
 

  

INSTITUTO DE CIENCIAS BÁSICAS E INGENIERÍA  

MAESTRÍA EN INTERNET DE LAS COSAS 

PROYECTO TERMINAL 

PROTOTIPO DE SISTEMA IOT PARA EL MONITOREO 

EN TIEMPO REAL DE TEMPERATURA Y HUMEDAD 

EN EL SITE DE LA UAEH 

 

Maestro en Internet de las Cosas 

     PRESENTA 

Ing. Víctor Hugo Martínez Cano 

 Director 

Dr. Luis Heriberto García Islas 

 

 

Comité tutorial 

Dr. Anilú Franco Arcega 

Mtra. Kristell Daniella Franco Sánchez 

Dr. Luis Heriberto García Islas 

Dr. Esteban Rueda Soriano 

Mtro. Alberto Suárez Navarrete 

Mtro. Melecio Sánchez Ruiz 

 
 Mineral de la Reforma, Hgo., a 8 de octubre de 2025 

Codirectora 

Mtra. Kristell Daniella Franco Sánchez 

 

 



 

  



  

INSTITUTO DE CIENCIAS BÁSICAS E INGENIERÍA  

 
MAESTRÍA EN INTERNET DE LAS COSAS 

 

PROYECTO TERMINAL 

PROTOTIPO DE SISTEMA IOT PARA EL 

MONITOREO EN TIEMPO REAL DE TEMPERATURA 

Y HUMEDAD EN EL SITE DE LA UAEH 

 

Maestro en Internet de la Cosas 

PRESENTA 

Ing. Víctor Hugo Martínez Cano 

 

 Director 

Dr. Luis Heriberto García Islas 

 

Comité tutorial 

Dr. Anilú Franco Arcega 

Mtra. Kristell Daniella Franco Sánchez 

Dr. Luis Heriberto García Islas 

Dr. Esteban Rueda Soriano 

Mtro. Alberto Suárez Navarrete 

Mtro. Melecio Sánchez Ruiz 
 

Mineral de la Reforma, Hgo., a 8 de octubre de 2025 

Codirectora 

Mtra. Kristell Daniella Franco Sánchez 

 

 



 



AGRADECIMIENTO  

En primer lugar, agradezco a Dios por ser mi fuerza incondicional y por darme la resiliencia 

necesaria para superar los desafíos. A mi familia, quienes con sus esfuerzos y sacrificios me han 

brindado las oportunidades para alcanzar esta meta, espero poder recompensar su dedicación 

con alegrías y logros en este largo camino de la vida. A mis compañeros y amigos, quienes me 

han enseñado el valor de la amistad, el trabajo en equipo y el amor, elementos fundamentales 

para alcanzar cualquier objetivo. 

Agradezco especialmente al Dr. Luis Heriberto García Islas por su apoyo incondicional y guía en 

mi proceso de formación profesional, así como al Mtro. Iván Horacio Pérez Tavera, al Mtro. 

Francisco González Castañeda y al Mtro. Jesús Gabriel Banda, quienes, con sus conocimientos 

y talento humano, contribuyeron a mi crecimiento académico y personal. A la Universidad 

Autónoma del Estado de Hidalgo, por abrirme las puertas de esta excelente institución que se 

convirtió en un segundo hogar, y por brindarme las herramientas necesarias para alcanzar este 

logro. 

Finalmente, agradezco a todas las personas e instituciones que, de manera directa o indirecta, 

contribuyeron a la realización de este proyecto. Este logro es el resultado de un esfuerzo 

colectivo, y espero que este trabajo sea un aporte significativo para el campo de la ingeniería y 

la tecnología. 

  



ÍNDICE GENERAL 

AGRADECIMIENTO ................................................................................................................................................. 5 

ÍNDICE DE FIGURAS ................................................................................................................................................ 9 

ÍNDICE DE TABLAS ................................................................................................................................................ 10 

RESUMEN ............................................................................................................................................................. 11 

PRESENTACIÓN .................................................................................................................................................... 13 

I. ANTECEDENTES ............................................................................................................................................ 15 

I.1 SITUACIÓN DE LA UAEH ................................................................................................................................... 15 

II. PLANTEAMIENTO DEL PROBLEMA ............................................................................................................... 18 

III. JUSTIFICACIÓN ............................................................................................................................................. 19 

IV. OBJETIVOS ............................................................................................................................................... 20 

IV.1 OBJETIVO GENERAL .......................................................................................................................................... 20 

IV.2 OBJETIVOS ESPECÍFICOS .................................................................................................................................... 20 

IV.3 HIPÓTESIS ...................................................................................................................................................... 20 

IV.4 ALCANCE ....................................................................................................................................................... 20 

IV.5 LIMITACIONES ................................................................................................................................................. 21 

V. MARCO TEÓRICO ......................................................................................................................................... 22 

V.1 INTERNET DE LAS COSAS .................................................................................................................................... 22 

V.2 MICROCONTROLADOR ...................................................................................................................................... 22 

V.3 ESP32 .......................................................................................................................................................... 23 

V.4 SENSOR DE TEMPERATURA Y HUMEDAD DHT11 .................................................................................................... 25 

V.5 MESSAGE QUEUING TELEMETRY TRANSPORT (MQTT) ........................................................................................... 26 

