and Basic Sciences

Mineral de la Reforma, Hgo., a 01 de diciembre de 2025

Namero de control: ICBI-D/3054/2025
Asunto: Autorizacion de impresion.

MTRA. OJUKY DEL ROCIiO ISLAS MALDONADO
DIRECTORA DE ADMINISTRACION ESCOLAR DE LA UAEH

Con Titulo Quinto, Capitulo I, Capitulo V, Articulo 51 Fraccion IX del Estatuto General de
nuestra Institucion, por este medio, le comunico que el Jurado asignado al egresado de la
Licenciatura en Matematicas Aplicadas Froylan Gonzalez Gomez, quien presenta el
trabajo de titulacién “Caracterizacién de los principios de seleccion casi Menger y
débilmente Menger en hiperespacios”, ha decidido, después de revisar fundamento en
lo dispuesto en el Titulo Tercero, Capitulo |, Articulo 18 Fraccion 1V; dicho trabajo en la
reunion de sinodales, autorizar la impresién del mismo, una vez realizadas las
correcciones acordadas.

A continuacion, firman de conformidad los integrantes del Jurado:

Presidente: Dr. Federico Menéndez Conde Lara

Secretario: Dr. Jorge Viveros Rogel

Vocal: Dr. Ricardo Cruz Castillo

Suplente: Dr. Benjamin Alfonso Itza Ortiz

Sin otro particular por el momento, reciba un cordial saludo.

GVR/YCC

Ciudad del Conocimiento, Carretera Pachuca-
Tulancingo Km. 4.5 Colonia Carboneras, Mineral de la
Reforma, Hidalgo, México. C.P. 42184

Teléfono: 77171 720 00 Ext. 40001

“Amor, Orden y Progreso™ direccion_icbi@uaeh.edu.mx, vergarar@uaeh.edu.mx

30012 44003,

WORLD G . &/ %,

- Lalil Times : LY % & vV %

3 VSIVERSITY S0 (o) High 3 monmod § i .

L RANKINGS 70000 2025 m E:iigu:artiu\ e v %’,‘T" %’Té? uaeh.edu.mx
\+¢ s qaV 8qa



Resumen

En este trabajo de tesis, se tiene como objetivo caracterizar los principios de
seleccion casi Menger v débilmente Menger en hiperespacios dotados con la to-
pologia hit-and-miss. Para ello, se presentan las pruebas detalladas de las carac-
terizaciones de las versiones débiles del principio de selecciéon Menger enunciadas
en [7], v ademds, se propone, para cada versién débil, una caracterizacién adi-
cional con demostraciones detalladas, para la cual se define un nuevo principio
de seleccion.
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Introduccion

La teoria de hiperespacios es una rama de la topologia general que tiene sus
origenes a principios del siglo XX con los trabajos de Felix Hausdorff [11] (1868-
1942) v Leopold Vietoris [39] (1891-2002), ver [4]. Dado un espacio topolégico
X, denotamos con CL(X) a la familia de todos los subconjuntos cerrados no
vacios de dicho espacio®. El conjunto CL(X), equipado con una topologia, es
conocido como hiperespacio de X.

Desde 1942, cuando J.L. Kelley publicé su disertacién doctoral [21], la teoria
de hiperespacios se convirtié en una herramienta importante para obtener in-
formacion de la estructura de un espacio topolagico X a través del estudio de
las propiedades de sus hiperespacios. A partir de entonces, se han estudiado
numerosas relaciones entre las propiedades del espacio X y sus hiperespacios.
Un compendio de investigaciones recientes en la teoria de hiperespacios se puede
consultar en [4], asi como en [18], [25] v [28].

Por otro lado, de acuerdo a Kécinac (ver [23]), el comienzo de la investigacién
sobre propiedades de cobertura (covering properties en inglés) de espacios to-
polégicos definidas en términos de diagonalizacion, y hoy en dia conocidas como
principios de seleccidn se remonta a los papers de Hurewicez ([15] y [14]), Menger
[26] v Rothberger [33]. Kocinac seniala que el trabajo de estos autores constituye
lo que se considera la era cldsica de los principios de seleccién, mientras que la
era moderna comienza, como lo comenta Tsaban [38], con los trabajos de Schee-
pers [34] y [19], quien estandarizé la notacién y propuso esquemas generales para
la definicién de diversos principios de seleccion.

El estudio de los principios de seleccion unifica nociones v estudios origi-
nados en teoria de la dimensién (trabajada por Menger y Hurewicz), teoria de
la medida (trabajada por Borel), propiedades de convergencia (trabajadas por
(Cséaszdr-Laczkovicz), y espacios de funciones (trabajados por Gerlits—Nagy y
Arhangel’skii ), ver [37]. Una de las lineas de investigacién que ha surgido de
estos estudios son los principios de seleccién de Rothberger v Menger, asi como
diversas versiones débiles, ver [24].

La teoria de hiperespacios vy el estudio de los principios de seleccion son

!Es necesario aclarar que dado un espacio topolégico, algunos autores (como J. L. Kelley
en su disertacién doctoral [21]) denotan a la familia de todos los subconjuntos cerrados no
vacios de X como 2%, y otros (como Z. Li en [24]) la denotan como CL(X), mientras que
reservan el uso del simbolo 2% para denotar a la familia de todos los subconjuntos cerrados
de X (incluyendo el conjunto vacio ). En este trabajo, usaremos la notacién de Li.



ramas activas de la topologia general que ademas de tener valor por si mismas,
tienen diversas aplicaciones en otras ramas v disciplinas, como se puede ver en
la coleccién “Recent progress in general topology I, II y IIT" de los simposios de
topologia de Praga (ver [17], [16] y [10]), en los que aparecen listadas y ofrecen
un panorama de las mismas, asi como algunos resultados importantes.

Estas dos ramas tienen relaciones que han sido desarrolladas por varios au-
tores. Por ejemplo, en [8] los autores definieron las llamadas 7 -redes (m-networks
en inglés) con el propésito de caracterizar espacios topolégicos cuyo hiperespacio,
dotado con la topologia superior de Fell, satisfacen la propiedad de Rothberger.
Otro ejemplo se encuentra en [24], en el que se definieron un nuevo tipo de re-
des, las my -redes y las wp-redes (wy-networks y mp-networks en inglés), a raiz
de que se buscaba un nuevo tipo de redes de un espacio X tales que CL(X),
dotado con la topologia de Fell o la topologia de Vietoris, tuviera la propiedad
de Rothberger.

Mas adelante, para caracterizar los principios de seleccién casi Rothberger
(almost Rothberger), débilmente Rothberger (weakly Rothberger), casi Menger
(almost Menger) y débilmente Menger (weakly Menger) en hiperespacios con la
topologia hit-and-miss, en [7] se introducen las nociones de wa (A)-redes (ma(A)-
networks) que generalizan a las my -redes y las mp-redes propuestas por Li. En
dicho paper, para cada una de las versiones débiles del principio de Seleccion
Rothberger, se enuncia v se demuestra una caracterizacion, y para cada una de
las versiones débiles del principio de Seleccién Menger, se enuncia una caracte-
rizacion, sin demostracion.

En este trabajo de tesis, se tiene como objetivo caracterizar los principios
de seleccion casi Menger y débilmente Menger en hiperespacios dotados con
la topologia hit-and-miss. Para ello, se presentan las pruebas detalladas de las
caracterizaciones de las versiones débiles del principio de seleccién Menger enun-
ciadas en [7], y ademads, se propone, para cada versién débil, una caracterizacién
adicional con demostraciones detalladas, para la cual se define un nuevo princi-
pio de seleccion.

La estructura de este trabajo es la siguiente: en el capitulo 1 se exponen los
preliminares tedricos necesarios para poder abordar el trabajo; en el capitulo 2
se presenta la teoria de hiperespacios v de principios de seleccién; en el capitulo
3 se presentan los resultados y las demostraciones originales de este trabajo, y en
las conclusiones se da un panorama general de los resultados ¥y su importancia.



Capitulo 1

Preliminares

En este capitulo se presentan las nociones de teoria de conjuntos, topologia,
principios de seleccidn e hiperespacios que se requieren para poder leer el pre-
sente trabajo. Para teoria de conjuntos v topologia, la mayor parte del material
es comunmente cubierto en cursos introductorios a dichas disciplinas; para este
trabajo, la notacién, las definiciones y los resultados que se utilizan son los pre-
sentados en [12], y en [13]; en cuanto a principios de seleccién e hiperespacios,
que son temas no habitualmente cubiertos en cursos introductorios por su auge
v desarrollo relativamente reciente, las referencias son [8], [24] v [7]; atin asi,
con lo expuesto en este capitulo se espera que una persona con conocimientos
bésicos en Topologia pueda leer este trabajo.

1.1. Teoria de conjuntos

En este trabajo, usaremos la Teoria Axiomatica de Zermelo-Fraenkel de Con-
juntos. Recordemos (ver [12]) que esta teoria es fundacional para practicamente
todas las ramas de las Matematicas, pues formaliza sus conceptos, evita para-
dojas v permite la definicién rigurosa v la manipulacién de sus estructuras.

Como se mencioné anteriormente en este capitulo, usaremos la notacién, la
terminologia y algunos resultados de [12]. Sin embargo, en este capitulo incluire-
mos aquellos que son mas importantes para presentar y demostrar los resultados
principales.

Definicion 1.1.1 (Conjunto potencia). Sea X un conjunto. Al conjunto de
todos los subconjuntos de X (incluyendo () y X ) lo denotaremos por P(X) y lo
llamaremos el conjunto potencia de X.

Definicion 1.1.2 (Complemento de A en X y complemento de A en B). Sean
X un conjunto y A, B C X. Denotamos

X\A={ze X :z¢ A}



A este conjunto lo llamaremos el complemento de A en X. Denotamos
B\A={ze B:z ¢ A}.
A este conjunto lo llamaremos el complemento de A en B.
Definicién 1.1.3. Sean X un conjunto y k un cardinal. Denotamos con:
» [E]=" ala coleccién de todos los subconjuntos de E con cardinalidad < k.
» [E]<" a la coleccién de todos los subconjuntos de E con cardinalidad < k.
» [E]" a la coleccion de todos los subconjuntos de E con cardinalidad k.

Los siguientes tres teoremas se utilizaran mas adelante, tanto en los pre-
liminares como en los resultados principales. El teorema 1.1.1 es un resultado
conocido del Algebra de Conjuntos y se puede consultar en [12], pagina 34. Para
los teoremas 1.1.2 y 1.1.3, que hacen afirmaciones muy especificas, se presenta
la demostracién.

Teorema 1.1.1. Sean I y J familias de indices. Sean {A.}acr v {Bsltacs
familias indizadas de conjuntos. Entonces

UAﬂ]m U Bs| =J{4anBs: (a,8) e I x J}.
el

ged

Teorema 1.1.2. Sea X un conjunto y A, B,V C X. Entonces

1) (X\NANV#DeV\A#D, y
2) (X\A) C (X\B) & BC A.

Demostracion. Para demostrar 1), bastard notar que (X\A) NV = V\A, en
efecto:

ze(X\ANVesze X\A)yzeV
Sr¢gAyzeV
creVyrgA
sre{zeV:z¢ A}
szrel\ A

Para demostrar 2), primero supongamos que (X \ A) C (X \ B). Sea z €
B. Por contradiccién, supongamos que z ¢ A. Entonces, z € (X \ A), v por
hipétesis, se seguirfa que = € (X \ B), o en otras palabras, t € By z ¢ B, lo
cual es una contradiccién. Concluimos que x € A v con ello que B C A como se
queria. Para demostrar la otra direccion se sigue el mismo razonamiento.

O



Teorema 1.1.3. Sean X un conjunto, m € N, m > 1 y K.U,Uy,..., U,
subconjuntos de X. Entonces:

1) ( X\UNK=0&KCU

2) (X\NU)NU; #0,1<i<m)eIdFe [ X|<“FnU=0,FNnU; #0,1 <
i <m).

