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Resumen 

 

 

La presente investigación aborda la creciente necesidad de optimizar los bioprocesos en la 

economía mediante la propuesta y el desarrollo de un sistema automatizado de visión por 

computadora. Este sistema se enfoca en el monitoreo en tiempo real de un consorcio microbiano 

fotosintético de alto valor agronómico: la cianobacteria Nostoc sp. (biofertilizante, fijador de N2) 

y la microalga Scenedesmus sp. (bioestimulante). La justificación de este consorcio radica en su 

sinergia funcional y ecológica, ya que Nostoc reduce la dependencia de fertilizantes sintéticos, 

mientras que Scenedesmus enriquece el medio con metabolitos promotores del desarrollo vegetal. 

El componente central de la metodología propuesta es el entrenamiento de una Red Neuronal 

Convolucional (CNN) de última generación, específicamente la arquitectura You Only Look Once 

versión 8 (YOLOv8). Además, se apoya en el uso estratégico de la plataforma Roboflow para la 

gestión eficiente del dataset (aproximadamente 1000 imágenes microscópicas), que incluye la 

clasificación, etiquetado y procesamiento avanzado. El algoritmo permitió un diagnóstico 

preliminar en tiempo real como una medición in line de la identificación del tipo de microrganismo 

en el fotobiorerreactor. Esta primera fase preliminar es la base para el desarrollo de un modelo que 

permita monitorear parámetros críticos como el conteo preciso de heterocistos en Nostoc, un 

indicador directo de la actividad de fijación de nitrógeno, y los cambios citológicos en 

Scenedesmus, que señalan la fase de crecimiento celular óptima. El enfoque con YOLOv8 mostro 

ser una alternativa de alto rendimiento, escalable y bajo costo frente a las metodologías 

convencionales de identificación morfológica. La validación rigurosa del modelo a través de la 

matriz de confusión y métricas de precisión demostrará la fiabilidad del sistema para la 

optimización de bioprocesos, asegurando un producto de calidad superior y promoviendo la 

transición hacia sistemas agrícolas más sostenibles. Esta capacidad de control avanzado es crucial 

para maximizar la concentración de compuestos bioactivos y el rendimiento productivo en 

fotobiorreactores.  

 

Palabras clave: Inteligencia Artificial, YOLOv8, Scenedesmus sp., Nostoc sp., Biofertilizantes, 

Redes Neuronales Convolucionales. 
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Abstract 

 

This research addresses the growing need to optimize bioprocesses in the economy by proposing 

and developing an automated computer vision system. The system will focus on real-time 

monitoring of a high-value photosynthetic microbial consortium consisting of the cyanobacterium 

Nostoc sp., a biofertilizer and nitrogen fixer, and the microalga Scenedesmus sp., a biostimulant. 

This consortium is justified by its functional and ecological synergy: Nostoc reduces dependence 

on synthetic fertilizers while Scenedesmus enriches the medium with metabolites that promote 

plant growth. The core component of the proposed methodology is training a state-of-the-art 

convolutional neural network (CNN), specifically the You Only Look Once version 8 (YOLOv8) 

architecture. The methodology also relies on the strategic use of the Roboflow platform to 

efficiently manage the dataset of approximately 1,000 microscopic images, including 

classification, labeling, and advanced processing. The algorithm enables preliminary real-time 

diagnosis by providing an online measurement of microorganism identification in the 

photobioreactor. This preliminary phase lays the groundwork for developing a model that can 

monitor critical parameters, such as the precise heterocyst count in Nostoc (a direct indicator of 

nitrogen fixation activity) and cytological changes in Scenedesmus (which signal the optimal cell 

growth phase). The YOLOv8 approach is a high-performance, scalable, low-cost alternative to 

conventional morphological identification methodologies. Rigorous model validation through a 

confusion matrix and precision metrics will demonstrate the system's reliability for bioprocess 

optimization, ensuring superior product quality and promoting the transition to more sustainable 

agricultural systems. This advanced control capability is essential for maximizing the 

concentration of bioactive compounds and productivity in photobioreactors. 
 

Keywords: Artificial Intelligence, YOLOv8, Scenedesmus sp., Nostoc sp., Biofertilizers, 

Convolutional Neural Networks 
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Abreviaturas y Definiciones

Algoritmo:  

Es una sucesión finita de pasos estrictamente regulados necesarios para resolver un 

problema (Acosta, 2019) 

ANN (Artificial Neural Network):  

Redes Neuronales Artificiales. Modelos computacionales inspirados en la estructura y 

función de las redes neuronales biológicas para el procesamiento de información (Rivas y 

Mazón, 2018). 

Axón:  

Prolongación alargada de una neurona que se encarga de transmitir los impulsos nerviosos 

o señales de salida desde el cuerpo celular hacia otras células (Castañeda et al., 2023). 

Biofertilizantes:  

Productos biológicos formulados con microorganismos beneficiosos que, al aplicarse a 

cultivos, optimizan la disponibilidad y absorción de nutrientes, mejorando la fertilidad del 

suelo y reduciendo la dependencia de fertilizantes sintéticos (FAO, 2022). 

CMF (Consorcios Microbianos Fotosintéticos):  

Asociaciones naturales de dos o más poblaciones de microorganismos que realizan 

conjuntamente la fotosíntesis y promueven el crecimiento vegetal (Ochoa y Montoya, 

2010). 

Convolutional Neural Network (CNN): 

Redes Neuronales Convolucionales. Algoritmo de Machine Learning, que mezcla la salida 

de múltiples árboles de decisión para alcanzar un solo resultado (IBM., 2024). 

DL (Deep Learning):  

Aprendizaje Profundo. Subcampo del Machine Learning basado en redes neuronales 

artificiales con múltiples capas de abstracción para modelar patrones complejos en los 

datos (Deng y Dong, 2013). 
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Heterocistos:  

Células especializadas, de mayor tamaño y pared engrosada, presentes en ciertas 

cianobacterias filamentosas como Nostoc sp., cuya función principal es la fijación de 

nitrógeno atmosférico en condiciones limitantes de este nutriente (Nicoletti, 2022). 

IA (Inteligencia Artificial): 

Rama de la informática dedicada al desarrollo de sistemas capaces de realizar tareas que 

normalmente requieren inteligencia humana, como la percepción visual y la toma de 

decisiones (Rusell y Norvig, 2004). 

ML (Machine Learning): 

Aprendizaje Automático. Disciplina de la IA que permite a las computadoras aprender y 

mejorar automáticamente a partir de la experiencia y los datos sin ser programadas 

explícitamente para cada regla (Wang et al., 2025). 

You Only Look Once (YOLO): 

Es una familia de modelos para visión artificial lanzado por la empresa de Ultralytics, 

siendo un código abierto pre-entrenado (Jocher et al., 2024).  

Pirenoide:  

Estructura proteica localizada dentro de los cloroplastos de algas verdes, como 

Scenedesmus sp., que actúa como centro de fijación de carbono al almacenar la enzima 

RuBisCO (Kroth, 2015). 

RuBisCO:  

Ribulosa-1,5-bisfosfato carboxilasa/oxigenasa. Enzima crucial en el proceso de fotosíntesis 

encargada de la fijación del carbono atmosférico (von Caemmerer, 2020). 

Visión Artificial:  

Campo de la inteligencia artificial que entrena a las computadoras para interpretar y 

comprender el mundo visual mediante el procesamiento de imágenes digitales y videos, 

imitando la capacidad de la visión humana (Jocher et al., 2023)
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Capítulo 1 

Introducción. 
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Actualmente, la Inteligencia Artificial (IA) se ha consolidado como una herramienta transversal 

en el desarrollo de bioprocesos, mejorando el análisis de datos y optimizando el cultivo de 

microorganismos en biorreactores y fotobiorreactores. Estudios recientes, como el de Jia et al. 

(2022) demuestran la capacidad de la IA para la predicción de Parámetros Críticos del Proceso 

(CPP, por sus siglas en inglés) basándose en datos de sensores en línea, por ejemplo, en la digestión 

anaeróbica. Otro caso de éxito es la producción de insulina humana a partir de la actividad 

metabólica de la bacteria Escherichia coli, donde la IA está involucrada en la monitorización y el 

control predictivo de las condiciones de fermentación (Ritai, 2025). En la industria farmacéutica, 

estas predicciones son vitales para evitar desviaciones en parámetros fisicoquímicos que afecten 

la producción a gran escala, asegurando así el rendimiento y la calidad de los productos. 

En el ámbito agroindustrial, la literatura destaca a los Consorcios Microbianos Fotosintéticos 

(CMF) como una alternativa potencial para el desarrollo de biofertilizantes, sustituyendo a los 

agroquímicos sintéticos. En el trabajo de Liu et al. (2024), se analiza la interacción entre consorcios 

microbianos y el cultivo de plantas medicinales, reportando mejoras significativas en el 

rendimiento y calidad de los cultivos. Los autores concluyen que estos consorcios representan una 

estrategia sostenible con mínimo impacto ambiental, definiendo al fertilizante microbiano como 

un insumo que mejora la estructura del suelo y la resistencia de las plantas, aunque su 

implementación enfrenta desafíos técnicos para garantizar su estabilidad en el campo. 

Además de su aplicación agrícola, la investigación en consorcios ha demostrado su eficacia en la 

biorremediación, específicamente en la remoción de metales pesados y contaminantes orgánicos 

en aguas residuales (Amores et al., 2015). Desde una perspectiva energética, se han desarrollado 

biocombustibles mediante estos sistemas; la obtención de biodiesel y la generación de energía 

eléctrica a partir de celdas de combustible microbianas, que es una de las líneas de investigación 
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recientes de distintos institutos académicos internacionales (Shehhi et al., 2025). 