V.6 WIRELESS FIDELITY (WI-FI) ............................................................................................................................... 26 



V.7 COMUNICACIÓN INALÁMBRICA ........................................................................................................................... 27 

V.8 BASE DE DATOS NO RELACIONAL NOSQL .............................................................................................................. 27 

V.9 MONGODB .................................................................................................................................................... 28 

V.10 JSON WEB TOKEN JWT .................................................................................................................................... 28 

V.11 ASHRAE Y LOS ESTÁNDARES PARA CENTROS DE DATOS .......................................................................................... 28 

V.12 ARDUINO INTEGRATED DEVELOPMENT ENVIRONMENT IDE ..................................................................................... 29 

V.13 HYPERTEXT MARKUP LANGUAGE (HTML) ........................................................................................................... 29 

V.14 CASCADING STYLE SHEETS (CSS) ........................................................................................................................ 31 

V.15 JAVASCRIPT .................................................................................................................................................... 31 

V.16 NODE.JS ........................................................................................................................................................ 33 

V.17 DOCKER ......................................................................................................................................................... 33 

V.18 APPLICATION PROGRAMMING INTERFACE (API) .................................................................................................... 34 

V.19 VITE ............................................................................................................................................................. 34 

V.20 TEMPERATURA ................................................................................................................................................ 34 

V.21 HUMEDAD ..................................................................................................................................................... 36 

VI. ESTADO DEL ARTE .................................................................................................................................... 37 

VII. DESARROLLO ........................................................................................................................................... 40 

VII.1 DESCRIPCIÓN DEL PROTOTIPO ............................................................................................................................ 40 

VII.2 COMPONENTES DEL PROTOTIPO.......................................................................................................................... 40 

VII.3 FUNCIONAMIENTO DEL PROTOTIPO ..................................................................................................................... 41 

VII.4 VALIDACIÓN DEL PROTOTIPO .............................................................................................................................. 42 

VII.5 VISUALIZACIÓN DE LOS DATOS EN TIEMPO REAL ..................................................................................................... 43 

VII.6 ARQUITECTURA DEL SISTEMA ............................................................................................................................. 43 

VII.7 CONFIGURACIÓN DEL HARDWARE ....................................................................................................................... 43 

VII.8 IMPLEMENTACIÓN DEL SOFTWARE....................................................................................................................... 44 

VII.9 COMUNICACIÓN .............................................................................................................................................. 45 



VII.10 DESARROLLO DE LA INTERFAZ WEB .................................................................................................................. 46 

VII.11 BACK-END: PROCESAMIENTO Y ALMACENAMIENTO DE DATOS .............................................................................. 48 

VII.12 PROCESAMIENTO DE DATOS ........................................................................................................................... 49 

VII.13 ALMACENAMIENTO DE DATOS MONGODB ....................................................................................................... 50 

VII.14 ENDPOINTS PARA CONSULTAR LOS DATOS......................................................................................................... 51 

VII.15 ESCALABILIDAD Y DESPLIEGUE PARA LA APLICACIÓN EN CONTENEDORES .................................................................. 52 

VII.16 PRUEBAS Y VALIDACIÓN ................................................................................................................................ 53 

VII.17 SEGURIDAD DEL SISTEMA .............................................................................................................................. 54 

VIII. RESULTADOS Y DISCUSIÓN ...................................................................................................................... 55 

VIII.1 RESULTADOS DE LAS PRUEBAS ............................................................................................................................ 55 

VIII.2 TIEMPOS DE RESPUESTA .................................................................................................................................... 55 

VIII.3 ANÁLISIS DE DESEMPEÑO .................................................................................................................................. 57 

VIII.4 IMPACTO DEL SISTEMA Y PROTOTIPO.................................................................................................................... 59 

VIII.5 HALLAZGOS DURANTE EL DESARROLLO ................................................................................................................. 61 

VIII.6 COMPARACIÓN CON SOLUCIONES COMERCIALES .................................................................................................... 61 

IX. CONCLUSIONES Y RECOMENDACIONES ....................................................................................................... 63 

IX.1 RECOMENDACIONES ......................................................................................................................................... 64 

IX.2 PROYECCIONES FUTURAS ................................................................................................................................... 65 

IX.3 REFLEXIÓN FINAL ............................................................................................................................................. 66 

X. REFERENCIAS ............................................................................................................................................... 67 

XI. ANEXOS ....................................................................................................................................................... 73 

XI.1 CÓDIGO DEL MICROCONTROLADOR ESP32 ........................................................................................................... 73 

XI.2 CÓDIGO DEL CONTENDOR PARA LA API Y LA APLICACIÓN ......................................................................................... 74 

GLOSARIO ............................................................................................................................................................ 85 



 

ÍNDICE DE FIGURAS 

Figura I.1Organigrama de la Dirección de Información y Sistemas ........................................... 16 

Figura V.1 Microcontrolador ESP32 .......................................................................................... 24 

Figura V.2 Sensor DHT11 ......................................................................................................... 25 

Figura V.3 MQTT publish/subcribe ............................................................................................ 26 

Figura V.4 WI-FI ........................................................................................................................ 26 

Figura V.5 comunicación inalámbrica ........................................................................................ 27 

Figura V.6 API ........................................................................................................................... 34 