Demostracién. Para demostrar 1), primero supongamos que (X \U)N K = (.
Sea z € K. Procedamos por contradiccién, para ello, supongamos que = ¢ U.
Entonces z € (X \ U). De esto, junto con el hecho de que = € K, se seguiria que
(X\U)N K # 0, lo cual contradice la hipotesis. Por lo tanto, se concluye que
x € U como se queria. Ahora, para probar la otra direccién, supongamos que
K C U. Procedamos por contradiccién, para ello, supongamos que (X \U)NK #
(). Sea z un elemento en dicha interseccién. Entonces x € K y x € U, de lo cual
se sigue que K ¢ U, contradiciendo la hipétesis. Se concluye que (X \U)NK =0
COmo se queria.

Para demostrar 2), primero supongamos que, para cada 1 € {1,...,m},
se tiene que (X \ U)NU; # 0. Para cada i € {1,...,m}, tomemos un z; €
(X\U)NU;. Sea F = {z1,...,Zm}. Por definicién de F, se tiene que F € [X|** y
que F' C (X\U), de esto 1iltimo se sigue que FNU = (; también por definicién de
F se tiene que para cada i € {1,...,m}, FNU; # §, con lo que queda demostrada
la primera implicacién. Para demostrar la segunda implicacién, supongamos que
existe F' € [X]|<“ tal que paracadai € {1,...,m}, FNU =0y FNU; # 0. Para

cada i € {1,...,m}, tomemos un z; € F NU;. Notemos que cada z; cumple que
x; € (X \U) y z; € U;, de modo que para cada i € {1,...,m} se cumple que
(X\U)NU; # () como se queria. O

1.2. Topologia

La Topologia® es una rama de las Matematicas que se concentra en estudiar
las propiedades de un espacio que se preservan por deformaciones continuas; es
decir, deformaciones que preservan de algiin modo alguna nocién de cercania de
puntos que estan préximos entre si. Intuitivamente se puede imaginar que tales
transformaciones implican alargar, doblar, torcer, etcétera. No lo son aquellas
deformaciones que introducen cortes, ver [13].

De acuerdo a Kalajdzievski [20], el origen histérico de la topologia es di-
fuso, puesto que algunos de los objetos matematicos con los que trabaja han
sido estudiados desde siglos antes de que se consolidara como una rama de las
Matemaéticas. Histéricamente, la topologia evoluciond del andlisis. En sus pri-
meras etapas, se le conocfa como “Analysis Situs” (analisis proposicional), que
fue el titulo del paper seminal de Henri Poincaré, publicado en 1895. Posterior-
mente, en 1906, Maurice Fréchet introdujo espacios abstractos con estructuras
topolégicas, v mas adelante, el término topology (topologia) fue acunado por

!La palabra “topologia” proviene del vocablo griego “Témog”, que significa “posicion” o
“localizacién”, ver [6].



Felix Hausdorff en 1914. La teoria axiomatica moderna de la Topologia fue
introducida en 1922 por Kazimierz Kuratowski, ver [20].

FEn esta seccion se expondran las definiciones y resultados topolégicos basicos
que se usaran a lo largo del trabajo. Comenzamos con los conceptos fundamen-
tales: topologia, espacio topolégico, conjunto abierto y vecindad (abierta), sobre
los cuales se edifica el resto de la teoria en Topologia.

Definicién 1.2.1. Sea X un conjunto y 7 C P(X). Diremos que 7 es una
topologia para X si

1. 0. X e,
2 FCr=>UFerT,
3 ABert=AnNnBer.

Al par ordenado (X, 1) lo llamaremos espacio topoldgico; ademds, si A € T
diremos que A es un conjunto abierto.

Definicion 1.2.2. Sean (X, 7) un espacio topoldgico y x € X . Denotaremos por
V. a la coleccidn de todos los abiertos en X que contienen al punto x; ademads,
si U € V., diremos que U es una vecindad abierta de x en X.

En Topologia, los conjuntos abiertos y su contraparte, los conjuntos cerrados,
son indispensables pues se usan para definir la esencial nocién de continuidad,
asi como también se usan para definir las propiedades topolégicas (compaci-
dad, conexidad, etcétera). A continuacién se presentan la definicién y algunas
propiedades elementales de los conjuntos cerrados.

Definicién 1.2.3. Sea (X,7) un espacio topoldgico. Un conjunto F' C X es
cerrado si y sélo si X\ F € 7.

Teorema 1.2.1. Sea (X, 7) un espacio topoldgico, entonces se cumplen:
1) 0, X son cerrados.

2) Si F es una familia arbitraria de conjuntos cerrados, entonces NF es
cerrado.

3) Si A y B son cerrados entonces AU B es cerrado.

Demostracién. Para probar 1), bastara con ver que § = X\ X y que X = X'\ ).
Para probar 2), notemos que, por las Leyes de DeMorgan para familias arbi-
trarias de conjuntos (ver [12]), se sigue que el complemento de una interseccién
arbitraria de cerrados se puede expresar como una unién arbitraria de conjuntos
abiertos. Para probar 3), notemos que por las Leyes de DeMorgan, se tiene que
X\(AUB)=(X\A)N (X \ B); en otras palabras, el complemento de AU B
se puede expresar como una interseccion finita de abiertos, por lo tanto AU B
es cerrado. O



Las cubiertas abiertas son usadas para analizar propiedades topologicas. Son
de especial interés en este trabajo, pues se utilizan para definir los principios
de seleccién a caracterizar. Por otro lado, las bases de los espacios topologicos
permiten trabajar con ellos de manera mas sencilla, va que en general los basicos
resultan ser algebraicamente més faciles de operar, ¥ en la practica surgen de
manera natural teoremas del estilo “El espacio (X, 1) satisface la propiedad P
si v solo si la propiedad P se satisface en términos de basicos”, por ejemplo, los
importantes lemas 2.2.1 v 2.2.2 . A continuacién se exponen sus definiciones.

Definicién 1.2.4 (Cubierta abierta). Sea (X,7) un espacio topolégico. Una
cubierta abierta de X es una coleccién de abiertos cuya union es igual a X.
Denotaremos a la coleccion de cubiertas abiertas de un espacio topoldgico (X, 1)
con O x -y, o cuando no haya lugar a ambigiiedad, simplemente con &'.

Definicion 1.2.5. Sea (X, 1) un espacio topolégico y B C 7. Decimos que B es
una base para T si y solo si para todo A € T y para todo x € A existe B € B tal
que € B C A. A los elementos de la base se les conoce como bdsicos.

Definicién 1.2.6. Sea (X, 7) un espacio topoldgico. Una subbase para la topo-
logia T es una familia 8§ C 1, tal que la familia de todas las intersecciones finitas
de elementos de S8 forma una base para 7.

El siguiente teorema nos permitird trabajar en subespacios de CL(X). Se
puede consultar en [13].

A continuacion enunciamos las definiciones de interior, cerradura y frontera,
que son nociones ¢ue nos permiten trabajar con conjuntos abiertos v cerrados
de forma mas cémoda.

Definicién 1.2.7. Sea (X, 1) un espacio topolégico, AC X yze X.
1. = es punto de interior de A si y solo si existe U € V. tal que U C A.
2. El interior de A es ﬁ =int;(A)={xe X :3U €V, (UC A)}.
Definicion 1.2.8. Sea (X, 1) un espacio topolégico, AC X yz € X.

1. x es punto de adherencia o de clausura de A si y solo si para toda U € V,
se tiene que UN A # ().

2. La cerradura o clausura de A es A= cl.(A)={z € X YU € V,(UNA #
0)}.

Teorema 1.2.2. Sea (X,7) un espacio topoldgico y Y C X. Entonces Ty =
{A€P(Y): existe B € 7 tal que A= BNY} es una topologia para Y .

Definicion 1.2.9. Si 7y es como en el teorema 1.2.2, diremos que (Y, 7y) es
un subespacio topolégico de (X, 7) y que Ty es la topologia heredada en Y.



A continuacién presentamos las definiciones de compacidad, o-compacidad y
espacio de Lindeldf. La o-compacidad es una version débil de la compacidad, v
los espacios de Lindeldf son una versién débil de la o-compacidad (todo espacio
compacto es o-compacto, y todo espacio o-compacto es de Lindelof). La nocién
de compacidad es una de las més importantes no solo dentro de la Topologia
sino fuera de ella [13]. Veremos mas adelante relaciones entre estas propiedades
topolégicas v los principios de seleccién que se van a caracterizar.

Definicion 1.2.10. Un espacio topoldgico (X,7) es compacto si toda cubierta
abierta de X contiene una subcubierta finita de X. Un subconjunto de X es
compacto si con la topologia del subespacio es un espacio compacto.

Definicion 1.2.11. Un espacio topoldgico (X, ) es o-compacto si se puede
expresar como una unién numerable de subespacios compactos.

Definicion 1.2.12. Decimos que un espacio topologico es Lindelaf si toda cu-
bierta abierta posee una subcubierta numerable.

Teorema 1.2.3. Todo espacio compactoe es a-compacto y todo espacio o-compacto
es un espacio de Lindeldf.

Demostracién. Sea (X,7) un espacio topoldgico compacto. Entonces, si defi-
nimos para todo n € N, X, = X, se sigue que X = |J,.y X es una unién
numerable de subconjuntos compactos que es igual a X, por lo tanto, el espacio
es g-compacto.

Ahora, supongamos que (X, 7) es un espacio o-compacto. Entonces existe
una sucesién de subconjuntos compactos (X, )nen tal que X =, oy Xn. Sea U
una cubierta abierta de X. En particular, i/ cubre a todo X, para todo n € N.
Para cada n € N, tomemos una subcubierta finita i4,, C U que cubra a X,,.
Entonces |J,,cyUn es una unién numerable de conjuntos finitos, por lo que es
un conjunto numerable de conjuntos abiertos que cubren a X, por lo tanto el
espacio es de Lindelof como se queria. a

Los axiomas para definir un espacio topoldgico son minimos y eso permite
tener una gran variedad de espacios topolégicos, sin embargo, esto también pue-
de generar “patologias” como la topologia indiscreta, en la cual cualesquiera dos
puntos son cercanos, situacion que no es conveniente a la hora de “medir” con-
vergencia, ver [13]. Los axiomas de separacion son grupos de axiomas adicionales
que permiten tener espacios mas especializados para desarrollar ciertas tareas.
A continuacién enunciamos aquellas necesarias para presentar los resultados.
Una lista més completa se puede consultar en [13].

Definicion 1.2.13. Decimos que un espacio topoldgico (X, 1) es Ty si dados
cualesquiera dos puntos en X, al menos uno de dichos puntos tiene una vecindad
abierta que no contiene al otro.

Definicion 1.2.14. Decimos que un espacio topolégico (X, 1) es Ty si dados
cualesquiera dos puntos en X, ambos puntos tienen vecindades abiertas que no
contienen al otro punto.
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Definicién 1.2.15. Decimos que un espacio topoldgico (X,7) es T> o Haus-
dorff si dados cualesquiera dos puntos x,y en X, eristen dos conjuntos abiertos
disjuntos U y V tales quex € U yy e V.

Se asume que todos los espacios con los que se trabajaran son Hausdorff.
En el resto de esta seccién se presentan notaciones v resultados topoldgicos que
seran ampliamente usados en los resultados principales.

Definicién 1.2.16. Sea (X, 7) un espacio topeldgico.
» CL(X) denotard a la familia de todos los subconjuntos cerrados no vacios.
n K(X) denotard a la familia de todos los subconjuntos compactos no vacios.
» F(X) denotard a la familia de todos los subconjuntos finitos no vacios.

» CS(X) denotard a la familia de todas las imdgenes de las sucesiones con-
vergentes, junto con su punto de convergencia, en X.

Como se vera mas adelante, los resultados principales tienen corolarios que
caracterizan principios de seleccién en topologias sobre CL(X), K(X), F(X) y
CS(X).

Mas adelante se definira la topologia hit-and-miss, la cual para ser definida
hace uso de la siguiente notacion.

Definicion 1.2.17. Sean X un conjunto, U C X yU C P(X). Definimos:
s U ={AeCL(X): AnU # 0}.
s Ut ={AeCL(X): ACU}.
n U= {X\U:U €U} (no confundir con {V € P(X):V ¢ U}).