Tecnológicamente, los CMF ofrecen una mayor eficiencia en la síntesis de productos y la 

conversión de nutrientes a menor costo en comparación con la utilización de cultivos puros 

(Hernández, 2016). Sin embargo, a pesar de su amplia distribución ecológica y potencial 

biotecnológico, la identificación y monitoreo de estos microorganismos enfrenta un cuello de 

botella. Los métodos tradicionales son laboriosos y dependen de personal altamente especializado. 
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2.1 Consorcios Microbianos Fotosintéticos.  

Los Consorcios Microbianos Fotosintéticos (CMF) son aquellos que conjuntamente 

desarrollan la tarea de fotosíntesis para proveer a las plantas huésped energía, promover su 

crecimiento y mejorar su rendimiento, formando una asociación natural de dos o más poblaciones 

de microorganismos (Ochoa y Montoya, 2010). Están constituidos principalmente por bacterias 

fotosintéticas, cianobacterias, microalgas y hongos. Estos CMF tienen la capacidad de fijar 

carbono y nitrógeno, almacenar energía y son potenciales en la investigación de nuevos 

biofertilizantes (Afanador et al., 2021). Diversos grupos de microorganismos en el consorcio se 

benefician mutuamente, creando un sistema complejo e invisible, véase en la Figura 1. Los 

consorcios no solo favorecen su hábitat, sino que también facilitan el crecimiento y desarrollo de 

procesos vitales en las plantas, un ejemplo son las microalgas Chlorella spp.,Dunaliella spp. Y 

Haematoccocus spp. que producen hormonas estimulantes de crecimiento en plantas (Pasquale et 

al., 2018; Afanador et al., 2021). Están presentes en diferentes nichos ecológicos, pueden incluso 

competir por espacio y nutrientes en la base de las raíces para inhibir el crecimiento de especies 

fitopatógenas (Jiménez, 2024). 

Figura 1. Ilustración de los consorcios microbianos en plántula 

de maíz en la zona radicular. Imagen creada con BioRender.com 
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La coexistencia de los microorganismos evidencia un estilo de vida sinérgico donde el crecimiento 

y el flujo de nutrientes son más efectivos y eficientes que en poblaciones que funcionan de forma 

individual (Jiménez et al., 2023). Su asociación puede aumentar la resistencia a las fluctuaciones 

ambientales y promover la estabilidad de los miembros. Su comunicación mediante intercambio 

de sustancias o señales moleculares, crean vínculos a través de interacciones fisicoquímicas 

ejerciendo un control positivo o negativo sobre el crecimiento y metabolismo de otros miembros 

o poblaciones microbianas, además de asignar tareas a cada miembro del consorcio (Weiland, 

2021). La optimización en la disponibilidad de nutrientes, lograda por la ejecución de funciones 

multifase y especializadas de los miembros del consorcio, resulta en un mayor rendimiento de las 

plantas huésped. (Ochoa y Montoya, 2010). 

Los consorcios ejercen mecanismos directos, como la producción de fitohormonas (ácido 

indolacético, giberelinas, citoquininas) que facilitan la absorción de nutrientes mediante la fijación 

de nitrógeno y la solubilización de fósforo (capacidades que poseen los microorganismos que 

integran el consorcio; O`Connor, 2019). Igualmente, realizan mecanismos indirectos: dan 

protección contra factores de estrés bióticos y abióticos, estableciendo relaciones simbióticas 

(rizobiales, micorrízicas). Además, la heterogeneidad de la rizosfera y la composición de su 

microbioma modulan la arquitectura del sistema radicular. Esta plasticidad permite a la planta 

explorar el suelo de manera más eficaz, optimizando su captación de elementos esenciales 

(Fósforo, Nitrógeno, Potasio, entre otros) (Alori et al., 2017; O`Connor, 2019). 

2.2 Biofertilizantes. 

Según la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO, por 

sus siglas en inglés) un biofertilizante es un producto biológico a base de microorganismos 
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beneficiosos seleccionados, los cuales han sido extraídos de los propios cultivos en su ambiente 

natural, optimizan la fertilización y absorción de nutrientes (FAO, 2022). También se les conoce 

como fertilizantes bacterianos, inoculantes microbianos o bioinoculantes. Son inofensivos para los 

seres humanos y su aplicación puede mejorar la fertilidad del suelo y constituye una práctica de 

manejo agroecológico clave, ya que contribuye a disminuir el uso de fertilizantes químicos 

sintéticos, bajar los costos de producción y reducir el impacto ambiental de sintéticos (Mestre et 

al., 2024). 

Al ser fertilizantes naturales contienen una gran población de microorganismos latentes que 

mejoran la productividad del suelo, ya sea fijando nitrógeno atmosférico N2, solubilizando el 

fósforo P del suelo o estimulando el crecimiento de las plantas a través de la síntesis de sustancias 

promotoras de crecimiento, que activan el proceso biológico para facilitar la disponibilidad de 

nutrientes (Alori et al., 2017). Se pueden crear bioinoculantes para diversos tipos de suelo y 

sistemas de cultivo (Afanador, 2021). En la Tabla 1. se exponen las funciones de algunos de los 

nutrientes que aportan los biofertilizantes, necesarios para el crecimiento en plantas. 

Tabla 1. Funciones de los nutrientes esenciales de las plantas. 

Nutriente Función Referencia 

Nitrógeno 

(N2) 

Es un macronutriente que se usa para producir 

aminoácidos, por lo tanto, importante para la síntesis de 

proteínas vegetales, enzimas y la clorofila. Compuesto 

esencial en la fotosíntesis, llega a influir en la floración y 

rendimiento de granos, deficiencia de este nutriente puede 

causar clorosis. 

(Zayed et al., 

2023) 

Fosforo (P) 

Macronutriente esencial para las regulaciones de las 

respuestas fisiológicas y aumento de tolerancia al estrés 

abiótico, como el calor, salinidad, sequía, encharcamiento, 

(Khan et al., 

2023) 
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En México, la aplicación y desarrollo de biofertilizantes representa una alternativa agro-

biotecnológica viable para la seguridad alimentaria, ya que el uso excesivo e inapropiado de los 

fertilizantes artificiales ha provocado un impacto ambiental que afecta la calidad del suelo, el agua, 

el aire, y la biodiversidad (Chávez et al., 2020). El uso sin supervisión ha conllevado a depender 

de los fertilizantes sintéticos que generan desbalances en los ciclos biogeoquímicos y las cadenas 

tróficas, suscitando a que enfermedades, plagas y malezas se vuelvan resistentes ante estos 

fertilizantes. Sin embargo, con el desarrollo e investigación de nuevos biofertilizantes y su 

aplicación podría disminuir los daños que año con año han ido en aumento (Chávez et al., 2020). 

2.2.1 Tipos de Biofertilizantes.  

Dado que los microorganismos latentes que integran los biofertilizantes desempeñan diferentes 

funciones, pueden clasificarse de acuerdo con su actividad específica:  

Fijadores de N2: Microorganismos capaces de producir enzimas que toman el nitrógeno 

atmosférico y con las azúcares que obtiene de la planta fijan el nitrógeno. Las 

cianobacterias filamentosas poseen heterocistos, estructuras especializadas para la 

altas concentraciones de CO₂ y la toxicidad por metales 

pesados. Ya que es parte de los ácidos nucleicos, 

membranas celulares y del ATP; debe estar presente en 

adecuadas cantidades en las células vivas antes de la 

división celular.   

(Beltrán et al., 

2022) 

Potasio (K) 

Macroelemento involucrado en la regulación osmótica de 

las células de la planta, ahorro de agua, mantenimiento de 

la turgencia, formación de aminoácidos y proteínas, 

involucrado en la translocación de azúcares y otros 

productos. 

(Lazcano, 

2006) 
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fijación de nitrógeno, algunos géneros involucrados son: Azotobacter, Azospirillum, 

Cyanobacteria, Nostoc (Santana et al., 2016). 

Microorganismos solubilizadores de fosfato: Aquellos que dinamizan el P disponible del suelo 

a través de procesos de solubilización, los organismos implicados pueden ser bacterias, 

hongos, algas o protozoos, algunos de los géneros son: Pseudomonas, Bacillus, 

Rhizobium, Aspergillus, Penicillium, Trichoderma (Patiño y Sanclemente, 2014; Khan 

et al., 2010). 

Rizobacterias Promotoras del Crecimiento Vegetal (RPCV): Son bacterias que colonizan el 

sistema radicular para favorecer el crecimiento y rendimiento de las plantas. Algunos 

de los géneros reportados como RPCV son: Agrobacterium, Azospirillum, Azotobacter, 

Bacillus, Chromobacterium, Enterobacter, Erwinia, Klebsiella, Micrococcous, 

Pseudomonas y Rhizobium (Moreno et al., 2018; Ahemad y Kibret, 2013). 

Movilizadores de fosfato (micorrizas): Son hongos micorrícicos arbusculares y Hongos 

Solubilizadores de Fósforo (HSF) que dan fertilidad al suelo, promueven la 

disponibilidad del fósforo y facilitan el transporte a la planta. Se han reportado 

resultados favorables con géneros como: Aspergillus y Penicillium (Arias, 2019). 

Movilizadores de zinc y potasio: Son microrganismos como, bacterias, hongos que ayudan a 

la planta a absorber el zinc y/o potasio del suelo que están en formas insolubles, 

produciendo ácidos orgánicos donde promueven el crecimiento y vigor de la planta. 

Algunos de estos microorganismos son de los géneros: Pseudomonas Bacillus y 

Rhizobium (Jiménez et al., 2023). 
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2.3 Scenedesmus sp. 