Figura VII.1 Conexión sensor DHT11 a ESP32 ......................................................................... 44 

Figura VII.2 Prototipo sistema de monitoreo de temperatura y humedad .................................. 44 

Figura VII.3 Arquitectura de funcionamiento del sistema ........................................................... 45 

Figura VII.4 Página principal del sistema ................................................................................... 47 

Figura VII.5 Lista de centros de datos agregados en el sistema ................................................ 47 

Figura VII.6 Gráficas del sistema ............................................................................................... 48 

Figura VII.7 Esquema de comunicación endpoints .................................................................... 49 

Figura VII.8 Solicitud de tipo POST ........................................................................................... 50 

Figura VII.9 Estructura de objeto de datos................................................................................. 50 

Figura VII.10 Histórico de datos recopilados ............................................................................. 51 

Figura VII.11 Solicitud GET para obtención de las lecturas datos históricos .............................. 52 

Figura VII.12 Estructura del archivo Docker file ......................................................................... 53 

Figura VII.13 Lectura de temperatura y humedad ...................................................................... 54 

Figura VIII.1 Estructura de objeto de datos temperatura y humedad ......................................... 55 

Figura VIII.2 Comandos para la ejecución del monitoreo de datos mongodb ............................ 56 

Figura VIII.3 Pruebas de rendimiento del sistema ..................................................................... 57 



 

ÍNDICE DE TABLAS 

Tabla V.1 Características ESP32 .............................................................................................. 24 

Tabla V.2 Características sensor DHT11................................................................................... 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESUMEN 

Este proyecto tiene como objetivo implementar un sistema IoT para el monitoreo en tiempo real 

de la temperatura y humedad en el site de la Universidad Autónoma del Estado de Hidalgo 

(UAEH). El sistema utiliza un microcontrolador ESP32 y un sensor DHT11 para capturar datos 

ambientales, los cuales son transmitidos mediante el protocolo MQTT a un broker y almacenados 

en una base de datos NoSQL MongoDB. La información es visualizada en una plataforma web, 

permitiendo el acceso remoto y la supervisión continua de las condiciones ambientales del site. 

Este sistema busca prevenir fallos en los equipos tecnológicos debido a variaciones en la 

temperatura y humedad, asegurando la continuidad de los servicios académicos y 

administrativos. Además, se plantea la posibilidad de expandir el sistema con alertas automáticas 

y control remoto de las condiciones ambientales. 

Palabras clave: Sistema IoT, monitoreo en tiempo real, temperatura, humedad, site, ESP32, 

DHT11, protocolo MQTT, broker, base de datos NoSQL, MongoDB, plataforma web, acceso 

remoto, supervisión continua, prevención de fallos.  

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

This project aims to implement an IoT system for real-time monitoring of temperature and humidity 

at the site of the Autonomous University of the State of Hidalgo (UAEH). The system uses an 

ESP32 microcontroller and a DHT11 sensor to capture environmental data, which is transmitted 

via the MQTT protocol to a broker and stored in a NoSQL MongoDB database. The information is 

visualized on a web platform, allowing remote access and continuous monitoring of the site's 

environmental conditions. This system seeks to prevent failures in technological equipment due 

to variations in temperature and humidity, ensuring the continuity of academic and administrative 

services. Additionally, the possibility of expanding the system with automatic alerts and remote 

control of environmental conditions is proposed. 

Keywords: IoT system, real-time monitoring, temperature, humidity, site, ESP32, DHT11, MQTT 

protocol, broker, NoSQL database, MongoDB, web platform, remote access, continuous 

monitoring, failure prevention. 



13 
 

PRESENTACIÓN  

En la era digital, la disponibilidad y continuidad de los servicios tecnológicos son 

fundamentales para el funcionamiento de cualquier organización. Desde la educación hasta 

la industria, la infraestructura tecnológica depende de sistemas interconectados que operan 

en tiempo real. Sin embargo, detrás de cada servicio en línea, cada base de datos y cada 

plataforma en la nube, existe un componente crítico que muchas veces pasa desapercibido: 

los centros de datos. Estos espacios albergan servidores y equipos de telecomunicaciones 

que constituyen el pilar del ecosistema digital. 

Con el avance del Internet de las Cosas (IoT), la capacidad de monitorear y controlar 

entornos remotos ha evolucionado significativamente. Sensores inteligentes y dispositivos 

interconectados permiten supervisar en tiempo real variables como temperatura y 

humedad, factores clave para evitar fallos catastróficos en la infraestructura tecnológica. 

Implementar soluciones basadas en IoT no solo optimiza la gestión de estos entornos, sino 

que también fortalece la capacidad de respuesta ante situaciones críticas, asegurando la 

estabilidad operativa de las organizaciones y la continuidad de sus servicios. Los centros 

de datos o data centers son espacios especializados donde se alojan equipos críticos de 

telecomunicaciones, como routers, switches, servidores y cableado estructurado. Estos 

componentes conforman la columna vertebral de las áreas de sistemas y 

telecomunicaciones en una organización. 

Este proyecto se enfoca en el desarrollo de un prototipo de sistema de monitoreo de 

temperatura y humedad, implementado específicamente para el site de la Universidad 

Autónoma del Estado de Hidalgo (UAEH). Este sistema monitorea variables ambientales, 

como la temperatura y la humedad, que son esenciales para garantizar el óptimo 

funcionamiento de los equipos tecnológicos y prevenir fallos catastróficos en la 

infraestructura. 