Podemos pensar en estas colecciones de forma intuitiva como sigue: U~ es la
coleccién de todos los cerrados que le “pegan” (hit) al conjunto U, mientras que
U™ es la coleccién de todos los cerrados que estan contenidos en U, de modo que
(X \U)" es la coleccion de todos los cerrados que “evitan™ (miss) al conjunto

U.

Teorema 1.2.4. Sea (X,7) un espacio topoldgico. Sean € N y By,...,B,
subeonjuntos de X. Entonees:

(X\B)" = (X\UBs) :

=1

IDE

1

[
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Demostracion.

(X\B;)* ﬁ{A € CL(X): AC (X \ B;)}

n
=1 i=1

B

{AeCL(X): AC ﬁ(X \ B:)}

i=1

n (1.1)
{AeCL(X}:Ag (X\UBTE)}
(2 n)"

i=1

O

Teorema 1.2.5. Sea (X, 7) un espacio topoldgico. Sea A un subconjunto de X
que es cerrado bajo uniones finitas y que contiene a los conjuntos singulares.
Sean By, ...,B, € AU{0}. Entonces eviste B € AU {0} tal que

: (X\B)"=(X\B)".

i=

Demostracion. Sea B = |J._; B;. Como A es cerrado bajo uniones finitas, en-
tonces también lo es AU {{}}, por lo tanto tenemos que B € AU {@}. Ahora:

N(X\B)* =[|{4€CL(X): AC (X \Bj)}

i=1 i=1

{AeCL(X):AC ﬁ(x \ B;)}

i=1

= {AeCL(X) :AC_:X\CJB,-} (1.2)
= {A€CL(X):ACX\B}
=(X\B)+_

a

Lema 1.2.1. Sea (X, ) un espacio topoldgico. Sean x € X, AC X yB e 7
tales que x € clx(A) y x € B. Entonces AN B # (.

Demostracion. Como B € 7, entonces B = int.(B). Como z € B, entonces z €

=]
int.(B). Por tanto, existe V € ¥(z) talque V C B. Como z € el x(A), entonces
AnV\{z} #0. Como V C B, se signe ANB\{z} #0 yasi AnNB #{. O
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Teorema 1.2.6. Sea (X, 7) un espacio topoldgico. Sean e N y{A; : 1 <i < n}
una coleccion finita de subconjuntos de X. Entonces

clx (U Ai) = U clx (A;).

Teorema 1.2.7. Sea {Aa}aer una familia indizada de conjuntos. Entonces
UQEI AQ g UQEI Aa'

Demostracion. Notemos que para todo i € I se tiene A; C |J,.; Aa, de modo
que A; C U,.;Aa. De lo cual se sigue que U,.;As C U,; Ao como se
queria. a

La otra contencién en el Teorema 1.2.7 no es cierta en general.

Lema 1.2.2. Sea X un conjunto. Sea {U;};c; una familia indizada tal que para
todo i € I, U; CP(X). Entonces:

Yus = (U u,-) :
icl icl
Demostracion.

Yur = JIx\0) : U eths} ={(X\U): U e | W)} = (U”ﬁ) :

iel i€l el iel

Lema 1.2.3. Sean U,V C P(X). Entonces:
LU CV SUCY.
2 U=V U=V

Demostracion. Para demostrar (1): Si 4° C V¢, entonces tenemos la siguiente
cadena de implicaciones:

UeU=X\UelU=X\UeV'=UeV

Por otro lado, si i{ C V, entonces tenemos la siguiente cadena de implicacio-
nes:

UeU'=X\UelU=X\UeV=UeV"

Con lo que queda demostrado (1). (2) es consecuencia directa de (1). O
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Capitulo 2

Marco teodrico

En este capitulo se abordara la teoria de principios de seleccién e hiper-
espacios necesaria para abordar este trabajo. Al ser dos ramas relativamente
recientes de la topologia, se requiere un capitulo completo dedicada a ellas para
poder abordarlas adecuadamente, tanto por el aspecto tedrico como contextual.

2.1. Teoria de hiperespacios

En 1914, Félix Hausdorff publicé su emblematico libro “Grundzuge der Men-
genlehre”, el cudl fue uno de los primeros libros en teoria de conjuntos vy temas
afines. En este libro, Hausdorff introdujo una métrica en la coleccién de con-
juntos cerrados de un espacio métrico compacto, proporcionando asi una de las
primeras formas de dotar a una famila de conjuntos con una topologia. Con la
notacién v la terminologia modernas, podemos definirla como sigue:

Teorema 2.1.1. Sea (E,d) un espacio métrico y sean A y B subconjuntos no
vacios de X. Entonces

H(A, B) = max{sup{d(a,B) : a € A},sup{d(b, A) : b € B}}

es una métrica en P(E). A esta métrica se le conoce como métrica de Haus-

dorff.

A partir de la publicaciéon de su libro, varios investigadores se vieron intere-
sados por la métrica de Hausdorff pues en diversos fenémenos de la naturaleza
se tiene la necesidad de tener una nocién formal en cuento a la distancia o cer-
cania entre subconjuntos de algiin conjunto dado, no basta con considerar la
distancia entre dos puntos; en efecto, la relevancia de este tema que hizo que
investigadores de renombre como L. Vietoris [39], K. Borsuk, S. Ulam [3] v E.
Michael [27] ( ver [1]), ademéds de J.L. Kelley ([21]), se unieran a Hausdorff en
el estudio de espacios cuyos elementos son conjuntos, tales espacios son cono-
cidos como hiperespacios. Se puede pensar entonces en la métrica del teorema
2.1.1 como la idea que dié nacimiento a lo que mas adelante seria refinado v
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unificado para consolidar la rama de la topologia hoy conocida como la teoria
de hiperespacios, la cual hov en dia es muy estudiada (ver [4], [18], [25] v [28]).

En particular, como sefiala [1], dado un continuo (un espacio métrico no
vacio, compacto y conexo, ver [29]) se pueden definir varios hiperespacios del
tal continuo vy son considerados con la métrica de Hausdorff. Cabe senalar que
esta linea de investigacién es meramente abstracta, donde la métrica de Haus-
dorff es fundamental, sin embargo, otras areas de las matematicas encontraron
en la métrica de Hausdorff una excelente alternativa para adaptar v buscar so-
luciones a algunos de sus problemas. Por ejemplo, Barragdn [1] enuncia algunas
aplicaciones en distintas dreas dentro de las matematicas: ecuaciones diferencia-
les, optimizacidn, teoria de operadores, estadistica y teoria fractal; y mas atn,
también menciona aplicaciones en otras ciencias como computacion, robotica y
medicina.

A lo largo de este trabajo, dado un espacio topolégico (X, 7), A denotara
un subconjunto de CL(X) cerrado bajo uniones finitas y que contiene a los
conjuntos singulares (aquellos que contienen un solo elemento).

Dado un espacio topolégico (X, 7), se pueden definir topologias en el conjun-
to CL(X). El conjunto C'L(X) dotado con alguna topologia, recibe el nombre de
hiperespacio. Desde Hausdorff han surgido diversas topologias en hiperespacios,
siendo dos de ellas la topologia de Vietoris (introducida por Vietoris en [39]) y
la topologia de Fell (introducida por Fell en [9]), que son de las mas populares
(ver [24]), v siendo otra de ellas la topologia hit-and-miss, que generaliza a las
primeras dos (ver [7], todas seran definidas més adelante).

Sobre las primeras dos topologias mencionadas, Beer [2] comenta que aun-
que la topologia de Vietoris resulta mas familiar a los topdlogos, la topologia
de Fell ha probado ser superior en términos de aplicaciones, particularmente
aplicaciones a la optimizacion, el analisis convexo, la economia matematica, la
teoria de la probabilidad y la teoria de las capacidades.

Puede surgir la pregunta: jen qué contextos conviene usar mas una topologia
que la otra? La respuesta sera acorde a la situaciéon aplicada a la que se esté
enfrentando, sin embargo, del comentario de Beer se puede ver que la topologia
de Fell ha encontrado mas aplicaciones.

Por otro lado, la topologia hit-and-miss fue introducida por Poppe en [31] y
[32], la cual es una generalizacion natural de las dos topologias presentadas ante-
riormente (ver [7]). Una razén para estudiar esta topologia es que los resultados
que se obtengan de su estudio podran ser aplicados directamente a las topo-
logias que generaliza, siendo la topologia de Fell vy la topologia de Vietoris dos
de ellas. Después de este preambulo, procedemos a definirlas formalmente, junto
con notacion v definiciones auxiliares de ser necesario, asl mismo, mostraremos
algunas de las relaciones que guardan entre si.

Teorema 2.1.2. Sea (X,7) un espacio topolégico. Sea A C CL(X) una sub-
familia de CL(X) cerrada bajo uniones finitas y que contiene a los conjuntos
singulares de X. Entonces el conjunto

Ba ={ (N, V)N (X \B)t: Be Au{0},

21
Viet paraie {1,...,m}} (2.1)
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es una base para alguna topologia. Nos referiremos a la topologia que genera A
como topologia hit-and-miss respecto a A o, cuando no haya lugar a ambigiiedad,
simplemente como tepologia hit-and-miss, y la denotaremos por Tao. Notemos
entonces que (CL(X),7a) es un espacio topoldgico.

Demostracién. Demostraremos que | ] & = CL(X) y que para cualesquiera
A, B € 9B v para todo X € AN B, existe C € B tal que X € C C AN B.
Veamos que | J Za = CL(X). Esto se sigue de los siguientes dos hechos:

= Por definicién, | Za € CL(X), y

s CLX)=X"nNn(X\0)T ClJZAa.

Ahora, sean A, B € &, tales que ANB # (. Entonces A y B son de la forma
A= (ML V)N (X\By)*

i=1"1

2.2)
B = (MIL,U7) N (X \ By)* (
Sea X € AN B. Sea C = AN B. Notemos que, por el teorema 1.2.4:
C=(NI% Vi) N(Njm U7 ) N(X\ B1)" N (X \ Ba)* 2.3)

= (N2, V) N (NJ= U;) N (X N\ (BLU By)*
Y como A es cerrado bajo uniones finitas, se sigue que B; U By € A U {(}.

Por lo tanto ' € #x. También tenemos que AN B C C.En este caso, de hecho,

se da la igualdad.

Con lo anterior, concluimos que #a es base para alguna topologia como se

queria. O

Al basico (ﬂ;’;lVi_) N (X \ B)" lo denotaremos como (V3,...,Vy,)5.

A lo largo de este trabajo, consideraremos la topologia (C'L(X), 7a ) heredada
en una subfamilia A C CL(X) cerrada bajo uniones finitas y que contiene a los
conjuntos singulares. En vez de denotar a la topologia correspondiente con un
simbolo que indique que es una topologia heredada, por ejemplo, (A, 7A(A)),
denotaremos a este subespacio simplemente con (A, 7a).

Notemos que en el espacio (A, 7a) los basicos son de la forma

AN(Vy,...,Vi)B.

Cuando trabajemos en (A, 7a), en vez de denotar a los basicos del subes-
pacio con alguna notacién que indique que son basicos en el subespacio, como
(Vagus Vm)‘ﬁ, los denotaremos simplemente como (Vi,..., V) 5.

Una forma intuitiva de entender a la topologia hit-and-miss es la siguiente:
dado un espacio topoldgico (X, 1), contemplamos C'L(X) la coleccién de todos
los cerrados no vacios de dicho espacio. Note que un subconjunto A de C'L(X) es
un bésico si estd conformado por todos los elementos de CL(X) que intersectan
ole “pegan” (hit) a los conjuntos abiertos Vi,. .., V,,, y no intersectan o “evitan”
(miss) al conjunto B tomado en A U {1}

Ahora veamos las dos topologias que generaliza:
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Teorema 2.1.3. Sean (X, 7) un espacio topoldgico, n € N y Uy,....U,, sub-
conjuntos de X. Sea

(Ul,...,U,,)={AECL(X]:AQ UUg,AﬂU,-;é{ﬂpﬂmiE [ — m}}
i=1

FEntonces el conjunto
B ={(U1,...,Un) 1 Uh,...,U, €T parai€ {1,...,n},n € N}

es base para alguna topologia. A lo largo de este trabajo nos referiremos a esta
topologia como topologia de Vietoris y la denotaremos por Ty .