Las algas verdes representan el grupo de algas más diverso, con aproximadamente 17.000 especies 

conocidas (Bellinger y Sigee, 2015). Scenedesmus sp. es una especie del género Scenedesmus 

perteneciente al filo Chlorophyta que se encuentra comúnmente como un alga verde de agua dulce 

(ríos y lagos mayormente) conocida por su rápida tasa de crecimiento y potencial bioestimulante 

para el crecimiento de plantas (Wei y Huang, 2024). Se caracterizan por una coloración verde 

brillante debido a la presencia de clorofilas a y b (Bellinger y Sigee, 2015).  

2.3.1 Clasificación Taxonómica 

● Dominio: Eukarya 

● Reino: Plantae 

● División/Filo:Chlorophyta 

● Clase:Chlorophyceae 

● Orden: Sphaeropleales 

● Familia:Scenedesmaceae 

● Género: Scenedesmus 

● Especie: Scenedesmus sp. 

2.3.2 Morfología. 

Scenedesmus son células cilíndricas (o con forma elipsoidales o fusiformes) con colonias formadas 

por hileras a lo largo de su eje longitudinal, normalmente simples, o dobles, de 2, 4, 8 a 16 células 

unidas y no presentan ramificación verdadera (Bellinger y Sigee, 2015) ejemplos en la Figura 2. 

Estas agrupaciones son conocidas como “cenobios” y se mantienen constantes, cabe destacar que, 
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estas colonias se forman cuando las células hijas de una célula (madre) recién dividida no logran 

separarse. Según Lürling en 2003 Scenedesmus sp. desarrolla este patrón de ordenamiento de los 

cenobios como protección y adaptabilidad al ambiente. Este género presenta morfología plástica; 

donde algunas especies desarrollan espinas en las células de los extremos como defensa ante 

depredadores (zooplancton) (Lürling y Van Donk, 1997). Los factores ambientales como la 

disponibilidad de nutrientes y el pH son determinantes para la formación de cenobios. Cada célula 

individual posee un cloroplasto parietal con un pirenoide, responsable del almacenamiento del 

RuBisCO (enzima esencial para la fotosíntesis) por lo tanto, de la captura de CO2 (Kroth., 2015). 

 

Figura 2. Cenobios de 2,4 y 8 células de Scenedesmus sp. vistas en este estudio. Imagen propia. 
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2.3.3 Importancia Ecológica. 

El género Scendesmus desarrolla un papel fundamental en la fotosíntesis debido a que su pirenoide 

aloja a la enzima carboxilasa primaria del proceso fotosintético RuBisCO (Ribulosa-1,5-bifosfato 

carboxilasa/oxigenasa) que es crucial tanto para la fijación de carbono como para la 

fotorrespiración de las plantas (von Caemmerer, 2020). 

Scendesmus ocupa un lugar en el ecosistema como un alga verde que ayuda como bioindicador de 

altos niveles de nutrientes eutrofización, como nitrógeno y fósforo en cuerpos de agua dulce (lagos, 

embalses, charcas y ríos de curso lento) (Qin et al., 2016) (Vizcaíno, 2022). Según investigaciones 

previas por Ishaq y colaboradores en 2016, el género Scenedesmus produce compuestos químicos 

inhibidores del crecimiento de microorganismos patógenos, lo cual contribuye activamente al 

equilibrio de su hábitat (Kim et al., 2007). Asimismo, la composición de sus colonias y sus rasgos 

morfológicos permiten diagnosticar la calidad del medio acuático e indicar las presiones 

ambientales que ocurren en un ecosistema (Vizcaíno, 2022). 

2.3.4 Aplicaciones en la Biotecnología. 

Biorremediación: Por su capacidad de fijación de carbono y su adaptabilidad, se han podido 

desarrollar sistemas de biorremediación en zonas donde las moléculas de carbono son 

abundantes (ejemplo: aguas residuales) y necesitan una descontaminación de estas 

sustancias corrosivas (Andrade et al., 2009). 

Biofertilizantes: Una de sus principales aplicaciones es en el desarrollo de nuevos biofertilizantes, 

donde la biomasa residual de Scenedesmus sp. ha llegado a obtener resultados 

prometedores sobre el crecimiento de plantas de interés industrial (Ferreira et al., 2019). 

Obtención de metabolitos activos y vitaminas: Estudios reportan que Scenedesmus es una rica 

fuente de metabolitos activos, los cuales son de alta demanda en la industria farmacéutica, 

https://www.sciencedirect.com/author/7003449035/susanne-von-caemmerer
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cosmética y de alimentos, un ejemplo, es la obtención de astaxantina, carotenoide capaz de 

proteger las células, los lípidos y las lipoproteínas de membrana del daño oxidativo (Quin 

et al., 2008). También, aunque no es una fuente usual, participa en la obtención de 

vitaminas como la vitamina C, B1 y B2 (Ishaq et al., 2016). 

2.4 Nostoc sp. 

Nostoc sp. es una especie de cianobacteria fotosintética del género Nostoc, perteneciente a la 

familia Nostocaceae y del orden Nostocales, común en ambientes iluminados principalmente en 

cuerpos de agua dulce y sistemas terrestres tropicales, templados y polares. Este género puede 

existir en colonias micro y macroscópicas caracterizadas por estar compuestas de filamentos 

envueltos por un mucilago gelatinoso, derivando secuencias lineales de células de color verde-

azulado generalmente (Lee et al.,2021). Al ser eubacterias crecen de forma autótrofa obteniendo 

su fuente de carbono del CO2, y desarrollando un mecanismo fotosintético para la obtención de 

oxígeno (Dembitsky y Ezanka, 2005). Conocidas por su capacidad de fijar nitrógeno y su 

capacidad de contribuir en la captura de CO2 en ambientes pobres de nutrientes (Nicoletti, 2022).  

2.4.1 Clasificación Taxonómica 

● Dominio: Bacteria 

● Reino:Bacillati 

● División/Filo:  Cyanobacteria 

● Clase: Cyanophyceae 

● Orden: Nostocales 

● Familia: Nostocaceae 

https://www.ncbi.nlm.nih.gov/datasets/taxonomy/1783272/
https://www.ncbi.nlm.nih.gov/datasets/taxonomy/1161/
https://www.ncbi.nlm.nih.gov/datasets/taxonomy/1162/
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● Género: Nostoc  

● Especie: Nostoc sp. 

2.4.2 Morfología  

Nostoc se caracteriza por colonias formadoras de secuencias lineales, sus filamentos son 

uniseriados como si fueran un collar. Las células de Nostoc sp. presentan forma amorfa o en forma 

de barril (Nicoletti, 2022). En su secuencia celular, se presentan “heterocistos” los cuales se 

caracterizan por su mayor tamaño y por ser células redondeadas, refringentes con apariencia vacía; 

estas estructuras son especializadas en la fijación de nitrógeno atmosférico y se forman en 

condiciones de carencia de nitrógeno (Figura 3.). Una importante característica del género Nostoc 

es que producen estructuras filamentosas móviles cortas llamadas hormogonios, las cuales sirven 

para su reproducción siendo esporas que se producen por la rotura de filamentos o la 

descomposición de cualquier célula vegetativa (Dembitsky y Ezanka, 2005) (Nicoletti, 2022).  
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Figura 3. Morfología de Nostoc sp., señalado sus heterocistos, estructuras especializadas en fijación de nitrógeno. Imagen propia. 

2.4.3 Importancia Ecológica. 

Ecológicamente esta cianobacteria realiza alianzas simbióticas con distintos organismos, 

incluyendo diversos hongos, formando “cianolíquenes”. La cianobacteria es capaz de convertir 

moléculas inorgánicas en metabolitos secundarios facilitan la aportación de nutrientes mediante 

fusión o indirectamente, y los hongos brindan agua y protección (Nicoletti, 2022).  

Gracias a su capacidad de fijar nitrógeno atmosférico, su presencia representa una ventaja en 

ambientes pobres en nitrógeno liberándolo y mejorando la formación del suelo en el caso de 

hábitats terrestres, o aumentando los niveles de nitrógeno en ambientes acuáticos. Algunas de las 

especies de Nostoc pueden filtrar la luz ultravioleta que es dañina para ambientes terrestres o poco 

profundos (Dodds et al., 2008).  
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2.4.4 Aplicación en la Biotecnología. 

Biorremediación agrícola: Es objeto de estudio en la remoción de metales pesados como Ni (II), 

Cu (II) y Cr (III) resultando ser una alternativa prometedora y viable (Ghorbani et al., 

2022). Ha sido estudiada junto al alga Scenedesmus sp. para la biosorción de uranio, debido 

al preocupante impacto de la industria nuclear en el medio ambiente donde estos 

organismos representan una alternativa económica y segura (Ismaiel et al., 2022).  

Biofertilizante: Se ha utilizado como biofertilizante por su captación de nitrógeno, además de la 

excreción de carbono que mejora la fertilidad del suelo brindando crecimiento, rendimiento 

y valor nutricional en plantas, y considerando la biomasa obtenida de esta cianobacteria 

que posteriormente estimula el crecimiento de los cultivos a su alrededor (Ammar et al., 

2022). 

Metabolitos Bioactivos: Es potencial en el desarrollo de nuevos productos farmacológicos y 

nutracéuticos, debido a sus metabolitos activos, además se ha cultivado desde los años 80 

como suplemento dietético (Nicoletti, 2022). El extracto etanólico y el extracto intracelular 

metanólico han demostrado actividad anticancerígena contra el cáncer de colon y de 

pulmón (Lee et al., 2021). 

2.5 Métodos tradicionales para identificación de microorganismos.  

La identificación de microorganismos en laboratorio continúa empleando métodos polifásicos, 

aunque suelen ser confiables, presentan limitaciones en cuanto al tiempo de procesamiento, 

utilización de equipos y reactivos costosos, requieren de personal con conocimiento especializado 

(Hernández et al., 2016). No obstante, se combina información genética y fenotípica para tener un 

resultado más acertado, esto representa una barrera para muchos investigadores ya que el requerir 

información genética resulta elevado el costo y a su vez tardado, y en muchos casos, la limitada 
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información disponible para su comparación con otros estudios que involucren los mismos 

microorganismos de interés (Peraza et al., 2013).  