Para lograrlo, el sistema utiliza un ESP32, un microcontrolador de bajo consumo con 

conectividad Wi-Fi, y el sensor DHT11, encargado de medir la temperatura y la humedad. 

Los datos recopilados se transmiten mediante el protocolo MQTT a un broker, desde donde 

se almacenan en una base de datos NoSQL MongoDB, facilitando su procesamiento y 

visualización en una plataforma web. Esta arquitectura permite un monitoreo remoto 

eficiente, asegurando el acceso a la información desde cualquier ubicación. 



14 
 

El uso de MQTT y MongoDB ofrece una solución eficiente y escalable para gestionar 

grandes volúmenes de datos en tiempo real. A su vez, la flexibilidad del sistema permite su 

implementación en sitios remotos, sin necesidad de cableado adicional o modificaciones 

físicas considerables, lo cual es clave para asegurar una infraestructura flexible y adaptable. 

La implementación de este prototipo es de suma importancia para la UAEH, ya que los 

sistemas de tecnología de la información en su site juegan un papel crucial en la continuidad 

de los servicios académicos y administrativos. Un monitoreo ambiental ineficaz puede 

derivar en sobrecalentamiento de los equipos, daños irreparables y la interrupción de los 

servicios, afectando tanto a estudiantes como al personal administrativo. 

Este proyecto también abre la puerta a futuras extensiones del sistema, como la integración 

de alertas automáticas y la posibilidad de controlar de manera remota las condiciones 

ambientales del site, con el fin de asegurar una gestión proactiva de la infraestructura 

tecnológica. 

Dado que la UAEH es una de las principales instituciones educativas en la región, el 

desarrollo de este tipo de tecnologías no solo optimiza el uso de sus recursos, sino que 

también fortalece la capacidad de respuesta ante situaciones críticas, minimizando los 

riesgos operativos y mejorando la continuidad de los servicios. 

  

 

 

 

 

 



15 
 

I. ANTECEDENTES  

I.1 SITUACIÓN DE LA UAEH 

La Universidad Autónoma del Estado de Hidalgo (UAEH) es una de las instituciones 

educativas más importantes de la región, con una infraestructura tecnológica que respalda 

sus funciones académicas y administrativas. Dentro de la universidad, el site es un espacio 

crítico donde se alojan los servidores y equipos de telecomunicaciones que garantizan el 

funcionamiento de sus plataformas digitales. Sin embargo, actualmente no se cuenta con 

un sistema de monitoreo automatizado que permita supervisar de manera continua las 

condiciones ambientales de este entorno. 

Desde hace más de dos décadas, la UAEH ha trabajado en la modernización de su 

infraestructura tecnológica, implementando la Red Metropolitana de Fibra Óptica y la Red 

de Microondas WiMax. Esta red, con más de 50 kilómetros de fibra óptica y anchos de 

banda de hasta 10 Gbps, permite la integración de nuevas tecnologías como el protocolo 

de Internet IPv6, videoconferencias, telefonía IP y supercómputo (Universidad Autónoma 

del Estado de Hidalgo [UAEH], 2008). Además, esta infraestructura incluye un sistema de 

monitoreo y operación alojado en un data center, lo que refuerza la necesidad de optimizar 

su gestión mediante soluciones IoT. 

En este contexto, dos áreas fundamentales dentro de la UAEH pueden desempeñar un 

papel clave en la implementación de un sistema de monitoreo ambiental basado en IoT: 

Dirección de Información y Sistemas (DIyS): 

La DIyS es responsable de diseñar y actualizar el sistema de información universitario, 

estableciendo la infraestructura de tecnologías de información y comunicaciones que se 

requiere en la institución. Su objetivo principal es coordinar el desarrollo, operación y 

aprovechamiento de las aplicaciones de los sistemas de información de la universidad, a 

través de la construcción de aplicaciones y metodologías que permitan potenciar dichos 

sistemas (UAEH, 2025). Algunas de sus funciones incluyen: 

Coordinar las actividades de los sistemas de información en desarrollo y mantenimiento. 

Realizar tareas de análisis, modelado y rediseño de procesos. 

Promover la mejora continua en materia de sistemas de información universitaria. 



16 
 

A continuación, se muestra el organigrama de la dirección: 

 

Figura I.1Organigrama de la Dirección de Información y Sistemas 

 

Su experiencia en la gestión de plataformas tecnológicas convierte a la DIyS en un aliado 

estratégico para la adopción de un sistema de monitoreo ambiental en el site de la UAEH. 

Centro de Vinculación Internacional y Desarrollo Educativo (CEVIDE): 

El CEVIDE es la unidad encargada de la educación a distancia y la formación continua en 

la UAEH. Su infraestructura ha sido utilizada para eventos académicos y capacitaciones 

tecnológicas, como los WorkLabs 2016, donde se promovió la transferencia de 

conocimiento en nuevas tecnologías (UAEH, 2016). Este centro podría desempeñar un 

papel fundamental en la difusión y capacitación del personal sobre el uso del sistema de 

monitoreo ambiental. 