Demostracion. Primero, notemos que CL(X) = (X) € #,, porloque | %,, =
CL(X).

Ahora, tomemos dos elementos U,V de 4., tales que i NV # (. Entonces
son de la forma U = (Un,...,U,), V={(V1,..., V) con Us,... . Up,V1,..., Vp
abiertos en X y m,n € N. Sea B € Y N V. Notemos que

1)
2)
3) BnU; -,é@paratodoze{l Ln}hy
4) BNV, # 0 para todo j € {1,...,m}.

Notemos que:

= De 1), 2) y el teorema 1.1.1 se sigue que B C (UL, U;) N (Uj_i ) =
U{UiNV; : (i,4) € I x J}, en particular, B C U{‘J:an‘_nvj)#m}({) nv;).

= De 2) y 3) se sigue que para todo U; existe al menos un V; tal que B N
UinV;) #0.

m De 1) y 4) se sigue que para todo V; existe al menos un U; tal que B N
(U:nV;) #0.

Sea W = {U; NV, : BN (U;nNV;) # 0}. Notemos que B € (W). Ahora sea
A € (W). Entonces A cumple:

m AN(U;NV;) # 0, para todos i,j con BN (U; NV;) #0

s AUy .m0 wov sy TiNVi) S UIUNY; : (i,4) € Ix T} = (Un, TN
(U=, V3)
Y por lo tanto:
s ANU; #0
n ANV, #0
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= ACUL,T;

=11
Por lo tanto A e U N V.
En resumen, para B € U NV encontramos (W) € 4,, tal que B € (W) C
unv. O

Podemos pensar en estos basicos de forma intuitiva como sigue: (U1, ..., U,)
es la coleccion de cerrados en X que estan contenidos en la unién de los conjuntos
Ui,..., U, v que al mismo tiempo intersectan a cada uno de ellos.

Veamos ahora como es que la topologia hit-and-miss generaliza a la topologia
de Vietoris.

Teorema 2.1.4. Si A = CL(X), entonces Ta = Tv.

Demostracion. Bastard con demostrar que si A = CL(X), entonces B,,. = B,,.
Para ver que B,,. C B.,, notemos que si Uy, ..., U, son abiertos y B € CL(X),
entonces

(Ur,...,Un)f ={A€CL(X): AC B, ANU; # 0}
={AeCL(X): AC B, An(U;n B°) # 0}
={AeCL(X): ACB,AN(U;NB) #0,An B* # 0}
= (UhnBs,...,U,NB* B
Donde la tltima igualdad se sigue de B¢ = (UL, (U; N B®)) U B“.
Ahora, para ver que B,, C B, . notemos que si Uj,...,U, son abiertos y
B = (Ui, U;)¢, entonces
{Uh,...,Un)={A e CL(X): AC VUL U;, ANT; # 0}
={AeCL(X): ACB* , AnU; # 0} (2.5)
= (Uh,--.,Un)%-

(2.4)

Revisemos ahora como se define la topologia de Fell.
Teorema 2.1.5. Sea (X, 7) un espacio topolégico. Entonces el conjunto
{(Nm, V) N (X \ Bt : Be KU {0}, -
Vierparaie€ {1,... m}} '

es una base para alguna topologia. Nos referiremos a la topologia que genera este
conjunto como la topologia de Fell, y la denotaremos por Tg.

La demostraciéon de que el conjunto anterior es una base es similar a la
demostracion del teorema 2.1.2. El siguiente teorema demuestra que la topologia
hit-and-miss generaliza a la topologia de Fell.

Teorema 2.1.6. Si A =K(X), entonces 7a = 7p.

Demostracion. Se sigue directamente de las definiciones de 75 ¥ 5. a
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2.2. Principios de seleccion

En 1924, Karl Menger publicé su paper “Einige ﬂberdeckungssétze der
Punktmengenlehre” [26], en el cudl intenté describir la o-compacidad en térmi-
nos de cubiertas abiertas (ver [40]), para ello, introdujo la siguiente propiedad,
hoy en dia conocia como propiedad de bases de Menger:

Definicion 2.2.1. Un espacio métrico (E,d) tiene la propiedad de bases de
Menger si para cada base B de X existe una sucesion (B, : n. € N) en B tal que
lim,,_, diamg(B,) =0, y {B,, : n € N} es una cubierta de X.

Mas adelante, Hurewicz demostré en [15] que un espacio métrico (E, d) tiene
la propiedad de bases de Menger si v solo si satisface las condiciones de la
definicién 2.2.5.

Estos trabajos, de acuerdo a Kocinac [23] fueron la era clésica y el inicio
de lo que més adelante se conoceria como principios de seleccion, por lo que
se puede pensar en la definicion 2.2.1 como la idea que dio surgimiento a este
campo de estudio.

Mas adelante, motivado por el trabajo de Menger v Hurewicz, Scheepers
([34] v [19]) comenzé, segiin Tsaban [38], con la era moderna, estandarizando
la notaciéon v proponiendo esquemas generales para la definicion de diversos
principios de seleccion.

Los principios de seleccién son una familia de principios combinatorios usa-
dos en topologia para describir v comparar propiedades relacionadas a cubrir
un espacio topolégico con una familia de subconjuntos construida de formas
especificas. Scheepers dio inicio a una serie de papers dedicada a su estudio
con [34]. Como puede verse en dicha serie, los principios de seleccién unifican
propiedades topologicas clasicas como compacidad, o-compacidad, espacios de
Lindelof, Ia propiedad de Menger, etcétera; asi como también unifica nociones
v estudios originados en teoria de la dimensién (trabajada por Menger y Hure-
wicz), teorfa de la medida (trabajada por Borel), propiedades de convergencia
(trabajadas por (Csaszar-Laczkovicz), y espacios de funciones (trabajados por
Gerlits—Nagy y Arhangel’skii ), como puede verse en [37]. Una de las lineas de
investigacion que ha surgido de estos estudios son los principios de seleccién de
Rothberger v Menger, asi como diversas versiones débiles, ver [24].

Asi pues, las nociones de principios de seleccién y su posterior formaliza-
cion v estudio comenzaron como una forma de entender y generalizar algunos
fenémenos propios de la combinatoria v la topologia, asi como ciertos procesos
infinitos y de eleccién involucrados en dichos fendmenos.

De ahora en adelante, usaremos la siguiente notacion:

Notacién 2.2.1. Dado un espacio topoldgico (X,7) y B una base del espacio.
Denotamaos con:

m &, a la coleccién de todas las cubiertas abiertas del espacio, o, cuando no
haya lugar a ambigiiedad, simplemente con &';

m &5 a la coleccion de todas las cubiertas abiertas de X conformadas por
bdsicos de B.
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La siguiente definicién se puede consultar en el trabajo de Scheepers [34], la
cual fue motivada por los trabajos de Menger v Hurewicz.

Definicién 2.2.2 (Sy(«/,%)). Consideremos un conjunto infinito X y dos
colecciones de familias de subconjuntos de X, & y B. S1(o/,B) denota el
principio: Para toda sucesion (A, )nen de elementos de o/, eriste una sucesion
(An)nen tal que para cadan € N, A, € A,, y (A,)nen € 2.

Definicién 2.2.3 (Sy;,(«/, #)). Consideremos un conjunto infinito X y dos
colecciones de familias de subconjuntos de X, & y B. Sjin(,#) denota el

principio: Para toda sucesion (A, )nen de elementos de o/, eriste una sucesion
(Fu)nen tal que para cadan € N, F,, € [An]<“ y U en Fn € Z.

Si en las definiciones 2.2.2 y 2.2.3 consideramos el caso particular & =
9 = O, entonces los principios 8;(&/, %) v Syin(«/, %) son conocidos como
propiedad de Rothberger v propiedad de Menger respectivamente:

Definicion 2.2.4 (Espacio Rothberger). Decimos que un espacio topolégico
(X,7) es un espacio Rothberger si y solo si X cumple el principio §:(0,6),
es decir, si para toda sucesion (Un)nen de cubiertas abiertas de X, eriste una
sucesion (Up)nen tal que para cadan € N, U,, € Uy, y (Upn)nen es una cubierta
abierta de X .

Definicién 2.2.5 (Espacio Menger). Decimos que un espacio topoldgico (X, )
es un espacio Menger si y solo si X cumple el principio S§in(0,6), es decir,
st para toda sucesion (Up)new de cubiertas abiertas de X, existe una sucesidn
(Vi)nen tal que para cada n € N, V, € [U,|<* y |,cnVn €s una cubierta
abierta de X.

Una forma intuitiva de pensar en estos principios de seleccion es la siguiente:
un espacio topolégico es un espacio de Menger si para toda sucesién de cubiertas
abiertas, podemos tomar de cada cubierta de la sucesién una cantidad finita de
abiertos de modo que la coleccién de todos los abiertos tomados nuevamente
es una cubierta abierta para el espacio. La idea para el principio de seleccién
de Rothberger es similar pero restringiendo a tomar solo un abierto de cada
cubierta abierta de la sucesion.

A continuacion, presentaremos las dos variaciones del principio de seleccion
de Menger que caracterizaremos en hiperespacios con la topologia hit-and-miss.

Los espacios casi Menger son una version débil de los espacios de Menger, v
fueron introducidos por Koéinac en [22].

Definicién 2.2.6. Decimos que un espacio topolégico es casi Menger (en inglés
almost Menger) si para cada sucesion (Uy )nen de cubiertas abiertas de X, eziste
una sucesion (Vn)nen tal que para cada n € N, V,, € U]~ y U, cn{cl-(U) :
U € V,} es una cubierta (cerrada) de X .

Por otro lado, los espacios débilmente Menger son una version débil de los
espacios de Menger, y fueron introducidos por Pansera en [30].
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Definicion 2.2.7. Decimos que un espacio topoldgico es débilmente Menger
{en inglés weakly Menger) si para cada sucesion (U, )nen de cubiertas abiertas
de X, existe una sucesion (Vy)nen tal que para cadan € N, V € [U,]% y

de (Ll V) =X

Tenemos que todo espacio de Menger es casi Menger, v todo espacio casi
Menger es débilmente Menger, pero los reciprocos no son ciertos en general,
como se puede ver en el trabajo de Song [35], quien da ejemplos de espacios casi
Menger que no son Menger v de espacios débilmente Menger que no son casi
Menger. De modo que se tienen ejemplos que demustran que ninguna de las 3
regiones del siguiente diagrama es vacia. Los ejemplos de Song son muy técnicos
v se omiten en este trabajo.

Menger

Casi Menger

Débilmente Menger

Hemos mencionado anteriormente que la nocién de compacidad es una de las
mas importantes no solo dentro de la Topologia sino fuera de ella. Sundstrom
[36] menciona que la compacidad es una herramienta importante para hacer
mateméticas de nivel superior. Herndndez Herndndez [13] sefiala que la compa-
cidad se puede pensar como una herramienta que permite trabajar conjuntos
infinitos como si fueran finitos. Por ejemplo, si f es una funcién con dominio
finito, es inmediato que es una funcién acotada; por otro lado, si f no tiene
dominio finito, entonces no necesariamente es una funcién acotada, condicion
que se cumpliria si la funcién f es continua y tiene dominio compacto.

También hemos visto anteriormente que todo espacio compacto es o-compacto
v que todo espacio o-compacto es un espacio de Lindelof, por lo que estas dos
ultimas propiedades generalizan a la compacidad. Ahora, como se puede con-
sultar en [5], todo espacio o-compacto es de Menger y todo espacio de Menger
es de Lindelof, v ningun reciproco es cierto en general. De esto podemos ver
que podemos pensar en los espacios Menger v sus versiones débiles como una
generalizacién de la compacidad v como un punto intermedio entre los espacios
compactos v los espacios de Lindelof.