Estas metodologías para la caracterización microbiana resultan fundamentales y necesarias para 

diferentes disciplinas, entre las que destacan la biotecnología, la agricultura, la genética, la 

ecología, la conservación, la medicina, entre otras (Martínez y Galván, 2023). La mayoría sigue 

métodos tradicionales, los cuales podrían clasificarse como métodos clásicos fenotípicos, y 

métodos moleculares o genotípicos (Bou et al., 2011). 

2.5.1 Métodos Fenotípicos. 

Estos métodos se basan en la observación de características físicas y metabólicas de los 

microorganismos, es decir, características observables como su morfología de colonias, forma de 

las células, desarrollo y propiedades bioquímicas (Martínez et al., 2023). El cultivo de los 

microorganismos es necesario para estos métodos. La selección adecuada del medio de cultivo es 

fundamental para su crecimiento óptimo para que, en conjunto con las condiciones de incubación 

(temperatura y nutrición) e inoculación favorezcan el desarrollo y el proceso de identificación de 

los organismos encontrados (Bou et al., 2011). Debido a esto, la mayoría de los métodos dependen 

de la velocidad de crecimiento y el número de pruebas que se deban hacer; son ser de un costo 

relativamente bajo, pero llegan a ser tardados, oscilando entre las 24 y 96 horas para el crecimiento 

de los microorganismos, para completar la identificación (Spiegelman et al., 2005). 

Algunas de los métodos fenotípicos y pruebas bioquímicas que se utilizan son:  

Pruebas microscópicas y macroscópicas: Se realizan con ayuda de un microscopio óptico o un 

estereoscopio correspondientemente, se identifica la morfología (forma de las células, 

morfología de colonias, presencia y disposición de flagelos, presencia de endosporas, entre 

otras) metabolismo y hemólisis (en el caso de pruebas clínicas) (Bou et al., 2011). Aunque 
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debido al uso necesario de un microscopio óptico para la identificación, depende de la 

calidad del mismo para la exactitud y la posibilidad de distinguir bien la morfología o el 

color de la tinción (Hervé, 2015). 

Técnica de Tinción de Gram: Empleada específicamente en bacterias, en la cual se diferencian dos 

grupos: bacterias Gram (+) y bacterias Gram (-) que se visualizan a través de un 

microscopio óptico. Esta técnica permite diagnosticar infecciones y el costo del kit de 

tinción oscila entre los $629 y $1,759 pesos mexicanos, de acuerdo al vendedor 

MERCALAB (2025). Aunque con esta técnica por el proceso que conlleva no es posible 

una monitorización en tiempo real (Rodríguez y Arenas, 2018). 

MALDI-TOF espectrofotometría de masas (Desorción/Ionización Láser Asistida por Matriz con 

Analizador de Tiempo de Vuelo): Esta técnica llega a ser precisa y rápida, además, se puede 

lograr identificar el organismo de investigación hasta nivel especie. Se necesita de un 

equipo especializado y requiere de monitoreo frecuentes, además de una preparación de 

muestra específica y crucial para la correcta lectura dependiendo del microorganismo, el 

precio de realización resulta costoso, así mismo, el número de las bases de datos 

disponibles para la comparación sigue siendo limitado (Bou et al., 2011; Siller et al., 2017). 

Crecimiento a distintas concentraciones de NaCl y pH: Gradientes de temperaturas, crecimiento 

en condiciones anaeróbicas, actividad peroxidasa, producción de ácidos a partir de la 

degradación de diferentes azúcares, utilización de diferentes fuentes carbonadas, hidrólisis 

de caseína, esculina, gelatina, caseína, etc. (Carrasco et al., 2020).  

Es importante señalar que el éxito de estas pruebas depende de las condiciones del laboratorio y 

las herramientas a utilizar, al igual, que la experiencia de quien realice la identificación 

morfológica por medio de los métodos fenotípicos ya que algunas veces las características 
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observables son comunes entre especies diferentes y llegan dar resultados confusos (Bou et al., 

2011). 

2.5.2 Métodos Moleculares o genotípicos. 

Son aquellos métodos que se realizan por medio de estudios taxonómicos o de filogenia, donde se 

encuentran técnicas basadas en secuenciación genética, en estas se detectan la presencia de genes 

de resistencia conocidos que normalmente se le llaman “genes dianas” que están presentes para 

distintos microorganismos. No obstante, una de sus principales limitantes es la inversión o coste 

elevado, además, del requerimiento de equipos e infraestructura bioinformática capaces de 

realizar, procesar y almacenar la información obtenida, y por consiguiente de expertos en el 

análisis de los datos (Schloss et al., 2016). 

Uno de los principales genes diana, es el gen 16S ARNr, aunque también se utilizan los marcadores 

moleculares: 23S ARNr y 55 ARN. Estos genes ayudan a observar las diferencias en las secuencias 

genómicas; por lo mismo, permite establecer las relaciones filogenéticas más precisas (Martínez 

et al., 2022). Esta técnica requiere de PCR y el uso de programas bioinformáticos, por lo tanto, el 

procedimiento para la extracción de ADN y obtener muestras puras es crucial y llega a ser tardado, 

además si se consideran todos los equipos y reactivos necesarios para esta técnica, el costo se eleva 

(Hervé, 2015). 

2.6 Inteligencia Artificial. 

La Inteligencia Artificial (IA) es una rama de las ciencias computacionales que busca simular 

capacidades cognitivas humanas mediante sistemas informáticos. Según Russell y Norvig en 2004, 

la IA permite desarrollar agentes capaces de percibir su entorno y realizar acciones que maximicen 

sus posibilidades de éxito en una tarea u objetivo determinado (Russell y Norvig, 2004). En el 
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contexto de los bioprocesos, la IA ofrece herramientas para automatizar tareas complejas como la 

identificación taxonómica, reduciendo el sesgo inherente a la observación humana y mejorando la 

eficiencia del análisis (Zhang et al., 2022). 

2.6.1 Aprendizaje Automático (Machine Learning) y Aprendizaje Profundo 

(Deep Learning). 

El Aprendizaje Automático o Machine Learning (ML) es un subcampo de la IA que se centra en 

el desarrollo de algoritmos que permiten a las computadoras aprender a partir de datos empíricos. 

A diferencia de la programación tradicional, donde se dictan reglas explícitas, en el ML el sistema 

identifica patrones y genera sus propias reglas de predicción (Bishop, 2006). 

Dentro del ML, el Aprendizaje Profundo o Deep Learning (DL) ha emergido como una técnica 

revolucionaria para el procesamiento de datos no estructurados, como imágenes y video. El DL 

utiliza arquitecturas compuestas por múltiples capas de procesamiento no lineal, lo que permite 

aprender representaciones de datos con múltiples niveles de abstracción (LeCun et al., 2015).  

Más aún la ventaja del DL frente a los algoritmos tradicionales de ML es la mejora en su 

rendimiento conforme aumenta el volumen de información disponible, volviéndolos ideales para 

tareas de visión artificial complejas. 

2.6.2 Redes Neuronales Convolucionales (CNN). 

Las Redes Neuronales Convolucionales (CNN, por sus siglas en inglés) son un tipo especializado 

de red neuronal profunda diseñadas específicamente para procesar datos con estructura de 

cuadrícula, como las imágenes digitales. Su arquitectura se inspira en la organización de la corteza 

visual animal, donde neuronas individuales responden a estímulos en regiones restringidas del 

campo visual conocidas como campos receptivos (Hubel y Wiesel, 1962). 
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Una CNN típica se compone de tres tipos principales de capas (Figura 4.): 

Capas Convolucionales: Son el núcleo de la red ya que aplican filtros (kernels) matemáticos que 

se deslizan sobre la imagen de entrada para extraer características locales como bordes, texturas y 

formas (Sierra, 2022). 

Capas de Agrupamiento (Pooling): Reducen la dimensionalidad espacial de los mapas de 

características, disminuyendo la cantidad de parámetros y el coste computacional, además de 

proporcionar invariancia a pequeñas traslaciones y distorsiones (Lubinus et al., 2021). 

Capas Completamente Conectadas (Fully Connected): Ubicadas generalmente al final de la 

arquitectura, estas capas toman las características de alto nivel extraídas y realizan la clasificación 

final o la predicción de coordenadas (Lubinus et al., 2021). 

  

Figura 4. Arquitectura de una Red Neuronal Convolucional. Partes de la figura fueron creadas con BioRender.com 

 

2.6.3 Transferencia de Aprendizaje (Transfer Learning). 

El entrenamiento de una CNN desde cero (from scratch) requiere millones de imágenes etiquetadas 

y una enorme potencia computacional. Para superar esta limitación en proyectos con conjuntos de 
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datos limitados, como es el caso de la identificación de Scenedesmus sp. y Nostoc sp., se emplea 

la técnica de Transferencia de Aprendizaje o Transfer Learning. 

Esta técnica consiste en tomar un modelo preentrenado en un conjunto de datos masivo para 

reutilizar sus pesos y realizar una nueva tarea específica. Las capas iniciales de la red, que ya han 

aprendido a detectar características básicas (líneas, curvas, colores), se "congelan" o se ajustan 

finamente (fine-tuning), permitiendo que el modelo aprenda a identificar los nuevos 

microorganismos con una cantidad reducida de imágenes y en menor tiempo (Weiss et al., 2016). 