 

La gestión de centros de datos (Data Centers) y sitios de procesamiento de datos ("sites") 

ha sido un aspecto crítico en la administración de infraestructuras tecnológicas durante 

décadas. Estos centros albergan servidores, equipos de red y otros sistemas esenciales 

que soportan la operación continua de servicios digitales en una organización. La 

importancia de mantener condiciones ambientales óptimas en estos sitios no puede 



17 
 

subestimarse, ya que las variaciones en la temperatura, humedad y calidad del aire pueden 

causar fallos significativos en el hardware, lo que conlleva a la interrupción de servicios 

críticos. 

A nivel global, se han documentado numerosos incidentes donde la falta de un monitoreo 

ambiental adecuado ha resultado en sobrecalentamientos, fallos en sistemas de 

refrigeración, e incluso incendios, que han causado pérdidas económicas sustanciales y 

daños a la reputación de las organizaciones. Por ejemplo, el caso del apagón de Facebook 

en 2013, debido a problemas de sobrecalentamiento, subrayó la necesidad de sistemas 

robustos de monitoreo y control ambiental en los centros de datos (Chernicoff, 2013). 

En entornos académicos, como las universidades, la dependencia de servicios digitales ha 

aumentado exponencialmente en los últimos años, impulsada por la digitalización de 

procesos administrativos y la adopción de plataformas de enseñanza en línea. Sin embargo, 

muchos de estos entornos no han actualizado sus infraestructuras para incluir sistemas de 

monitoreo ambiental automatizados, lo que los deja vulnerables a los riesgos mencionados. 

Tradicionalmente, estas instituciones han confiado en inspecciones manuales o en 

sensores no integrados, lo que limita la capacidad para responder rápidamente a las 

variaciones ambientales y mitigar riesgos potenciales. 

El desarrollo de tecnologías como el Internet de las Cosas (IoT) ha permitido la creación de 

sistemas de monitoreo ambiental más avanzados y accesibles, capaces de proporcionar 

datos en tiempo real y alertas instantáneas. Estas innovaciones ofrecen la posibilidad de 

mejorar significativamente la seguridad y eficiencia operativa de los sitios de procesamiento 

de datos en instituciones educativas, permitiendo una gestión proactiva y basada en datos 

de los entornos tecnológicos críticos. 

A pesar de la disponibilidad de estas tecnologías, muchas universidades aún no las han 

adoptado plenamente, lo que representa un área de mejora crucial. Implementar un sistema 

de monitoreo ambiental automatizado y centralizado podría no solo proteger los equipos y 

sistemas de la universidad, sino también asegurar la continuidad de los servicios digitales 

vitales para su comunidad educativa (Bonilla & Bonilla, 2024). 



18 
 

II. PLANTEAMIENTO DEL PROBLEMA 

El site de la UAEH es un espacio crítico donde se alojan los servidores principales y los 

equipos de red que garantizan el funcionamiento de servicios académicos y administrativos 

esenciales para la institución. Sin embargo, este site carece de un sistema de monitoreo 

ambiental centralizado que permita un control preciso y continuo de variables 

fundamentales como la temperatura y la humedad en tiempo real y de manera proactiva. 

Actualmente, la supervisión de las condiciones ambientales depende de revisiones 

manuales esporádicas y sensores básicos sin integración a un sistema automatizado, lo 

que representa un riesgo significativo para la infraestructura tecnológica. La falta de un 

monitoreo constante impide detectar oportunamente cambios en las condiciones del 

entorno, lo que podría derivar en fallos catastróficos en los servidores y equipos de 

comunicación. 

El principal riesgo radica en la posible falla del sistema de climatización (minisplits), que, de 

no ser detectada a tiempo, podría generar un sobrecalentamiento de los equipos, afectando 

su rendimiento o incluso causando daños irreparables y pérdidas materiales y económicas 

importantes. Asimismo, niveles inadecuados de humedad pueden acelerar el deterioro de 

los componentes electrónicos, reduciendo su vida útil y aumentando los costos de 

mantenimiento y reemplazo. 

Esta situación pone en peligro la estabilidad y seguridad de los servicios digitales de la 

universidad, afectando la operatividad de plataformas académicas, administrativas y de 

comunicación. En consecuencia, es imprescindible implementar una solución que permita 

el monitoreo automatizado en tiempo real y la generación de alertas para la toma de 

decisiones oportunas que garanticen la continuidad operativa de la infraestructura 

tecnológica. 

 

 



19 
 

III. JUSTIFICACIÓN  

La implementación de un sistema de monitoreo de temperatura y humedad en el site de la 

Universidad Autónoma del Estado de Hidalgo es crucial para proteger la infraestructura 

tecnológica que sustenta tanto los servicios académicos como administrativos. 

Actualmente, el site depende de sistemas de climatización básicos (minisplits) y de 

revisiones manuales esporádicas, lo que limita la capacidad para detectar y responder a 

tiempo ante condiciones ambientales adversas, como cambios bruscos de temperatura o 

humedad. Esta situación incrementa el riesgo de fallos catastróficos que podrían afectar 

gravemente la continuidad operativa de los servicios críticos que dependen del correcto 

funcionamiento de los servidores y equipos de red. 