La siguiente pregunta es natural: jqué relacién hay entre estas dos cadenas
de implicaciones? Esta pregunta queda fuera de los objetivos de este trabajo,
pero puede ser considerada en otras investigaciones.

En la practica, suelen surgir espacios que son compactos v espacios que

no lo son. Cuando los espacios son compactos, la teoria disponible respecto
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a la compacidad permite trabajar con estos espacios mas comodamente. Sin
embargo, cuando surgen espacios que no son compactos, se puede explorar que
otras propiedades similares cumple, por ejemplo, se puede investigar si el espacio
en cuestion es de Menger, casi Menger o débilmente Menger, para asi tener una
base tedrica que nos permita explorarlos a pesar de no ser compactos.

A continuacién, definiremos dos familias de tal forma que podamos expresar
estas dos variaciones en términos del principio de seleccién Sy;,,.

Notacién 2.2.2. Sea (X, 7) un espacio topolégico. Denotamos:

Cuando no haya lugar a ambigiiedad, a esta coleccion la denotaremos simple-
mente por '. Note que 2" es la coleccién de todas las familias de abiertos cuya
union es densa en X.

Notacién 2.2.3. Sea (X, 1) un espacio topolégico. Denotamos:
Py ={AeP(r):[J{c-(4): X =4€ A}}.

Cuando no haya lugar a ambigiiedad, a esta coleccion la denotaremos simple-
mente por 7"

Vemos entonces, que el principio de seleccion casi Menger es el principio
Ssin(€.9"), y que el principio de seleccién débilmente Menger es el principio
Seinl O, 2.

A continuacién, se presenta un lema que nos permitird caracterizar los prin-
cipios de seleccion casi Menger v débilmente Menger en hiperespacios. En To-
pologia, son comunes los lemas del tipo “la coleccién de cubiertas abiertas de
un espacio topolégico (X, 7) cumple determinada propiedad si y solo si la colec-
cion de cubiertas abiertas conformadas por basicos de dicho espacio topologico
cumple esa misma propiedad”. Este tipo de lemas suele pensarse de la siguien-
te manera: “la coleccién de cubiertas abiertas de un espacio topoldgico (X, 1)
cumple determinada propiedad si ¥ solo si la cumple en términos de basicos”.

Teorema 2.2.1 (Principio de seleccién casi Menger en términos de basicos).
Sean (X, 1) un espacio topoldgico y B una base del espacio. Entonces son equi-
valentes:

1. Sfiﬂ(g, .@”),‘
2. S¢in(OB,2").

Demostracion. (1) = (2). Supongamos que para el espacio topolédgico (X, 7) se
cumple S, (&, 7"). Sea {Up, }nen una sucesion de cubiertas abiertas conforma-
das por basicos. En particular, notemos que {U,, } ,en es una sucesién en ¢. Asi,
por hipdtesis, para esta sucesién existe una sucesién {V, },en tal que para cada
n € N se cumple que V,, € [Up]<*, ¥ U,,enlclx(U) : U € V,} es una cubierta
de X. Esto quiere decir que se cumple 8 ;,,(0g, 2").
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(2) = (1) Supongamos que para el espacio topolégico (X,7) se cumple
Stin(OB, Z"). Sea {Uy, }nen una sucesién de cubiertas abiertas. Entonces para
cadan € Nycadaz € X existe U € U, tal que x € U. Ademds, existe B} € B
tal que x € B! C UP. Definimos para cadan € N: Y] := {B? : x € X}. Se
sigue que {U },en es una sucesion de cubiertas abiertas, cada una conformada
por basicos. Aplicamos la hipétesis y tenemos que existe una sucesién {V/ }.en
en la que para cada n € N se cumple V], € [U}]“ ¥

| {cix(B}) : B} € V;,}

nel

es una cubierta de X. Por lo tanto

U {eix @) : B2 €V}

neN
también es cubierta de X. Ahora, definimos V, := {U": B" € V!}. Note-
mos que para cada n € N: V,, € [Up|” v que U, n{clx(U): UV, } =
Unen {elx(U}) : BE € V,}. Asi [, en {clx(U) : U € V,,} es una cubierta para
X. Entonces se cumple S¢;,(&, 2"). a

Teorema 2.2.2 (Principio de seleccion débilmente Menger en términos de basi-
cos). Sean (X, 7) un espacio topoldgico y B una base del espacio. Entonces son
equivalentes:

1 Sf,;n(g’, .@!),’
2. 84in(08,2')-

Demostracién. Primero demostremos que 1 = 2. Para ello, supongamos que
para el espacio topoldgico (X, 7) se cumple S¢;,(&, Z'). Sea {U,}nen una su-
cesion de cubiertas abiertas conformadas por basicos. En particular, notemos
que {Up, }nen es una sucesion en ¢. Asi, por hipdtesis, para esta sucesion existe
una sucesion {V, },cn tal que para cada n € N se cumple que V, € [, |<“, v
clx (U UneniU :U € Vn]-) = X. Esto quiere decir que se cumple S;, (g, Z').

Ahora demostremos que 2 = 1. Para ello, supongamos que para el espacio
topolégico (X, 7) se cumple S¢;,,(6p, Z'). Sea {U,,},en una sucesién de cubier-
tas abiertas. Entonces para cada n € N y cada =z € X existe U]! € U, tal
que ¢ € U}. Ademas, existe B € B tal que z € B C U]. Definimos para
cadan € N: Y, := {B? : z € X}. Se sigue que {U} }.cn es una sucesién de
cubiertas abiertas, cada una conformada por basicos. Aplicamos la hipétesis v
tenemos que existe una sucesién {V} },en en la que para cada n € N se cumple

Vi, € U y

elx (U U {BI:BL € v,’,}) =X.

nel
Por lo tanto, también se cumple que

clx (U J{ur:Bre v:,}) = X.

nel
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Ahora, definimos V,, := {UZ : B? € V! }. Notemos que para cadan € N: V,, €

[Un]* ¥ que clx (U UneN {U:Ue Vﬂ]’) =clx (U UneN {2 BR-E v::}) X.
Entonces se cumple S¢;,(&, 2"). O

2.3. Principios de seleccion en hiperespacios

Con el fin de caracterizar los principios de seleccion casi Menger y débil-
mente Menger en hiperespacios con la topologia hit-and-miss, introducimos los
resultados y definiciones de esta seccién. Las definiciones 2.3.1 ¥ 2.3.2, asi como
el lema 2.3.1 son tomados de [7].

Definicién 2.3.1. Dada una familia A C CL(X), denotamos
Ca ={(B:W,...,V,,) :B € Au {0},
Vl,.....V,-, e T,
Vin (X\B) #£0,(1<i<n),
n € N}

Definicion 2.3.2. Una familia J C (a es llamada una wa(A)-red (en inglés
Ta(A)-network) de X, si para cada U € A°, existen (B;Vih,..., V., e Ty
F € [X]|=% tales que

(a) BCU,
(b)) FNU =0y
(¢) para cadai e {1,...,n}, FNV; # .
A la familia de todas las wa(A)-redes la denotaremos por IIa(A).

Lema 2.3.1. Sea (X, 7) un espacio topoldgico. Sean
J ={(Bs:Vis,-.,Vm,.s) 1 s € S}
una familia de arreglos y
% ={V1s,-- .,1/’,,,&___.3)3g $(Bsi Vigs.- oy Vin..s) €T}

Entonces, J es una ma(A)-red de X siy solo si % es una cubierta abierta de
(A, Ta).

Demostracion. Supongamos que ( es una ma (A)-red de X y sea A € A°. Enton-
ces existe (B; V1,...,V,,) € ( tal que B C (X \ A) (pues A C (X \ B)) y existe
F € [X]<“ tales que FN (X \ A)=0yparacadai€ {1,...,m}, FnV; # 0.
Por lo tanto, A € (V1,...,Vm) € U. De modo que A € | JU. Asi, la coleccién
U es una cubierta abierta de (A, 7a).

Para probar la otra direccién, supongamos que {4 es una cubierta abierta

de (A,7a). Sea U € A°. Entonces existe (V1,...,Viu)p € U tal que (X \U) €
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(Vi...., Vi) B. De esto se sigue que B C U. Como (X \U) € N2, V., podemos
escoger x; € (X\U)NV;, paratodoi € {1,...,m}. Sea FF={z;:i=1,...,m}.
Entonces F' € [X]<% y satisface FNU =0 y FNV; # 0. Por lo tanto, como
(Vi,...,Viu)B € U, tenemos que (B; Vi,...,V,,) € ¢. Concluimos que ¢ es una
ma(A)-red de X.

O

La notacién 2.3.1, asi como la definicién 2.3.2 y el lema 2.3.1, se utilizan
en cada uno de los dos teoremas de los resultados principales. Adicionalmente,
cada uno de dichos teoremas utiliza definiciones v resultados particulares. Para
el caso del resultado correspondiente al principio de seleccién almost Menger, se
utilizan los siguientes resultados y definiciones.

Definicién 2.3.3. Una familia ( C (A es llamada una casi wa (A)-red (en inglés
almost wa(A)-network) de X, st para cada U € A°, existe (B;V4,...,V,) € ¢
tal que para cada K € AU {0} y U,...,U,, conjuntos abiertos en X, con
(X\NUONK =0y (X\U)NU; # 0, paral < i < m, existen W € A y

F € [X]|=¥ que satisfacen las siquientes condiciones:
(a) FNW =0,
(b) BUK CW,
(c) FNV;#0, para cada 1 <i<n y
(d) FnU; #0, para tode 1 < j < m.
A la familia de todas las casi-mwa(A)-redes la denotaremos por allx (A).

FEn los teoremas, se caracteriza también a los principios almost Menger v
weakly Menger en el espacio base mediante A®. Para ello, introducimos las si-
guientes definiciones.

Definicion 2.3.4. Sea (X,7) un espacio topoldgico. Sea A C CL(X) cerrado
bajo uniones finitas y que contiene a los conjuntos singulares. Definimos para
cualquier A C A“:

A = (elp(A%))".

Definicién 2.3.5. Sea (X, 1) un espacio topoldgico. Sean A, A C CL(X) cerra-
dos bajo uniones finitas y que contienen a los conjuntos singulares. Definimos:

%(4) = {of € P(r): A= J{A": Ac )}

Definicién 2.3.6. S}in(HA (A),D'R(A)) denota el principio de seleccion: para
cada sucesion (T, )nen de elementos de Il (A), existe una sucesion (I,,)nen tal
que para cadan € N, T, € [J,]<, y {An}nen es un elemento de D’y (A), donde,
st

By = Y (B V) e Wy W NP R SRS ()

n,s?

entonces
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A, ={AeA“:Fse {1,...,S(n)}(Vie {1,..., k(n,s)}
(Va:\A#0A B, C A)}

Definicion 2.3.7. Una familia ¢ C (A es llamada una débilmente wa(A)-red
(en inglés weakly wa(A)-network) de X, si para cadaU € A° y cada K € AU{D}
y Ui, ..., Uy, conjuntos abiertos en X, con (X \U)NK =0 y(X\U)NU; # 0,
para 1 <i < m, existe (B:Vq,..., V) €, W € A° y F € [X]<“ que satisfacen
las siguientes condiciones:

(a) FNW =0,
(b) BUK CW,
(c) FNV; # 0, para cada 1 <i<n y
(d) FNU; #0, para todo 1 < j < m.
A la familia de todas las débilmente-ma(A)-redes la denotaremos por wIla(A).

En el apéndice A se encuentra una forma simbélica de enunciar las defini-
ciones de cast wa(A)-red y débilmente mwa(A)-red.

Definicion 2.3.8. Sea (X,7) un espacio topolégico. Sea A C CL(X) cerrado
bajo uniones finitas y que contiene a los conjuntos singulares. Definimos

W(A) = {pf cP(r):ac={JA: A€ m‘}d}.