2.7 El Modelo YOLO (You Only Look Once) 

2.7.1 Evolución hasta YOLOv8 

YOLO (You Only Look Once) es una familia de modelos de detección de objetos en tiempo real 

propuesta originalmente por Redmon et al., en 2016. A diferencia de los métodos de dos etapas 

(como R-CNN) que primero proponen regiones y luego clasifican, YOLO unifica todo el proceso 

en una única red neuronal, prediciendo las cajas delimitadoras (bounding boxes) y las 

probabilidades de clase en una sola pasada de inferencia. Esto le confiere una velocidad de 

procesamiento superior, haciéndolo ideal para aplicaciones en tiempo real. YOLOv8 es una 

versión de la familia de modelos YOLO lanzada por Ultralytics en 2023, representa la versión más 

accesible de esta arquitectura incorporando mejoras significativas en precisión y velocidad 

respecto a sus versiones anteriores (YOLOv5 y YOLOv7) (Jocher et al., 2024). 

2.7.2 Arquitectura de YOLOv8. 

La arquitectura de YOLOv8 se distingue por ser un modelo Anchor-Free (sin anclas predefinidas) 

y contar con un Decoupled Head (cabezal desacoplado). Sus componentes principales son: 
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Columna Vertebral (Backbone): Es la parte de la red encargada de extraer características de la 

imagen. YOLOv8 utiliza una versión modificada de la arquitectura CSPDarknet53, reemplazando 

los módulos C3 de versiones anteriores por el módulo C2f. Este nuevo módulo mejora el flujo de 

gradientes durante el entrenamiento y permite una extracción de características más rica y ligera 

(Lubinus et al., 2021). 

Cuello (Neck): Utiliza una estructura PANet (Path Aggregation Network) para fusionar 

características de diferentes escalas. Esto es crucial para detectar microorganismos, ya que permite 

al modelo identificar tanto objetos grandes (colonias de Nostoc) como pequeños (Scenedesmus 

individuales) con la misma eficacia (Lubinus et al., 2021). 

Cabezal (Head): Es la parte final que realiza la predicción. YOLOv8 emplea un cabezal 

desacoplado, lo que significa que procesa la clasificación (¿qué es el objeto?) y la regresión 

(¿dónde está el objeto?) en ramas separadas de la red. Además, al ser Anchor-Free, predice 

directamente el centro del objeto, simplificando el proceso y mejorando la generalización ante 

formas irregulares de microorganismos (Jocher et al., 2023). 

2.8 Procesamiento de Imágenes para IA. 

2.8.1 Preprocesamiento y Etiquetado. 

Para que las imágenes microscópicas puedan ser procesadas por la red neuronal, deben someterse 

a una etapa de preprocesamiento. Esto incluye el redimensionamiento (resizing) a un formato 

estándar cuadrado (para este estudio, 320x320 píxeles) y la normalización de los valores de píxel 

(Acosta, 2021). El etiquetado supervisado se realiza mediante herramientas como Roboflow, donde 

se delimitan manualmente las Regiones de Interés (Region of interest, ROI, por sus siglas en 
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inglés) generando archivos de anotación que contienen las coordenadas de los microorganismos y 

su clase correspondiente. 

2.8.2 Técnicas de Aumento de Datos (Data Augmentation). 

Dado que la obtención de imágenes biológicas etiquetadas es costosa, se aplicaron técnicas de 

aumento de datos para multiplicar artificialmente el tamaño del conjunto de entrenamiento y evitar 

el sobreajuste (overfitting) (López, 2021). Estas técnicas generan nuevas versiones de las imágenes 

originales aplicando transformaciones que simulan variaciones experimentales reales, tales como: 

Rotación y Volteo (Flip): Simulan la orientación aleatoria de los microorganismos en el 

portaobjetos. 

Ajuste de Brillo y Contraste: Simulan variaciones en la iluminación del microscopio. 

Ruido Gaussiano: Simula el "grano" o imperfecciones de la cámara digital. 

2.9 Métricas de Evaluación de Desempeño. 

Para validar cuantitativamente la eficacia del modelo entrenado, se utilizan métricas estándar en 

visión computacional derivadas de la Matriz de Confusión, la cual compara las predicciones del 

modelo contra las etiquetas reales (Ground Truth). 

2.9.1 Matriz de Confusión. 

La matriz de confusión es una herramienta de visualización que se utiliza para evaluar el 

rendimiento de un modelo de clasificación al comparar las predicciones del modelo con los valores 

reales. Es una matriz donde las filas representan las clases reales y las columnas las clases 

estimadas por el modelo como se indica en la ecuación [1].  
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𝐶 = [
𝑇𝑃 𝐹𝑃
𝐹𝑁 𝑇𝑁

]                                            [1] 

True Positives (TP): Verdaderos Positivos. 

True Negatives (TN): Verdaderos Negativos. 

False Positives (FP): Falsos Positivos. 

False Negatives (FN): Falsos Negativos. 

Los valores sobre la diagonal principal de la matriz indican el número total de predicciones 

correctas y los valores fuera de la diagonal el total de predicciones incorrectas o confusiones. 

2.9.2 Precisión, Exhaustividad (Recall) y F1-Score. 

Precisión (P): Indica qué porcentaje de las detecciones realizadas por el modelo son correctas y 

está definida por la ecuación [2].  

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                [2] 

De donde, una precisión alta implica pocos falsos positivos. 

Exhaustividad o Recall (R): Indica qué porcentaje de los microorganismos reales fue capaz de 

encontrar el modelo (ecuación [3]).  

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                  [3] 

Donde, un valor alto de R implica pocos falsos negativos. 

F1-Score: Es la media armónica (H) entre precisión y recall, proporcionando una métrica única 

que balancea ambos aspectos, como se ilustra en [4]. 
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𝐻 =
2

1
𝑅 +

1
𝑃

                                 [4] 

La ecuación [4], resume la capacidad del modelo para no hacer falsas alarmas (precisión) y no 

pasar por alto casos importantes (exhaustividad) y requiere que el modelo sea consistentemente 

bueno en ambas, para obtener un valor alto de F1-Score. 

2.9.3 Intersección sobre Unión (IoU). 

Para determinar si una detección es correcta, se usa el criterio de Intersección sobre Unión (IoU), 

el cual está definido en la ecuación [5]. 

𝐼𝑜𝑈 =
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
                                      [5] 

𝐴 ∩ 𝐵: Área de superposición de los cuadros delimitadores. 

𝐴 ∪ 𝐵: Área total cubierta por ambos cuadros delimitadores. 

Que mide el solapamiento entre la caja predicha y la real (ver Figura 5.)  

 

Figura 5. Representación geométrica del criterio de intersección sobre unión. 
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Si el IoU es igual a 1 la superposición es perfecta lo cual implica que la predicción es idéntica al 

recuadro de la verdad fundamental, mientras que si es cercano a 1 existe una gran superposición 

entre la predicción y el objeto real. Cuando la predicción está separada completamente del objeto 

real el valor de IoU es igual a 0, en este sentido, para la detección de objetos se establece un umbral 

generalmente de 𝜏 = 0.5 para clasificar la predicción, es decir si 𝐼𝑜𝑈 ≥  𝜏 entonces la predicción 

se cuenta como correcta (TP) y si 𝐼𝑜𝑈 <  𝜏 la predicción se cuenta como incorrecta o se descarta 

(FP). 

2.9.4 Precisión Media (mAP). 

La métrica más robusta para evaluar detectores de objetos es la Precisión Media (mAP -que 

significa Average Precision). Esta métrica calcula el promedio de la precisión para diferentes 

valores de recall. 

Sea  𝑅1 =
𝑇𝑃1

𝑇𝑃1+𝐹𝑁1
, 𝑅2 =

𝑇𝑃2

𝑇𝑃2+𝐹𝑁2
… 𝑅𝑛 =  

𝑇𝑃𝑛

𝑇𝑃𝑛+𝐹𝑁𝑛
 lo cual corresponde a n valores de TP y FP, de 

esta forma se obtienen los valores correspondientes para diferentes precisiones 𝑃1 =
𝑇𝑃1

𝑇𝑃1+𝐹𝑃1
,

𝑃2 =
𝑇𝑃2

𝑇𝑃2+𝑃𝑁2
… 𝑃𝑛 =

𝑇𝑃𝑛

𝑇𝑃𝑛+𝐹𝑃𝑛
 y posteriormente se obtiene el promedio de P de la siguiente forma: 

𝑃̅ =
∑ 𝑃𝑖

𝑛
                                         [6] 

2.9.4 Precisión Media mAP50 y mAP50-95.  

La precisión media o mAP50 considera una detección correcta si 𝐼𝑜𝑈 > τ . Mientras que mAP50-

95 promedia el rendimiento variando el umbral de IoU desde 0.5 hasta 0.95, premiando a los 

modelos que localizan los objetos con gran exactitud milimétrica. 
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3.1 Planteamiento del problema. 

Los Consorcios Microbianos Fotosintéticos (CMF) obtenidos de suelos agrícolas, 

desempeñan un papel crucial en ciclos biogeoquímicos, lo que les confiere una relevancia 

ecológica y biotecnológica significativa. Esta importancia radica en la capacidad de los 

microorganismos que los conforman para producir compuestos de alto valor añadido (Jiménez, 

2024). Entre estos organismos se encuentran las cianobacterias y microalgas, cuyo papel de 

acuerdo con estudios previos, pueden emplearse como biofertilizantes debido a su capacidad de 

fijar nitrógeno (Chittora et al., 2020), al igual de tener gran potencial para biorremediación 

(Amores et al., 2015) control biológico, bioenergía, entre otras aplicaciones (Hernández et al., 

2016). 

Sin embargo, la identificación de microorganismos en el laboratorio ha experimentado escasas 

innovaciones. Mientras que nuevas tecnologías, como la Inteligencia Artificial (IA) avanzan en 

áreas de investigación como la salud y finanzas, su desarrollo en el ámbito de los bioprocesos es 

significativamente menor. Este atraso es particularmente notable en la identificación morfológica 

y monitoreo de microorganismos con relevancia biotecnológica y agroindustrial, donde la IA no 

ha sido implementada de manera significativa, lo que resulta en un área con un desarrollo 

incipiente (Chávez et al., 2020). 