Uno de los aspectos más importantes a considerar son los estándares internacionales para 

la gestión de las condiciones ambientales en centros de datos, publicados por la ASHRAE 

(American Society of Heating, Refrigerating and Air-Conditioning Engineers). En su guía 

ASHRAE TC 9.9, se establecen los rangos recomendados para temperatura y humedad, 

los cuales son cruciales para evitar problemas como la acumulación de electricidad estática 

o la formación de condensación, que podrían dañar irreversiblemente los equipos. 

Temperatura: El rango recomendado es de 18 °C a 27 °C (64.4 °F a 80.6 °F), siendo el 

rango óptimo entre 20 °C y 25 °C (68 °F a 77 °F), ideal para balancear la eficiencia 

energética y la protección de los equipos. 

Humedad relativa: El rango recomendado es de 40% a 60%. Humedades por debajo del 

40% pueden provocar la acumulación de electricidad estática, mientras que humedades 

superiores al 60% aumentan el riesgo de condensación en los equipos. 

ASHRAE también define clases de operación para los equipos en centros de datos, siendo 

la Clase A1 la más restrictiva y adecuada para entornos de misión crítica, como el site de 

la universidad, lo que significa que los equipos deben operar dentro de los rangos más 

controlados de temperatura y humedad para garantizar su seguridad y rendimiento (SHRAE 

TC9.9, 2021). 



20 
 

IV. OBJETIVOS 

IV.1 Objetivo general 

Implementar un sistema IoT de monitoreo ambiental en tiempo real para la supervisión de 

temperatura, humedad y otros parámetros críticos en el site de la UAEH, con el fin de 

prevenir fallos en los equipos, garantizar condiciones operativas óptimas y asegurar la 

continuidad de los servicios académicos y administrativos. 

IV.2 Objetivos específicos 

1. Analizar y optimizar el funcionamiento del sensor DHT11 para la medición de 

temperatura y humedad, aplicando metodologías de prueba y calibración con el fin 

de garantizar la precisión y confiabilidad de los datos recopilados. 

2. Diseñar, desarrollar e implementar un sistema de sensores interconectados 

mediante IoT y MQTT que monitoree en tiempo real las condiciones ambientales del 

site, asegurando la continuidad operativa de los equipos tecnológicos. 

3. Integrar y gestionar los datos recopilados en una plataforma centralizada basada en 

MongoDB y una interfaz web, utilizando herramientas de análisis para la toma de 

decisiones en la administración del site. 

4. Evaluar y mejorar el desempeño del prototipo en el site de la UAEH mediante 

pruebas experimentales, identificando oportunidades de optimización en el 

monitoreo ambiental para su escalabilidad y futura implementación. 

IV.3 Hipótesis 

La implementación de un prototipo de IoT para el monitoreo en tiempo real de temperatura 

y humedad en el site de la UAEH mejorará la eficiencia en la detección de variaciones 

ambientales, reduciendo el riesgo de fallos en los equipos tecnológicos y asegurando la 

continuidad de los servicios académicos y administrativos.    

IV.4 Alcance 

El prototipo desarrollado contempla la implementación total para el monitoreo de 

temperatura y humedad en el site de la UAEH. Se desplegará el hardware y software 

basado en un ESP32 y un sensor DHT11, con transmisión de datos en tiempo real a una 

plataforma web. El sistema será instalado y probado en el site, asegurando su operación 

continua y su integración con la infraestructura existente. Además, se incluirán pruebas de 



21 
 

rendimiento, validación de datos y optimización del sistema para garantizar su fiabilidad y 

escalabilidad en un entorno de producción.   

IV.5 Limitaciones 

El dispositivo de monitoreo debe estar conectado de manera permanente a la red eléctrica 

del site, lo que implica que, en caso de corte de energía, el sistema dejaría de funcionar a 

menos que se utilicen soluciones como baterías de respaldo o sistemas UPS. Además, el 

sistema dependerá de la conexión Wi-Fi del site para transmitir los datos en tiempo real, lo 

que podría verse afectado por fallas, interferencias o inestabilidad en la red. Se requiere 

una red Wi-Fi segura y confiable para garantizar una transmisión constante de datos, lo que 

puede ser un desafío si la infraestructura de red es deficiente o está congestionada. El 

monitoreo se limitará exclusivamente al site. 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

V. MARCO TEÓRICO 

Para llevar a cabo el desarrollo del presente proyecto es necesario tener en cuenta los 

siguientes conceptos que fundamentan y describen de forma clara y precisa las 

metodologías a utilizar para la recolección, análisis, e interpretación de la información. 

V.1 Internet de las cosas 

El Internet de las Cosas (IoT, por sus siglas en inglés) se refiere a la interconexión de 

dispositivos físicos a través de Internet, permitiendo la recopilación, transmisión y análisis 

de datos en tiempo real. Estos dispositivos, que pueden ser sensores, electrodomésticos, 

vehículos o cualquier objeto con capacidad de conectividad, están equipados con software, 

sensores y otras tecnologías que les permiten comunicarse e interactuar entre sí y con 

sistemas centralizados. IoT ha revolucionado diversos sectores, desde la industria hasta la 

salud, al permitir la automatización de procesos, la mejora de la eficiencia operativa y la 

toma de decisiones basada en datos (Gubbi et al., 2013; Zhang et al., 2023). 