Definicién 2.3.9. S}m(HA (A), D’y (A)) denota el principio de seleccidn: para
cada sucesion (T, )nen de elementos de Il (A), existe una sucesion (I,,)nen tal
que para cadan € N, T,, € [7,]°%, y {An}nen es un elemento de D'\ (\), donde
st

T = {(BH Ve Vi Vi) 1 1 < 5 < S())

entonces

A, ={AeA®:Fse{1,...,S(n)}(Vie {1,..., k(n,s)}
(Va\A#0A B, C A)}
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Capitulo 3

Resultados principales

En este capitulo se exponen y desarrollan los resultados principales de este
trabajo, los cuales estdn conformados por dos teoremas v cinco lemas. Cada uno
de los lemas encierra un paso clave en las demostraciones de los dos teoremas.
FEl primer teorema caracteriza el principio de seleccién casi Menger v el segundo
teorema caracteriza el principio de seleccién débilmente Menger; en ambos casos,
las caracterizaciones se dan en hiperespacios topolégicos (del espacio topolégico
base) con la topologia hit-and-miss.

Ambos teoremas constan de tres proposiciones equivalentes. La equivalen-
cias de las primeras dos proposiciones para ambos teoremas se enuncian sin
demostracién en [7]. En este trabajo, ademds, se propone para cada teorema
una proposicién equivalente a las primeras dos, para lo cual se definieron los
principios de seleccién 2.3.6 y 2.3.9.

3.1. Lemas

Los siguientes lemas tienen el propésito de presentar los resultados princi-
pales de este trabajo de una manera mas simple v concisa. Cada lema contiene
un punto clave de la demostracién de los teoremas, por lo que los propios lemas
forman parte de los resultados principales de este trabajo.

Lema 3.1.1. Sea (Z,,),en una sucesion en [Ca]<*. Denotemos, para todon € N:

e {(Bn__s;V,f‘_s, LV ...,V,ig“~’)) A S(n)}

donde:
» S(n) es la cantidad de arreglos de T, ;
m k(n,s) es la cantidad de abiertos del s-ésimo arreglo de T,,;
. Vi

s €s el i-ésimo abierto del s-ésimo arreglo de T, ; y

» B, . es el elemento de AU {0} del s-ésimo arreglo de Z,,.
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Denotemos, para todo n € N:

A, ={AeA®:Fse{1,...,S(n)}(Vie {1,..., k(n,s)}
(Va\A#0A B, C A)}

FEntonces se cumplen las siguientes igualdades:

= MV VooV i A2 S@))s §

S(n)

cla(AZ) = | ela ((Vn V,;s,...,v,ﬁg“’”)ﬁ ) (3.1)

s=1
Demostracién. Note que para todo n € N:

A, ={Ae A :Fse{1,...,5(n)}Vie {1,...,k(n,s)}
(X\NANVE #0A(X\A)C(X\B,))}

v que, para todo n € N:

AfL ={(X\A)eA:Fse{1,...,S(n)}(Vie {1,...,k(n,s)}
(X\NANV,  #0A(X\A)C (X\Bn._s)))}-

de modo que

S | sy W ey Vil N L i Sli)

v con ello, como la unién es finita, tenemos

(‘EJ\ _CIA (U{( Logariviey m. s!""‘%?ﬁ,s],_s)ﬂ_;‘ 11<s< S(n)})
S(n) (3.2)
= U CEJ‘\ ((Vlnq" 3 Vr: 3 I/I?n s],s)B“)
s=1 "

O

Lema 3.1.2. Sea U € A°. Sea D =X\U. Sean B € Ay y V1,...,V,,, € T tales
que (X \ B)NV; # 0 para 1 € i < m. Son equivalentes:

(1) (B;V4,...,Vy,) cumple que para todos Uy, ..., U € T y K € Ay que cum-
plan DNK =0 y DNU; # W paral < j <1, existen W € A° y F € [X]*¥
que satisfacen las condiciones (a), (b), (c) y (d) de la definicion 2.3.3.

{8 DESI n )
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Demostracion. (1) = (2) Sea (Us,...,U))x una vecindad abierta bdsica arbi-
traria de D. Se sigue que DNK =0y DNU; # () para 1 < j < . Se sigue
entonces que existen W € A¢ y F' € [X]< que satisfacen las condiciones de la
definicién de almost-ma(A)-network (definicién 2.3.3):

(a) FNW = 0;
(b) BUK CW;

() FNV; # 0 para 1 <i<m;
(d) FNU; #0para 1 <j<l.

Notemos que de (a) se sigue que F' C (X\W), de esto junto con (c) se sigue que
(X\W)NV; # 0 para 1 <i < m, y junto con (d) se sigue que (X\W)NU; #0
para 1 < j < [. También notemos que de (b) se sigue que (X\W) C (X\B) y
que (X\W) C (X\K). De lo anterior tenemos que

(X\W) € (Ul,...,Ug)Kﬂ(Vl...,Vm)B,

esto es,

(U;,...,U;]Kr‘l(vl...,Vm)gsﬁ'@,

0 en otras palabras, dada una vecindad arbitraria de D, tenemos que esta in-
tersecta a (V5 ...,V,,)s. Por lo tanto, de la definicién de cerradura (definicién
1.2.8) se sigue que D € cly ((V4...,V,,)p) como se queria.

(2) = (1) Sean Uy,...,UjeTty K€ Aptalsque DNK =0y DNU; #0
para 1 < j < [. Entonces (Uy,...,U))k es una vecindad abierta bésica de D.
Por hipétesis, se sigue que

(U;,...,Ug)}{n(ﬂ...,Vm)g?‘:ﬂ.

Tomemos un elemento en la interseccién y denotemos su complemento con
W. Entonces (X \W)NV; #0y (X\W)NU; #0paral<i<myl<j<lL
También (X \ W) C (X \ B) y (X\ W) C (X \ K). Asi pues, para cada
l1<i<myl<j<lexistenz; € ( X\W)NV,yy; € (X\W)NU,. Sea
F={zx,...,Tm,y1,...,u}. Notemos que:

(a) FNW =0, pues F C (X \ W).
(b) BUK CW pues (X \ W) C (X\B) y (X \ W) C (X\K).
(c) FNV;#@paral <i<m.
(d) FNU; #@para1<j <l
como se queria. |

Lema 3.1.3. Sea [I,],en una sucesion en [(A]<*. Denotemos:
T, = {(Bn‘_s;v,f_.s, LV ...,V,jfg“-s)) 1<s< S(n)}

n,s?

donde:

29



m S(n) es la cantidad de arreglos de T,,;
m k(n,s) es la cantidad de abiertos del s-ésimo arreglo de I,,;
" V,:,_,, es el i-ésimo abierto del s-ésimo arreglo de Z,,; y

» B, , es el elemento de A U {0} del s-ésimo arreglo de I,,.

Denotemos, para todo n € N:

An={AeA®:Fse{1,...,S(n)}Vie {1,... ,k(n,s)}
(Vas\A#0ABn, C A)}
Entonces | J,,cp In € alla(A) si y solo si (An)nen € D”.

Demostracion. (1) = (2). Supongamos que |J,,cy Zn € alla(A). Por demostrar
que (Ap)nen € D", es decir, debemos probar que A° = |J{ A% : n € N}, que es
lo mismo que A€ =, .n(clr(Af))¢, 0, equivalentemente, por el lema 1.2.2, que
Ac = (Jela(AS)), 1o que a su vez es equivalente a demostrar que (gracias al
lema 1.2.3): A = |Jcla(AS). Asi pues, sea D € A. Sea U = X\ D. Entonces, por
hipétesis, existen N, S € N v

r i k(N.S
(Br.siVis Vi Vag™) e U

nel

que satisfacen la definicién 2.3.3.
Para completar la demostracién, bastara verificar que

i k(N,S .
De CEJ.\ ((V}G,S""'"K\',S-‘"'TVNSS ))BNS) (33)

va que, por el lema 3.1.1:

cl ((v;;s,. 0. N— L{iﬁf;"ﬁ})m ) C cla(Ajy) (3.4)

Pero esto se sigue directamente del lema 3.1.2. Por lo que concluimos que
(Ap)nen € D" como se queria. La otra contencién es trivial.

(2) = (1). Supongamos que (A,).en € D”. Por demostrar que |, nZn €
all (A). Asi pues, sea U € A°. Sea D = X\U. Como (A,),cn € D", se sigue,

de manera similar que en la primera parte de este teorema, que

A= JelalAs).

Por lo tanto, existe N € N tal que D € cla(A%), esto a su vez implica, debido
al lema 3.1.1, que existe S € N tal que

D€ d,y ((Iﬁ%{s,...,I{{!fs,...,Vli,(g‘-sl) ) :
Bn,s
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Para completar la demostracion, veamos que
Ll i k(N.S)
(BN.-S' VN,S' 284 VN,_S: SEE VN?S

satisface la definicién de ma(A)—red. Pero esto se sigue directamente del lema

3.1.2. Con ello concluimos que |J,, oy Zn € alla(A) como se queria.

O

Lema 3.1.4. Sea U € A°. Sea D= X\ U. Sean K € Ay y Uy,...,U, abiertos
en X tales que DNK =0 yDNU; # 0, paral < j < 1. Sean B € Ay y
Vi,....Vin € 7 tales que (X \ B)NV; # 0 para 1 <i < m. Son equivalentes:

1. (B;V4,..., V) cumple que exvisten W € A€ y F € [X]|<¥ que satisfacen
las condiciones (a), (b). (c) y (d) de la definicion 2.3.7.

2. W,...,.Vm)aN(U,....U0)k # 0.
Demostracién. (1) = (2) Por hipétesis, existen W € A y F € [X]|< tales que:
1. FnW =0;
2. BUK CW,
3. FNVi# 0 paral<i<m;
4. FNU; #0paral <j<lL.

Notemos que de (1) se sigue que F' C (X\W), de esto junto con (3) se sigue
que (X\W)NV; # @ para 1 < i < m,y junto con (4) se sigue que (X\W)NU; # 0
para 1 < g <I.

También notemos que de (2) se sigue que (X\W) C (X\BY) y que (X\W) C
(X\K).

De lo anterior tenemos que

(X\W) € (Ux,....Un)kn(V1,...,. V) g,
por lo tanto:

(U, U )k n(Vi,... , Vim)g # 0

como se queria.

(2) = (1) Tomemos un elemento de (Uy,...,U;)x N (Vi,..., V) g v deno-
temos a su complemento con W. Se signe que paracada 1 <i<myl1<j<I
existen ¢; € (X\W)NViyy; € (X\W)NU;. Sea F = {x1,...,Zm,Y1,...,Y1}-
Notemos que:

(a) FNW =0, pues F C (X \W).
(b) BUK CW pues (X \ W) C (X\B) y (X\ W) C (X\K).
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(¢) FNV; # 0 paral <i<m.
(d) FNU; #0@paral<j<lL
cOmo se queria. a

Lema 3.1.5. Sea [Z,],en una sucesion en [(A]<“. Supongamos que

T,= {(B,,‘_S;V‘ Vi ...,V,f__g"-sJ) 11<s< S(n)}

n.s? n,s?

donde:
m S(n) es la cantidad de arreglos de T,,;
» k(n,s) es la cantidad de abiertos del s-ésimo arreglo de T,,;
" V,:QS es el i-ésimo abierto del s-ésimo arreglo de I,,; y

» B, es el elemento de AU {(} del s-ésimo arreglo de Z,,.

Sea:
A, ={AecA:Tse {1,...,S(n)}(Vie {1,...,k(n,s)}
(Vas\A#0A B, C A)}
Entonces |J,, ey In € wIIA(A) si y solo si (An)nen € D'.