Tradicionalmente, la identificación de microorganismos y su monitoreo ha sido un proceso tardado 

por el uso de métodos polifásicos. Este enfoque se ve limitado por el alto costo y la disponibilidad 

de equipos especializados, y depende en gran medida de poseer un conocimiento amplio para poder 

realizar la identificación, y obtener resultados objetivos y precisos (Hernández et al., 2016).  
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3.2 Justificación. 

Debido a la limitada existencia de Redes Neuronales Convolucionales (CNN) especializadas en 

identificación morfológica de cianobacterias y microalgas como potenciales microorganismos en 

el desarrollo de biofertilizantes, es necesario el desarrollo de un sistema de entrenamiento para que 

la IA permita resolver problemas de precisión, reducción de tiempo y costos que tienen los métodos 

tradicionales. El presente proyecto propone la implementación de YOLOv8, un detector de 

objetos, para la identificación de la microalga Scenedesmus sp. y la cianobacteria Nostoc sp. 

Ambos géneros de microorganismos son componentes comunes en CMF y son de gran interés 

biotecnológico y agroindustrial, por su importancia como fijadores de nitrógeno y bioestimulantes 

de metabolitos.  

3.3 Hipótesis. 

Con el entrenamiento de CNN usando las imágenes etiquetadas del CMF, se podrán identificar 

Scenedesmus sp. y Nostoc sp. de manera precisa en una imagen aleatoria, utilizando IA., 

demostrando los beneficios de las redes neuronales artificiales como YOLOv8 para la industria de 

los bioprocesos. 

3.4 Objetivo General. 

Implementar y desarrollar un sistema de Inteligencia Artificial (IA) que identifique 

automáticamente los microorganismos Scenedesmus sp. y Nostoc sp., mediante el entrenamiento 

de una Red Neuronal Convolucional utilizando las herramientas de YOLOv8 y Roboflow. 
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3.5 Objetivos Particulares. 

I. Obtener un banco de imágenes para etiquetar los microorganismos de interés: Scenedesmus 

sp. y Nostoc sp. del consorcio microbiano en Roboflow. 

II. Realizar la construcción del algoritmo en el entorno de Google Colab cargando YOLOv8 

y sus librerías necesarias para el entrenamiento. 

III. Entrenar y validar el algoritmo mediante métricas de rendimiento en tiempo real en Google 

Colab generando una base de datos para la identificación morfológica de Scenedesmus sp. 

y Nostoc sp. de la Red Neuronal Convolucional de YOLOv8 y la base de datos del 

etiquetado de imágenes cargadas de Roboflow. 

 

  



43 

 

 

Capítulo 4 

Materiales y 

Métodos 
 

4.1 Recolección de la muestra 

4.2 Sistema de Captura de Fotografías del Consorcio Microbiano  

4.3 Etiquetado en Roboflow 

4.4 Construcción del Algoritmo y Entrenamiento de la Red Convolucional 

 
 

 

 

 

 

 

 

 

 

 

 

 



44 

 

En la Figura 6, se tomó la muestra del CMF de un fotobiorreactor por lote, posteriormente se armó 

el sistema para la captura de fotografías en el laboratorio y se seleccionó aleatoriamente una 

muestra representativa de 100 imágenes para construir la base de datos, las cuales fueron 

etiquetadas para identificar los microorganismos de interés en Roboflow (Dwyer y Nelson, 2019). 

Finalmente, se implementó el algoritmo en Google Colab aplicando las especificaciones 

requeridas en la red para el entrenamiento del modelo de YOLOv8, y poner a prueba la predicción 

del nuevo modelo. 

 

Figura 6. Diagrama de flujo de la metodología general. 

4.1 Recolección de la muestra  

La muestra del consorcio provino de un cultivo por lote en un fotobiorreactor RBF (Reactor 

Biológico de Flotación) tipo triangular de burbuja con un volumen de operación de 25 L, largo de 

0.81 m, ancho de 0.37 m y altura de 0.30 m, empleando el medio BG110 (Rippka et al., 1979) bajo 

condiciones controladas de luz (80 μmol fotones m-1 s-11500-2000 lx), con un fotoperiodo 12/12 

(luz/oscuridad), temperatura de entre 20-25 °C y aireación 24 horas como se esquematiza en la 

Figura 7. En general, la mayoría de los productos activos de los biofertilizantes y bioestimulantes 

comerciales se producen en la fase donde se tiene el equilibrio óptimo entre producción de biomasa 

y acumulación de compuestos deseados. En este caso se consideró la región de transición entre el 

final de la Fase Exponencial o al inicio de la Fase Estacionaria donde la producción de biomasa es 
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máxima y el contenido de compuestos primarios que actúan como estimulantes directos 

(aminoácidos y proteínas). En términos de tiempo, esto suele ser entre los 10 y 20 días de cultivo 

en condiciones optimizadas del fotobiorreactor (Figura 7). 

 

 
Figura 7. A. Fotobiorreactor (FBR) tipo triangular de burbuja con medio de cultivo BG110 y B. En crecimiento el CMF, dos 

ángulos diferentes.  

4.2 Sistema de Captura de Fotografías del Consorcio Microbiano. 

El sistema de captura de fotografías incorporó una cámara digital de 5MP (MP megapíxeles) 

equipada con un ocular de 10X para la magnificación adicional, acoplada a un microscopio óptico 

modelo VELAB VE-B50, con los objetivos de 40X y 100X y adicionalmente el ocular de 10X, se 

capturaron las tomas de los microorganismos del consorcio. Cabe resaltar que la cámara emplea 

su propio programa nativo llamado HAYEAR; el ordenador portátil ejecuta esta aplicación tras la 

conexión con el equipo fotográfico, como se muestra en la Figura 8. Una vez montado el sistema 

se capturaron 1600 imágenes para crear el banco de datos y cargarlos a la nube. 
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Figura 8. A. Sistema para la toma de fotografías del consorcio; B. Partes de la cámara digital con lente 10x.; C. Interfaz del 

programa de la cámara. 

4.3 Etiquetado en Roboflow 

Para la gestión, etiquetado y preprocesamiento del conjunto de datos, se utilizó la plataforma en 

línea Roboflow, desarrollada por Dwyer y Nelson en 2019. Esta herramienta proporciona un 

entorno integral de visión por computadora que permite organizar, anotar y preparar imágenes para 

su posterior entrenamiento en modelos de aprendizaje profundo. 

La selección de esta plataforma se fundamentó en su integración nativa con la arquitectura 

YOLOv8, lo que permite exportar los datasets directamente en el formato de coordenadas y 

estructura de carpetas requerido por el modelo, eliminando la necesidad de scripts de conversión 
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adicionales. Además, su interfaz gráfica intuitiva optimiza el flujo de trabajo, reduciendo 

significativamente el tiempo dedicado a la anotación manual de las Regiones de Interés (ROI). 

Entre las características técnicas evaluadas para su implementación en este proyecto, se destacan 

las siguientes ventajas y limitaciones en la Tabla 2. 

Tabla 2. Ventajas y Limitaciones de la plataforma Roboflow. 

Ventajas Limitaciones 

Gestión de Versiones: 

Permite generar múltiples versiones del set de 

datos (v1, v2, etc.) aplicando diferentes 

técnicas de preprocesamiento sin perder las 

imágenes originales. 

Privacidad en la versión gratuita: 

La licencia de uso libre (Community Plan) 

requiere que el conjunto de datos sea público, 

lo cual debe considerarse si se trabaja con 

información sensible o patentable. 

Herramientas de Aumento de Datos: 

Facilita la aplicación automática de 

transformaciones (rotación, recorte, ruido) 

para incrementar artificialmente el tamaño del 

set de entrenamiento. 

Dependencia de conexión: 

Al ser una herramienta SaaS (Software as a 

Service), requiere una conexión a internet 

estable para la carga y etiquetado de imágenes 

de alta resolución. 

Colaboración y Portabilidad: 

Al ser una plataforma basada en la nube, 

permite el acceso remoto al proyecto y la 

exportación de datos mediante scripts 

compatibles con entornos como Google Colab. 

Límites de almacenamiento: 

La versión gratuita posee restricciones en el 

número máximo de imágenes que se pueden 

procesar y generar por proyecto. 
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A pesar de las limitaciones, la herramienta resultó idónea para el tamaño de la muestra de este 

estudio, permitiendo realizar el preprocesamiento necesario, así como el redimensionamiento de 

manera automatizada. 

4.3.1 Definición de las clases.  

Las clases se definieron como las especies de interés “Clase 1: Scenedesmus sp.” y “Clase 2: 

Nostoc sp.”. Adicionalmente, se agregó una clase llamada “Clase 3: unknow”; con el propósito de 

que el modelo clasifique como desconocidos a otros microorganismos o formas que no coincidan 

con la morfología de las dos especies definidas. 

Se seleccionaron 100 imagenes de nuestro banco de datos de 1600 en Roboflow, donde fueron 

preprocesadas mediante un resizing de 320x320 píxeles para cumplir los requisitos del modelo 

YOLOv8. El etiquetado se realizó de forma manual, para lo cual se señalaron y encerraron en un 

recuadro las regiones correspondientes a cada clase en todas las imágenes, como se ejemplifica en 

la Figura 9. 

 

Figura 9. Etiquetado de las clases seleccionadas Scenedesmus sp., Nostoc sp. y unknow. 
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Finalmente, para construir nuestra base de datos y poder entrenar la red neuronal, el conjunto de 

100 imágenes se dividió en: 80% para entrenamiento (Train), 15% para validación (Validation) y 

5% para prueba (Test). 