En el contexto actual, IoT ha evolucionado para incluir tecnologías avanzadas como la 

inteligencia artificial (IA) y el aprendizaje automático (ML), lo que permite no solo la 

recopilación de datos, sino también su análisis predictivo. Esto ha llevado a la creación de 

sistemas más inteligentes y autónomos, capaces de anticipar fallos y optimizar procesos en 

tiempo real (Zhang et al., 2023). Además, la integración de IoT con tecnologías emergentes 

como el 5G y el edge computing ha permitido una mayor escalabilidad y eficiencia en la 

transmisión de datos, especialmente en entornos con grandes volúmenes de información y 

baja latencia (Zhang et al., 2021). 

Para implementar sistemas IoT, es fundamental comprender los componentes clave que 

permiten la interacción entre dispositivos y la recopilación de datos. Uno de estos 

componentes esenciales es el microcontrolador, que actúa como el cerebro de los 

dispositivos IoT. 

V.2 Microcontrolador 

Un microcontrolador es un circuito integrado que actúa como una pequeña computadora, 

optimizado para controlar dispositivos y sistemas específicos en tiempo real (Estudio 

Electrónica, 2023). A diferencia de las computadoras de propósito general, su diseño 

prioriza la interacción con el mundo físico a través de sensores y actuadores (IBM, 2023). 



23 
 

Sus componentes principales incluyen una unidad central de proceso (CPU) que ejecuta 

instrucciones, memoria RAM para datos temporales y memoria ROM para el programa 

permanente (Universidad Europea, 2023). Además, cuenta con periféricos de entrada y 

salida que facilitan la comunicación con el entorno externo (Sherlin.xBot.es, 2023). 

Características principales: 

 

La programabilidad permite adaptar su funcionalidad a diversas aplicaciones (Estudio 

Electrónica, 2023). Su tamaño compacto y bajo consumo energético lo hacen ideal para 

dispositivos portátiles y aplicaciones con baterías limitadas (IBM, 2023). Su bajo costo lo 

convierte en una opción atractiva para una amplia gama de proyectos (Sherlin.xBot.es, 

2023). 

 

Aplicaciones Comunes: 

 

Los microcontroladores se encuentran en una variedad de aplicaciones, incluyendo 

robótica, automatización industrial, dispositivos electrónicos de consumo y el Internet de las 

Cosas (IoT) (Universidad Europea, 2023; IBM, 2023; Sherlin.xBot.es, 2023). 

 

Dentro de los microcontroladores más utilizados en proyectos IoT se encuentra el ESP32, 

que destaca por su capacidad de conectividad y bajo consumo energético. 

 

V.3 ESP32 

El ESP32 es un microcontrolador de bajo costo y bajo consumo de energía, desarrollado 

por Espressif Systems, que integra Wi-Fi y Bluetooth de doble modo en un solo chip 

(Espressif, 2023). Su versatilidad y características lo convierten en una opción popular para 

proyectos de Internet de las Cosas (IoT), robótica, automatización del hogar, dispositivos 

portátiles y más (Microdesys, 2023; Amazon, 2023). 

 

 

 

 

 



24 
 

En la siguiente tabla se muestran las características clave: 

 

Tabla V.1 Características ESP32 

Característica Especificación 

Tipo Módulo WiFi + Bluetooth 

Modelo ESP32 38 Pines 

Chip USB-Serial CP2102 

Voltaje 3.3V DC (Entradas/Salidas) / 5V DC (Alimentación microUSB) 

Consumo de 
energía 

5μA en modo de suspensión 

Microcontrolador Dual Core Tensilica LX6, 240 MHz 

Memoria SRAM 520 KB 

Memoria Flash 4 MB 

Wi-Fi 802.11 BGN HT40 (2.4 GHz hasta 150 Mbit/s) 

Seguridad Wi-Fi 
WEP, WPA/WPA2 PSK/Enterprise, AES, SHA2, RSA-4096, Criptografía de 

curva elíptica 

Bluetooth 4.2 BR/EDR BLE (Modo de control dual) 

GPIOs 30 pines 

Interfaces 3x UART, 3x SPI, 2x I2C, 2x I2S, Interfaz de tarjeta SD 

Convertidores ADC de 12 canales, DAC de 2 canales 

PWM Sí 

Dimensiones 55 x 28 x 8 mm (sin conectores) 

Peso 11 g 

Fuente: Elaboración propia a partir de la información consultada 

 

Figura V.1 Microcontrolador ESP32 

Para que un sistema IoT funcione correctamente, es necesario contar con sensores que 

capturen datos del entorno. Uno de los sensores más comunes en aplicaciones de 

monitoreo ambiental es el sensor de temperatura y humedad DHT11. 

 



25 
 

V.4 Sensor de temperatura y humedad DHT11 

El DHT11 es un sensor digital de temperatura y humedad relativa de bajo costo y fácil uso. 

Integra un sensor capacitivo de humedad y un termistor para medir el aire circundante, y 

muestra los datos mediante una señal digital en el pin de datos (no posee salida analógica). 

El protocolo de comunicación entre el sensor y el microcontrolador emplea un único hilo o 

cable, la distancia máxima recomendable de longitud de cable es de 20m, de preferencia 

utilizar cable apantallado. Proteger el sensor de la luz directa del sol (radiación UV). 