Demostracion. (1) = (2). Por demostrar que (Ay)nen € Dy (A), es decir, debe-
mos probar que A° = (UneN An]d. Notemos que, por la definicion 2.3.4, esto
es equivalente a probar: A = ((:IA ((Un eN An)c))c , que a su vez es equivalente,
segun los lemas 1.2.3 y 1.2.2 a: A = cly (UneN Af,) . Asi pues, sea D € A. Sea
U= X\D. Sea (Uj,...,U;)x una vecindad bdsica arbitraria de D. Se sigue
que DNK =0y (X\U)NU; # 0 para 1 < j < I. Entonces, por hipétesis,
existe (Vg g, Virgs: - 1V£(§V,S) € UnenZn que satisface la definicién de

weakly-ma (A)-network. Por el lema 3.1.4, se sigue que

(VR',S""‘V;F,Si . .,‘/'_:.vfg’s}) M (U].... rLr[)}(' # @,

v como por el lema 3.1.1 se tiene que
(Vl%',_Sr SR K{({S: U VJ‘(C-'(.?I—’S]) g A?\":
se concluye que

(Up,- ,U)kNAY #0

v con ello, que
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(Ur, Uk N U A #0.
nel

Esto es, dado un punto arbitrario en A y una vecindad bésica arbitra-
ria de dicho punto, tenemos que intersecta a |J, .y Ay. Con ello concluimos
que A C cly (UneN .Afl) La otra contencién es inmediata. Por lo tanto, A =
ely (L_J“EN .A‘;) v asi (A, )nen € D' como se queria.

(2) = (1) Por demostrar que |J, oy Zn € wIla(A). Sea U € A° y denotemos
D = X\U. Tomemos Uy, ...,U; abiertosen X y K € Ap talesque DNK =0y
DNU; # 0 para 1 < j < . Entonces (U, ...,U;)k es una vecindad basica de D.
Por hipétesis, se tiene que A = el (UneN A;), esto es, | J,,cy Ay, es denso, por lo
que intersecta a cualquier abierto, en particular: (Us, ..., Ul) kN (U, cn A%) # 0.
Por el lema 3.1.1, se sigue que existen N, S € N tales que

(U U N (Vi Visse- -, V™) #0.

Por el lema 3.1.4, se sigue que (VA,IQ = V,{S e ;f{;vsl) satisface la
definicién de weakly-ma(A)-network (definicién 2.3.7. Asi, |J, ey Zn € wIla(A)
como se queria. a

3.2. Propiedad casi Menger

Recordemos que un espacio topoldgico es casi Menger (definicion 2.2.6) si
para cada sucesion de cubiertas abiertas del espacio, podemos extraer de cada
cubierta un subconjunto finito de abiertos tales que la coleccion de las cerraduras
de todos los abiertos tomados es una cubierta del espacio.

Con los lemas expuestos en la seccién anterior, estamos listos para presentar
el primer resultado de este trabajo:

Teorema 3.2.1. Sea (X,7) un espacio topolégico, y A, A C CL(X) tales que
contienen a los conjuntos singulares y son cerrados bajo uniones finitas. Enton-
ces son equivalentes:

(1) (A,7A) es casi Menger;
(2) (X,7) satisface la propiedad Sgn(IIA(A), alla(A));
(3) (X, 7) satisface la propiedad .S‘},-H{HQ(A],D:&(A]).

Demostracién. (1) = (2).
Sea (J,)nen una sucesion en ITx(A). Para cada n € N, sea:

U= {(Vas-..,Vin)B : (BiWA, ..., Vin) € Tu}-

Por el lema 2.3.1, se sigue que (%, : n € N) es una sucesién de cubiertas abier-
tas del hiperespacio (A,7a). Como (A, 7a) es casi Menger, existe una sucesién
(¥2)nen tal que para cada n € N, ¥, € [%,]<“ y la familia | J, y{cla(V): V €
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¥, } es una cubierta (no necesariamente abierta) de (A, 74 ). Llamemos % a esta
familia. Para cada n € N, denotemos a #;, de la siguiente manera:

Hom { (Ve Vi VEE), 125250,

-Bn,s

donde:
» S(n) es la cantidad de bésicos de #;,;
m k(n,s) es la cantidad de abiertos del s-ésimo bésico de 7;,;
" V,:',_,, es el i-ésimo abierto del s-ésimo basico de 7,,; v
m B, , es el elemento de A U {{}} del s-ésimo basico de ¥,.

Con esta notacién, tenemos que la familia % puede escribirse de la siguiente
manera:

U = {czA ((VH{S, oo Vi gpenn, V)

Para cada n € N, sea:

):ISSSS(n),nEN}.

",8

Iﬂ = {(Bn,_s; Vr}._s! H :Vr:-,_.s! EE V;—EESRPS)) | S 5 E S(n)}

Notemos que, por como estd definido Z,,, se tiene que Z,, € [7,]<* para cada
n € N. Sea J = |J,,enZn- Notemos que J se puede expresar de la siguiente
manera:

B {(Bn‘_s;v,fj_s,...,V;{S,...,V,ig“‘-sj) :1<s<S(n)ne N}.

Para completar la demostracién, veamos que J es un elemento de all (A).

Para ello, sea U € A°. Sea D = X \ U. Como % es una cubierta de

(A,7a), existen NS € Ny (BN‘_S; V}%r__s, T VR},S, g ,1f$f;"g)) € J tal que

D € cly ((Vﬁls, . ,VJ,‘{,__S,...,KEQV"S})BV S). Por el lema 3.1.2, se sigue que

(BN‘_S; V_,E,__S, s Vgragr S ,Vﬁg’s)) cumple que para todos Uy,....U; € T ¥

K € Ag que cumplan DN K = @y DNU; # () para 1 < j < [, existen
W e A® y F € [X]<¥ que satisfacen las condiciones (a), (b), (c) v (d) de la
definicién 2.3.3. Por lo tanto, J es un elemento de allao(A), es decir, es una
ama(A)-network como se queria.

(2) = (1).

Sea (%, : n € N) una sucesion de cubiertas abiertas de (A, 7a) ¥, sin pérdida
de generalidad, suponga que estd conformada por bdsicos (ver el lema 2.2.1).
Para cada n € N, sea

To={(B:Vi,.... Vi) : (Vi, ..., V) € Z.}.



Entonces, por el lema 2.3.1, se sigue que (J, : n € N) es una sucesién en
IIA(A). Como (X, 1) satisface la propiedad Sg,(IIa(A), allA(A)), tenemos que
existe una sucesién (Z,, : n € N) tal que para cadan € N, Z,, € [7,]** v la
familia UneN 7, pertenece a alla(A). Llamemos J a esta familia. Para cada
n € N, denotemos a Z,, de la siguiente manera:

T = { (B Voo Vi VA 11 0 < S},

donde:
= S(n) es la cantidad de arreglos de Z,,;
m k(n,s) es la cantidad de abiertos del s-ésimo arreglo de Z,,;
m V. es el i-ésimo abierto del s-ésimo arreglo de Z,,: y
» B, . es el elemento de AU {0} del s-ésimo arreglo de T,,.

De esta manera, J puede expresarse como:
J= {(Bn‘_s; WL gy ML gyennsy V,ig"‘s)) 11<s<8(n),ne N} g

Para cada n € N, sea

n,.s

o= {(V;,m...,V,:f,m...,V,f,&“'-"‘}) 1<s< S(n)} :
Notemos que, por como esta definido 7;,, se tiene que ¥, € [%,]<“ para cada
n €N,

Sea % = U, eniclra(V) : V € ¥,}. Notemos que podemos expresar a % de
la siguiente manera:

u = {dA ((V,}‘_s, o Vg V)

Para completar la demostracién, veamos que % es una cubierta de A. Asi pues,
tomemos D € A y sea U = X\D. Entonces U € A°. Como J es una casi-
ma(A)red, existen N,S € Ny (BN__S:_ V&F?S‘. .. ,VJ{;:S,...,K‘J\;E?”S)) € J que
satisface la definicién 2.3.3. Entonces, por el lema 3.1.2, se signe que D €

el ((V,{v,ss S ‘V}t‘rf;,sl)ﬂN s)_ De esto se concluye que (A,7A) es

casi Menger como se queria.

(2) = (3). Sea (J, : n € N) una sucesién de elementos de IIo(A). Por
hipétesis, existe una sucesién (Z,, : n € N) tal que para cadan € N, 7,, € [J,,]<“
y la familia | J,,.y Zn pertenece a alla(A). Llamemos J a esta familia. De esto
se sigue que si para todo n € N denotamos:

):15555(n],n€N}.

L

T, ={(Bna Vi, ...,Vi,,...,VE") . 1 < 5 < S(n)},
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entonces podemos expresar a 7 de la siguiente manera:

T = {(B,L_s;vI ..,V,;"_S,...,V,f__g“fsi) 11<s<S(n)ne N}.

n,s871"

Definamos

A, ={Ae A :Fse{1,...,5(n)}(Vie {1,... ,k(n,s)}
(Vi \A#0AB,, C A)}.

Entonces, por el lema 3.1.3, se sigue que {A,}.en € D (A). Por lo tanto,
(X, 7) satisface S}‘-n (ITA(A), D\ (A)) como se queria.

(3)=(2)

Sea (J,)nen una sucesion de elementos en I1x (A). Por hipétesis, existe una
sucesion (Z,)nen tal que para cada n € N, Z,, € [J.]<¥, v {An}nen es un
elemento de D4 (A), donde, si denotamos

L, ={(B: V! Ve

srorea Vg

"1 l]l?n,.s],_s) 01 S S S S(ﬂ}},

entonces

A, ={AeA“:Fse {1,...,S(n)}Vie {l,..., k(n,s)}
(Vis\A#0ABn, CA)}

Sea J = UU,,cn Zn- Entonces, por el lema 3.1.3, se sigue que J € alla(A). Se
concluye con esto que (X, 7) satisface la propiedad Sg,(IIa(A), alla(A)) como
se queria. g

En el apéndice B se encuentra un ejemplo que puede ayudar a visualizar
los bésicos seleccionados de cada cubierta abierta en un arreglo de matriz. Este
ejemplo sirve para visualizar los basicos tomados en ambos principios de selec-
cién (casi Menger y débilmente Menger).

Del teorema anterior se tienen los siguientes corolarios:

Corolario 3.2.1. Sea (X, 1) un espacio topolégico. Si A es alguno de los hiper-
espacios CL(X), K(X), F(X), o CS(X), entonces (A,7a) es casi Menger si y
solo si X satisface Sgin(IIa(A), alIn(A)).

Corolario 3.2.2. Sea (X, 1) un espacio topoldgico. Si A es alguno de los hiper-
espacios K(X), F(X), o CS(X), entonces

1. (A,7F) es casi Menger si y solo si X satisface Sgin (g x)(A), allg(x)(A)).

2. (A, 1v) es casi Menger si y solo si X satisface S¢in (Ilopx)y(A), allon(x)y(A)).
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3.3. Propiedad débilmente Menger

Ahora es momento de abordar el principio de seleccién débilmente Menger.
Para ello, recordemos que un espacio es débilmente Menger, si se cumple que
para cualquier sucesion de cubiertas abiertas del espacio, podemos extraer de
cada cubierta un subconjunto finito de abiertos tales que la unién de todos los
abiertos tomados es un conjunto denso. A continuacion, el segundo resultado de
este trabajo:

Teorema 3.3.1. Sea (X, 7) un espacio topoldgico, entonces son equivalentes:
1. (A, 7A) es débilmente Menger;
2. (X, 1) satisface la propiedad Sy (IIA(A), wIIa (A)).
3. (X, 7) satisface la propiedad S';.in(Ha(A),D’&(A]).

Demostracion. (1) = (2).
Sea (Jn)nen una sucesion en IT5(A). Para cada n € N, sea

Yy = {(Vay.. -, Vin)g : (B:Va, ..., Vin) € Tu}-

Por el lema 2.3.1, se sigue que (%, : n € N) es una sucesién de cubiertas
abiertas del hiperespacio (A, 7a). Como (A, 7a) es débilmente Menger, existe una
sucesion (¥, )nen tal que para cadan €N, 7}, € [%,]<* y cda(UU,en %) = A
Denotemos, para cada n € N:

¥, = {(Vnts, s W s ,V,fig“‘-s]') s (o L S(n]} ; (3.5)

donde:
. V,;} ¢ es el i-ésimo abierto del s-ésimo basico de 75;
m S(n) es la cantidad de basicos de ¥7,;
m k(n,s) es la cantidad de abiertos del s-ésimo bésico de 7;,; v
= B, . es el elemento de AU {(}} del s-ésimo basico de 7, .