4.4 Construcción del Algoritmo y Entrenamiento de la Red 

Convolucional. 

Para el entrenamiento del modelo, se debe de considerar el tamaño de la base de datos ya que esto 

puede requerir de un procesamiento demandante para los equipos de computadora portátiles 

convencionales, provocando que el entrenamiento tarde en completarse; por lo que se hizo uso de 

un cuaderno de Google Colaboratory (Google Colab) ya que este entorno ofrece los recursos 

informáticos necesarios (GPU) para realizar este proyecto de redes neuronales convolucionales. 

Además, la implementación del modelo preentrenado YOLOv8 de código abierto, se puede 

trabajar fácilmente en conjunto con estos cuadernos, ya que es parte de sus repositorios y emplean 

lenguaje Python. 

Después de crear un nuevo cuaderno en Google Colab se cambió el tipo de entorno de ejecución 

y se seleccionó Python 3, y como acelerador de hardware GPU T4; que se utiliza para este tipo de 

redes (Pires, 2023), ver Figura 10. 
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Figura 10. Configuración de entorno. 

 

Posteriormente, se exportó la base de datos de la plataforma de Roboflow en formato de script o 

fragmento de código compatible para YOLOv8, véase la Figura 11.  Este código se pegó en el 

cuaderno de Google Colab. En este se indican las dependencias y bibliotecas necesarias para la 

correcta ejecución del código y exportación de la base de datos.  

 

Figura 11. Código arrojado por Roboflow para la descarga de la base de datos. 

 

El código de la Figura 12., se transcribió de la página oficial de YOLOv8 (yolov8.org) siguiendo 

los pasos que se describen en ella para utilizar el modelo en leguaje de programación Python y 

siendo un modelo de entrenamiento con set de datos propios. 
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Figura 12. Código para la importación del modelo YOLOv8 

 

!pip install ultralytics- es un comando que nos permite instalar el paquete de Python ultralytics 

usando el comando pip. 

from ultralytics import YOLO –indica que de la biblioteca de Ultralytics se importe la clase 

YOLO 

model=YOLO(“yolov8m.pt”) – model es una variable que almacena una instancia del modelo de 

YOLO cargando el modelo “yolov8m.pt” y los pesos preentrenados con COCO (Common Objects 

in Context dataset), donde la “m” indica el tamano “medium” que necesitamos para nuestro set de 

datos. 

Una vez ejecutadas las dos celdas se generaron varios archivos por el modelo, los cuales contienen 

la información de Roboflow (imágenes y etiquetas de clases con coordenadas) y los pesos del 

modelo preentrenado de YOLO, Figura 13 A.  

Después, se escribió en una nueva celda lo siguiente:  

model.train (data = “/content/Photosynthetic-P3-4/data.yaml", epochs = 100, imgsz=320)  

La linea inicia el proceso del entrenamiento del modelo YOLOv8 con parámetros específicos, es 

decir, hace que el modelo aprenda a detectar los microorganismos del set de datos personalizado, 

donde: data.yaml es el archivo de configuración del set de datos; epochs=100 define el número de 

épocas de entrenamiento, en este caso se eligieron 100 (el modelo verá los datos 100 veces) y 
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imgsz= 320 indica el tamaño de imagen que definimos en Roboflow 320x320 píxeles, para el 

entrenamiento (Figura 13. B).  

 
Figura 13. A. Visualización de la pestaña de archivos generados tras la ejecución del código de Roboflow e importación del 

modelo YOLOv8, B. Código del modelo de entrenamiento de la red convolucional. 

 

Una vez concluido el entrenamiento, se generó el archivo best.pt. que contenía los mejores pesos 

del modelo. Después, se realizó la prueba de predicción cargando una imagen aleatoria (no 

perteneciente a la base de datos) para aplicar el modelo sobre la imagen cargada. Además, se 

obtuvieron las cajas delimitadoras de los objetos detectados, las probabilidades de clasificación y 

las detecciones dibujadas incluyendo etiquetas con las clases y niveles de confianza, empleando el 

siguiente código:  

model= YOLO("/content/runs/detect/train/weights/best.pt") 

results = model("/Copia de 11_BG112024-11-01-11-33-02-217.jpg") 

for result in results: 
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    boxes = result.boxes 

    probs = result.probs 

    result.show()  
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Capítulo 5 

Resultados y 

Discusión 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 

 

5.1 Identificación de las especies por su morfología 

Para delimitar y etiquetar los microorganismos se revisaron fuentes de información como libros, 

artículos y bases de datos (AlgaBase y NCBI), que ayudaron a determinar el género de los 

microorganismos más recurrentes en el consorcio. Scenedesmus sp. fue identificado como un alga 

ya que suelen habitar en cuerpos de agua dulce o salada; además, se realizó el análisis de la forma 

de sus colonias y células, tomando de referencia la descripción del libro Freshwater Algae de 

Bellinger y Sigee (2015), el artículo Algae de Kaštovský et al., (2019) y la base de datos AlgaBase 

(Guiry y Guiry, 2025) para realizar el siguiente análisis: 

Primeramente, se identificó como un alga verde, por lo tanto, no se consideraron algas marrones, 

amarillas, de varios colores, rojas y tampoco sus variaciones. La siguiente consideración fue la 

estructura de sus células, los organismos pertenecientes al género Scenedesmus se distinguen por 

la formación de colonias que son relativamente pequeñas y alineadas, siendo individuales o en 

conjuntos de células de: 2, 4, 8 a 16, véase en la Figura 14., donde se comparan las formaciones 

generales de otros géneros con una especie de Scenedesmus y el de una colonia observada en este 

estudio. 

 

Figura 14.  A. Formas comunes en algas. Adaptado de Bellinger y Sigee ,2015. B. Scenedesmus sp. Imagen propia. 
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Se determinó que pertenece al género Scenedesmus y se definió como una especie de este género 

(Scenedesmus sp.) ya que se identificó que cuenta con la forma estándar elipsoide que es 

característica de algunas especies de Scenedesmus y por la formación de colonias de especies 

pertenecientes a este género (Figura 15.) 

 

Figura 15.  Morfología de Scenedesmus sp. 
 

Para el caso de Nostoc sp., se utilizó el mismo libro de Freshwater Algae de Bellinger y Sigee 

(2015), porque en él se encontraban las descripciones morfológicas de organismos filamentosos. 

Aunque en un principio se consideró que pertenecía al género Anabaena, ya que cuentan con 

células y características similares, se diferenció por la formación de colonias, las especies del 

género Anabaena no forma colonias esféricas, característica que se observó en el crecimiento de 

estas cianobacterias, por otro lado, se reporta que el género Nostoc forma colonias esféricas 

gelatinosas envueltas en sustancia mucilaginosa (Nicoletti, 2022). Los organismos Nostocales 

presentan este tipo de morfología característica de colonias secuenciales lineales con heterocistos, 

semejantes a un collar. En el artículo de Corrales et al., en 2017 se caracterizó un organismo como 

Nostoc sp. el cual coincide fenotípicamente con los organismos que se visualizaban en nuestro 
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consorcio; con la presencia de mucílago gelatinoso alrededor, la forma de distribución de las 

células y la presencia de heterocistos, véase en la Figura 16. Por lo tanto, se definió que era una 

especie del género Nostoc, Nostoc sp., ya que cumplía con las características propias de este género 

mencionadas anteriormente. 

 
Figura 16.  A. Colonia de Nostoc, y detalle de crecimiento en mucilago. Adaptado de Bellinger y Sigee, 2015. B. Colonia de 

Nostoc. Adaptado de Corrales et al., 2017. C. Imágenes de Nostoc sp. obtenidas en este estudio. 

 

Se hizo una búsqueda en la plataforma NCBI (s.f.) y AlgaBase (Guiry y Guiry, 2025) para 

corroborar los niveles taxonómicos de las dos especies seleccionadas, para fines de referencia y 

literatura, no se realizó ninguna prueba o experimentación filogenética. 

Una vez determinadas las características morfológicas de los organismos seleccionados se llevó a 

cabo el etiquetado en Roboflow (Dwyer y Nelson, 2019) definiendo las tres clases como: 

Scenedesmus sp., Nostoc sp. y unknow. Es importante señalar que se realizó bajo criterio propio, 

seleccionando y delimitando con recuadros a los organismos que cumplieran con las 

especificaciones de forma ya discutidas. 
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5.2 Obtención de métricas de los Entrenamientos del Modelo 

YOLOv8 personalizado. 
 

Una vez completado el entrenamiento de la red con el nuevo modelo personalizado de YOLOv8 

se obtuvieron las métricas para determinar su rendimiento. Se realizaron pruebas de entrenamiento 

con distintos tamaños de YOLOv8 los cuales están diseñados para equilibrar la velocidad y 

precisión, entre mayor tamaño, mayor será la precisión, pero también requiere más recursos 

computacionales, por lo tanto, la velocidad se ve afectada.  

Se realizaron estas variaciones de tamaño con la finalidad de comparar los modelos obtenidos en 

términos de las métricas de exactitud, Precisión (P) y Exhaustividad (R) para llegar a un modelo 

con alta precisión. 

La primera prueba consistió en entrenar la red con 100 épocas donde se utilizaron 80% de las 

imágenes para entrenamiento, 15% para validación y 5% para prueba. Además de aplicar YOLOv8 

con distintos modelos de tamaño Nano (n), Small (s) y Medium (m) para observar el 

comportamiento de la red. En la Tabla 3., se observan las métricas del rendimiento de los modelos, 

obtenidos después de los entrenamientos correspondientes a cada tamaño. Para la métrica de la 

Precisión (P) los valores obtenidos por los modelos medium (YOLOv8m) y small (YOLOv8s) en 

general, son altos en comparación con el modelo de tamaño nano (YOLOv8n) indicando que se 

están detectando pocos falsos positivos en los dos modelos, además, cuando se observan los 

puntajes de cada una de las clases, en el modelo nano, se están identificando mayormente falsos 

positivos de la clase Scenedesmus sp.  