Notemos que, con esta notacion, tenemos que:

cla (U U {(an,_,,, ey Wekagonasy V"k’(:?s))ﬂ,.,a 1<s< S(n}}) =A. (3.6)

nel
Para cada n € N, sea:
Lo = {(Busi Vs Vi VAT) i1 S5 <5} 3

Notemos que, por como esta definido Z,,, se tiene para todo n € N que
T, € [Ju]<. Sea J = |, cy In- Notemos que podemos expresar a J de la
siguiente manera:
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T ={(BuasiVier o Vi VE) 1<5 < Sm)neN}.  (38)

Para completar la demostracién, veamos que J € alla(A): Sea U € A“. Sea
D= X\U. Sean K € Agy Uy,...,U; abiertos en X tales que DNK =0y
DNU;#0, paral < j <1 Entonces D € (Uy,...,Ui)k. Asi, como UU,en %
es denso, tenemos que intersecta a cualquier abierto, en particular, intersecta
a (Uy,..., Ui) k. Por lo tanto, existe (Bmg:_ |7 - V}i'?s= n V:,‘(g’s)) eJ
que intersecta a (Uy,...,U;). Por el lema 3.1.4, se sigue que existen W € A€
v F € [X]=¥ tales que se satisfacen las condiciones (a), (b), (¢) v (d) de la
definicién 2.3.7. Por lo tanto, 7 es un elemento de wIlx(A), v con ello, (X, 1)
satisface la propiedad S ;,, (IIa(A), wIIA(A)) como se queria.

(2) = (1) Sea (%, : n € N) una sucesién de cubiertas abiertas de (A, 7a)
v, sin pérdida de generalidad, suponga que esta conformada por béasicos (ver el
lema 2.2.2). Paracadan € N, sea J,, = {(B;V1,...,Vin) : (V1,...,Vn)p € %}
Entonces, por el lema 2.3.1, se sigue que (7, : n € ) es una sucesién en ITa (A).
Como (X, 7) satisface la propiedad Sg,(IIa(A), wIIa(A)), tenemos que existe
una sucesién (Z,, : n € N) tal que para cadan € N, Z,, € [7,]<“ v la familia
UnenZn s un elemento de wIla(A). Llamemos J a dicha familia. Denotemos,
para cada n € N:

Lo ={(Busi Vaare o Vi Vi) 11 < s < S(m) },
donde:
= Vi, es el i-ésimo abierto del s-ésimo arreglo de Z,:
= S(n) es la cantidad de arreglos de Z,,;
m k(n,s) es la cantidad de abiertos del s-ésimo arreglo de Z,,;
= BT es el elemento de A U {(}} del s-ésimo arreglo de Z,,.

Notemos que, con esta notacion, podemos expresar a J de la siguiente ma-
nera:

e {(Bn‘_s;v,;s,...,v,j‘_s,...,V,ﬁgﬂesi) :1<s<8n)ne N}.

Para cada n € N, sea

¥, = {(v,:,s,...,V,i,s....,v,f,&“ﬁ*‘})ﬁ S EAY < S(n)} :

Notemos que, por como estd definido 7;,, se tiene que 7, € [%,]<“ para
todon € N.

Para completar la demostracién, veamos que A = el (U Unen "ﬁ‘;) . Asi pues,
tomemos D € A y (Uy,...,U;)k una vecindad abierta bdsica arbitraria de D.
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Se sigue que DNK =0y DNU; # @ paral < j <l SeaU = X\D.

Entonces U € A°. Como J es una débilmente-ma(A)-red, tenemos que existen

(BrsiVis: - Vis - Vag™?) € I, W € A°y F € [X]< tales que se
satisfacen las propiedades (a), (b), (c) v (d) de la definicién 2.3.7. Por el lema
3.1.4, se sigue que (U, ..., U;)k intersecta a (an?s, . rV,:',s,. . 'V:{:‘IS))B Y

por lo tanto, también a |J|J,,cy 7n-Esto es, para el punto D elegido arbitraria-

mente en A, cualquiera de sus vecindades bésicas intersecta a |J|J,, en Va» POT

lo que este conjunto es denso, v por lo tanto A = el (U Unen 7/;1) Esto quiere
decir que (A, 7a) es débilmente Menger como se queria.

(2) = (3)

Sea (J, : n € N) una sucesién de elementos de IIx(A). Por hipétesis, existe
una sucesién (Z, : n € N) tal que para cadan € N, 7,, € [T.]"* ¥ U, enZn €
wlla(A). Es decir, si denotamos:

T = (B Ve V3 gy, VES) « 1 < 5 Sim)},

1 ¥n.a

entonces

T= 1) {(Buai Wik V== V3T v92 S(a) }

neN

es una débilmente-ma (A)red. Definamos, para cada n € N,

An={Ae A :Fse{l,...,S(n)}Vie {1,...,k(n,s)}
(Vi \A#0A B, CA)}
Por el lema 3.1.5, se concluye que (A,).en € I, como se queria.
(3) = (2)
Sea (J, : n € N) una sucesion en ITa (A). Por hipétesis, existe una sucesion

(Z,, : n € N) tal que para todo n € N, se tiene que Z,, € [J.]“ v {An}nen es
un elemento de D’y (A), donde, si denotamos

Ty = [ By, i Vb jgos Vi oy Ve £ T €5 S(n));

TL,S87 n,s?

entonces
A, ={Ae A :Tse {1,...,S(n)}(Vie{1,...,k(n,s)}
(Vas\A#0A B, , C A)}.

Entonces, por el lema 3.1.5, se sigue que |J,,.y Zn € wIIA(A), y con ello que
, 7) satisface la propieda in(TIA(A), wITa como se queria.
X face 1 dad Sjin(Ia(A),wITA(A i O

Del teorema anterior se tienen los siguientes corolarios:
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Corolario 3.3.1. Sea (X, 1) un espacio topoldgico. Si A es alguno de los hiper-
espacios CL(X), K(X), F(X), o CS(X), entonces (A, TA) es débilmente Menger
si y solo si X satisface Sy (ILa(A), wIIa(A)).

Corolario 3.3.2. Sea (X, 1) un espacio topoldgico. Si A es alguno de los hiper-

espacios K(X), F(X), o CS(X), entonces

1. (A, 7p) es débilmente Menger si y solo si X satisface
Syin(Mx(x)(A), wlk(x)(A))
2. (A, 7v) es débilmente Menger si y solo si X satisface

Stin(Merix)(A), wllerx)y(A)).
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Conclusiones

Actualmente, la teoria de hiperespacios es un subcampo activo de la to-
pologia general v se posiciona como una herramienta relevante para analizar
espacios topolégicos. Ademas de tener valor por si misma, su importancia tam-
bién se encuentra en su capacidad de obtener informacién de un hiperespacio
topoldgico a través de su espacio base (v viceversa), y en la posibilidad de usar-
la conjuntamente con otros subcampos de las Matematicas (como los principios
de seleccion) para lograr un estudio y comprensién mas profundas de espacios
topolégicos complicados que surgen en la practica.

Por otro lado, los principios de seleccion, que generalizan nociones de varias
ramas de las matematicas como teoria de la dimensidn, teoria de la medida,
propiedades de convergencia y espacios de funciones, tienen la misma vigencia
que la teoria de hiperespacios; ambas propician el desarrollo de herramientas
que pueden ser usadas para resolver un amplio rango de problemas, esto puede
comprobarse pues son listadas en diversas publicaciones en donde se exponen
avances recientes y aplicaciones de ambos campos.

Durante la realizacién de este trabajo, se hizo un repaso de los conceptos v
definiciones de teoria de conjuntos y de los fundamentos tedricos en topologia
sobre los que descansan estos dos subcampos; ademas, se realizd una revisién de
literatura para comprender v exponer los preliminares tedricos necesarios para
poder adentrarse en la teoria de hiperespacios v en los principios de seleccion,
v en particular, en las versiones débiles v los hiperespacios a los que se refieren
los resultados principales.

Los resultados principales aportaron a la teoria de hiperespacios v a los prin-
cipios de seleccion, estudiando dos versiones déhiles del principio de seleccion
Menger: la versién casi Menger v la version débilmente Menger. Se enuncié v
se demostré a detalle, para cada una, un teorema que las caracteriza en hiper-
espacios con la topologia hit-and-miss. Cada uno de los teoremas consiste de
tres proposiciones equivalentes. Para cada uno, la equivalencia de las primeras
dos proposiciones se enuncié en [7] sin demostracién; ademas, en este trabajo
se propuso, para cada teorema, una proposicién adicional (la tercera proposi-
cién) equivalente a las primeras dos. Estas terceras proposiciones caracterizan
los principios de seleccién en el espacio base mediante A°. En suma, este trabajo
expande la teoria disponible referente a estas dos ramas de las matematicas, v
podra ser usada para estudiar mas facilmente algunos espacios topologicos que
surgen en la préctica.
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Apéndice A

Definicion simbolica de
redes

A continuacion se presenta una forma de definir simbdélicamente los conceptos
de almost-wa(A)-network v weakly-ma (A)-network. Para este propésito, primero
definiremos a los conjuntos auxiliares G; v Ga:

Definicion A.0.1. Sea (X, 7) un espacio topolégico. Sean A, A C CL(X) tales
que son cerrados bajo uniones finitas y contienen a los conjuntos singulares.

G](U}= {(K:Ul,...,Uj') K e Ay, Uy,..., U €T,
(X\U)NK =0,(X\U)NU; #0,1 <i<lleN}

G2 (U,(B;Vi,..., Vi), (K:Uy,...,Up)) = {(W,F): W € A, F € [X]<¥,
FNW=0,BUK CW,
FNV;#0,FNU; #0,
1€i<m,1<j5<l,
m,l € N}

Decimos que ¢ C (a es una almost-ma(A)-network si:

VU € A°(30 € (v € Gi(U)(G: (U,0,$) # 0))),

donde usamos las abreviaciones [ = (B; V3,..., V) y & = (Uy,...,U)).
Decimos que { C (a es una weakly-m A (A)-network si:

VU € A(¥< € Gy (U)(30 € ¢(G2 (U,0,$) # 0))),

donde usamos las mismas abreviaciones que en la definicién anterior.
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Apéndice B

Ejemplo de basicos tomados
en los principios de
seleccion

Con fines de ilustracién, podemos pensar en los basicos seleccionados en
el principio de seleccién Menger (y en sus versiones débiles) como una tabla
con infinitos renglones, en la que el n-ésimo renglén se encuentran los arreglos
tomados de la cubierta %,,. A modo de ejemplo, se ilustra un caso particular

con S(1) =4, S(2)=1,5(3) =3, 5(4) =2

(Vlll I’121)131 1 (V11,_2- Vlz,_z' 1"13_.2)51,2- (V11,3JB1_3- (Vl]:_-})ﬂl.-l
(Vzll I’ Vz 1:1“((-1 )BQ.I . 9

(1*”31,_1)33_; | (Vgl_.z- I’:f_:z)Ba_a : (V:sl_.:;- L’;;,_:;)Ba_s

(

V.ll,_blff_.l»wi,l)&,u (1”11,2)13.1_2

Es importante notar que, a diferencia del principio de seleccion Rothberger
(v sus versiones débiles) [7], en el que de cada cubierta siempre se toma un solo
elemento, en el principio de seleccién Menger (v sus versiones débiles), no solo
de cada cubierta se toma una cantidad finita, sino que la cantidad tomada de
cada cubierta puede variar, como en el egjemplo apenas ilustrado.

Para ilustrar la seleccién de arreglos en las propiedades Sg,, (ITIa (A), allA (A))
¥ Shn(ITa(A), alla(A)), podemos hacer algo similar:

(Br,1; Vll,_l'- Vﬁl): (By,2: 1’113 Vl%z: Vl:?z)-. (B1,3;: V; ;) (B4 V11.4)
(32,12 Vzl,]" 1!22.1'- 1[/:23,1: VZ%]J ;
(B:s,li 1”231.1)-- (B3,2: 1’3.1.2‘ "?ﬁz)- (Ba,a: 1’?51_.3: V:f:s)

(Ba1; V41,:1- 1’421 Vfl) (Ba,2: 1'413)
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