En el caso de la métrica de la exhaustividad los tres modelos no presentan gran variabilidad, si 

bien los valores rondan entre el 0.5 y 0.6 (50% - 60%) demostrando que los tres modelos 

identifican poco más del 50 % de los objetos de la imagen correctamente. 
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ara la métrica de la exactitud en mAP50 los modelos presentaron puntuaciones similares 

demostrando que un poco más del 50 % de los cuadros delimitadores predichos y los de salida 

coinciden resultando en una detección correcta, y en este caso el modelo Medium (YOLOv8m) 

obtuvo una puntuación de 0.585 siendo un poco más alta en comparación de los otros dos modelos 

en puntajes generales. Esto sugiere que el modelo m en términos de métricas mAP50 y mAP50-

95 supera consistentemente a los dos modelos más chicos, demostrando que podría ofrecer un 

rendimiento más equilibrado. 

Tabla 3. Métricas obtenidas de los distintos tamaños del modelo (n, s y m). 

Tamaño del 

modelo 
Precisión (P) 

Exhaustividad 

(R) 

Exactitud 

 

mAP50 mAP50-95 

YOLOv8n 

(nano) 0.579 0.578 0.538 0.319 

YOLOv8s 

(small) 0.599 0.587 0.571 0.347 

YOLOv8m 

(medium) 0.682 0.518 0.585 0.370 

  

Basándonos en los resultados al realizar las pruebas con una imagen aleatoria, pero la misma para 

los tres modelos (Figura 17.) observamos que el modelo Nano no detecta algunos objetos, por 

ejemplo, no está identificando a Scenedesmus sp., por el contrario del modelo small que, si lo 

detecta, pero en comparación con el modelo M reconoce menos objetos. En el caso del modelo 

medium se están detectando los organismos correctamente, pero reconoce muchos casos de la clase 

unknow. 
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Figura 17. Comparación del resultado de detección de los microorganismos por los distintos tamaños del modelo. 

 

Por otro lado, al analizar las métricas por clase es importante destacar que los valores del modelo 

medium son relativamente bajos en comparación con otros trabajos de investigación (Pires-

Marques, 2023) donde la Precisión y la Exhaustividad presentan valores más ideales. Se pudo 

identificar que esto resulta por el tamaño de las bases de datos, mientras más datos, mayor será el 

entrenamiento y aprendizaje en las CNN, pero la base de datos de este estudio fue muy pequeña 

para hacer un refinamiento de la red y el entrenamiento. 
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Figura 18. Matriz de correlación normalizada obtenida del modelo medium. 

 

En la Figura 18., se presenta la matriz de confusión normalizada resultante del modelo YOLOv8m 

(medium) utilizada para evaluar el rendimiento de clasificación del modelo. Las filas del gráfico 

corresponden a las predicciones del modelo y las columnas a la verdad conocida. Para las tareas 

de detección y clasificación de objetos, se añaden una columna y una fila de clases de fondo 

(background), representando el espacio que no tiene objetos. Las muestras correctamente 

clasificadas por el modelo se representan mediante celdas dispuestas diagonalmente de izquierda 

a derecha en la matriz.  Las celdas fuera de la diagonal muestran el número de organismos 

incorrectamente clasificados por el modelo para cada clase. Los valores de cada celda están 

normalizados y varían de 0 a 1. De acuerdo con esto se identifica que el modelo identifica 

correctamente la mayoría de veces las clases, además de casi nunca o nunca confundir las dos 
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clases de los organismos de interés con la tercera clase por el valor nulo para Scenedesmus sp. y 

0.04 para Nostoc sp. 

Un problema que se observa es que las puntuaciones de la primera fila indica que el modelo 

confunde las tres clases con el background, aunque hay una mayor puntuación correspondiente a 

la clase unknow también es significativamente alto en la clase Scenedesmus sp.  

 

Figura 19. Grupo de imágenes de validación de la clasificación del modelo medium con las clases etiquetadas y puntuación de 

precisión. 

 

En la Figura 19., se muestran las 15 imágenes que se ocupan para la validación de la clasificación 

de los objetos del entrenamiento. Las puntuaciones varían y rondan entre el 0.3 y 0.9 demostrando 
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que el modelo necesita refinamiento en la precisión y exactitud de los objetos para la obtención de 

puntajes más altos y consistentes. 

Más adelante se hizo la prueba de una nueva versión del modelo donde los porcentajes para el 

entrenamiento (Train), Validación (Valid) y Prueba (Test) fueron cambiados por 80%, 10% y 10% 

respectivamente. Esto para intentar un refinamiento del modelo y observar si hay variación en las 

métricas de evaluación de rendimiento, cabe resaltar que el tamaño del modelo de YOLOv8 fue el 

medium para esa prueba. Al hacer una comparación con el modelo que se realizó posteriormente 

del mismo tamaño, en las métricas obtenidas fueron similares y no muestran un cambio 

significativo.   
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Capítulo 6 

Conclusiones y 

Perspectivas 
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El presente estudio logró integrar exitosamente la caracterización taxonómica clásica con 

herramientas de visión por computadora para la detección automatizada de microorganismos en 

consorcios complejos. En el ámbito biológico, la revisión exhaustiva de literatura especializada 

(Bellinger y Sigee, 2015; Kaštovský et al., 2019) y bases de datos taxonómicas (AlgaBase, NCBI) 

permitió establecer criterios morfológicos robustos para la discriminación fenotípica. Se confirmó 

la presencia de Scenedesmus sp. mediante la identificación de cenobios elipsoidales característicos 

(2-16 células), y se logró diferenciar taxonómicamente a Nostoc sp. de géneros filogenéticamente 

cercanos como Anabaena, basándose en la morfología colonial esférica y la presencia de matrices 

mucilaginosas con heterocistos, tal como describen Corrales et al., en 2017. Esta delimitación 

manual fue crítica para garantizar la calidad del etiquetado en el set de entrenamiento. 

En cuanto a la implementación computacional, el análisis comparativo de las arquitecturas 

YOLOv8 (nano, small y medium) demostró que el modelo YOLOv8m (medium) ofrece el balance 

más eficiente entre capacidad de detección y costo computacional. Este modelo alcanzó un mAP50 

de 0.585, superando consistentemente a las variantes más ligeras y minimizando los falsos 

positivos observados en el modelo nano, particularmente para la clase Scenedesmus sp. El análisis 

de la matriz de confusión normalizada valida la capacidad discriminatoria del modelo entre las 

clases biológicas de interés, mostrando una confusión cruzada casi nula entre Scenedesmus sp. y 

Nostoc sp. 

No obstante, las métricas de exhaustividad (Recall) oscilantes entre 0.5 y 0.6, sumadas a la 

confusión recurrente con la clase background y la clase unknow, evidencian las limitaciones 

inherentes al tamaño reducido del dataset. Al contrastar estos resultados con literatura reciente 

(Pires, 2023), se concluye que, si bien la arquitectura de la red neuronal convolucional es adecuada, 

la capacidad de generalización del modelo se vio restringida por la cantidad de datos disponibles 
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para el entrenamiento, impidiendo un refinamiento mayor incluso tras la modificación de los 

porcentajes de validación y prueba (80/10/10). 

En definitiva, este trabajo establece una base metodológica sólida para el fenotipado digital de 

microalgas y cianobacterias. Para futuras iteraciones, se recomienda imperativamente la expansión 

del acervo de imágenes para potenciar el aprendizaje profundo de la red, así como la 

implementación de validación molecular (filogenética) para corroborar la identificación 

morfológica, consolidando así una herramienta de alto rendimiento para el monitoreo 

biotecnológico. 

 

Aportaciones de Tesis:  

• Se optimizó el proceso de entrenamiento utilizando pesos pre-entrenados de la arquitectura 

YOLOv8, lo que permitió al modelo adaptar conocimientos previos de detección de objetos 

a las características morfológicas específicas de los organismos. 

• Se implementó la Inteligencia Artificial para la identificación y clasificación de un 

Consorcio Microbiano Fotosintético con herramientas como YOLOv8 y Roboflow 

• Se obtuvo un modelo preentrenado para la identificación de los microorganismos de 

Scenedesmus sp. y Nostoc sp. 

• Se generó nuevo conocimiento técnico al construir y obtener un algoritmo de visión 

artificial aplicado a la biotecnología, cerrando la brecha entre la taxonomía biológica 

tradicional y las ciencias de la computación. 
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Apéndice A “Algoritmo en Python del modelo de YOLOv8” 

 
Obtenido de Roboflow (2019) y Ultralytics (2024) modificada para la implementación de la base 

de datos del Scenedesmus sp. y Nostoc sp. 

 

!pip install roboflow 

 

from roboflow import Roboflow 

rf = Roboflow(api_key="1111111111111     ") 

project = rf.workspace("ultramar").project("photosynthetic-p3") 

version = project.version(4) 

dataset = version.download("yolov8") 

 

!pip install ultralytics 

from ultralytics import YOLO 

model = YOLO("yolov8m.pt") 

 

model.train(data = "/content/Photosynthetic-P3-4/data.yaml", epochs = 100, imgsz=320) 

 

#Prediccion  

model= YOLO("/content/runs/detect/train/weights/best.pt") 

 

results = model("/content/14_BG112024-10-22-15-08-05-406.jpg") 

for result in results: 

    boxes = result.boxes 

    probs = result.probs 

    result.show()  # display to screen  
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Apéndice B. “Resumen de los entrenamientos con los tres diferentes 

tamaños del modelo”. 
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