En la siguiente tabla se muestran las características relevantes del sensor: 

Tabla V.2 Características sensor DHT11 

Especificación Detalle 

Voltaje de Operación 3V – 5V DC 

Rango de medición de temperatura 0 a 50 °C 

Precisión de medición de temperatura ±2.0 °C 

Resolución de temperatura 0.1 °C 

Rango de medición de humedad 20% a 90% RH 

Precisión de medición de humedad ±5% RH 

Resolución de humedad 1% RH 

Tiempo de respuesta 1 segundo 

 

 Aplicaciones: 

• Utilizado en aplicaciones académicas relacionadas al control automático de 

temperatura. 

• Aire acondicionado. 

• Monitoreo ambiental en agricultura y más (AV Electronics, 2024b). 

 

Figura V.2 Sensor DHT11 



26 
 

Una vez que los datos son capturados por el sensor, es necesario transmitirlos de manera 

eficiente. Para ello, se utiliza el protocolo Message Queuing Telemetry Transport (MQTT), 

que es ampliamente utilizado en sistemas IoT. 

V.5 Message Queuing Telemetry Transport (MQTT) 

MQTT es un protocolo de mensajería basado en estándares, o un conjunto de reglas, que 

se utiliza para la comunicación de un equipo a otro. Los sensores inteligentes, los 

dispositivos portátiles y otros dispositivos de Internet de las cosas (IoT) generalmente tienen 

que transmitir y recibir datos a través de una red con recursos restringidos y un ancho de 

banda limitado. Estos dispositivos IoT utilizan MQTT para la transmisión de datos, ya que 

resulta fácil de implementar y puede comunicar datos IoT de manera eficiente. MQTT 

admite la mensajería entre dispositivos a la nube y la nube al dispositivo (¿Qué Es el 

MQTT? - Explicación del Protocolo MQTT - AWS, s. f.). 

 

Figura V.3 MQTT publish/subcribe 

Para que los dispositivos IoT puedan comunicarse, es esencial contar con una tecnología 

de conectividad inalámbrica, como el Wireless Fidelity (Wi-Fi). 

V.6 Wireless Fidelity (Wi-Fi) 

Wireless Fidelity (Wi-Fi o fidelidad inalámbrica), es una tecnología de redes inalámbricas 

que permite a los dispositivos electrónicos conectarse entre sí de manera fluida a una red 

mediante frecuencias de radio (Proofpoint ES, 2023).  

 

Figura V.4 WI-FI 



27 
 

Además del WiFi, existen otras formas de comunicación inalámbrica que son relevantes en 

el contexto de IoT, especialmente en aplicaciones donde la distancia o el consumo 

energético son factores críticos. 

V.7 Comunicación Inalámbrica 

La comunicación inalámbrica o comunicación a distancia, es aquella capaz de enviar una 

cantidad de datos de un punto a otro (emisor y receptor) sin la necesidad de un agente o 

un hardware que conecte ambos puntos físicamente. En general, la tecnología inalámbrica 

utiliza ondas de radiofrecuencia de baja potencia y una banda específica, de uso libre o 

privada, para transmitir entre dispositivos (Funcionamiento, 2008). 

 

Figura V.5 comunicación inalámbrica 

Una vez que los datos son transmitidos, es necesario almacenarlos de manera eficiente. 

Para ello, se utilizan bases de datos no relacionales, como las bases de datos NoSQL. 

V.8 Base de datos no relacional NoSQL 

Las bases de datos no relacional están diseñadas para varios modelos de acceso a datos, 

incluidas las aplicaciones de latencia baja. La base de datos de búsqueda no relacional está 

diseñada para realizar análisis de datos semiestructurados. Las bases de datos NoSQL son 

sistemas de almacenamiento de información que no cumplen con el esquema entidad-

relación. Mientras que las tradicionales bases de datos relacionales basan su 

funcionamiento en tablas, joins y transacciones. Las bases de datos NoSQL no imponen 

una estructura de datos en forma de tablas y relaciones entre ellas, sino que proveen un 

esquema mucho más flexible. (Martín et al., 2013, p. 166) 

Dentro de las bases de datos NoSQL más populares se encuentra MongoDB, que es 

ampliamente utilizada en proyectos IoT debido a su escalabilidad y facilidad de uso. 



28 
 

V.9 MongoDB 

MongoDB es una base de datos NoSQL orientada a documentos, diseñada para almacenar 

grandes volúmenes de datos de manera flexible. A diferencia de las bases de datos 

relacionales, MongoDB no utiliza tablas ni filas, sino colecciones y documentos JSON, lo 

que permite un manejo más dinámico y escalable de los datos (IBM, 2023). 

Para garantizar la seguridad en la transmisión y almacenamiento de datos, es común utilizar 

tokens de autenticación, como los JSON Web Tokens (JWT). 

V.10 Json Web Token JWT 

JWT es un estándar para representar reclamos entre dos partes de manera segura. Se 

utiliza principalmente en la autenticación de usuarios en aplicaciones web. Un JWT contiene 

un encabezado, un cuerpo y una firma, lo que garantiza la integridad de los datos y la 

autenticación sin la necesidad de almacenar el estado en el servidor (CICS Transaction 

Server For Z/OS 6.x, s. f.). 

Además de los aspectos técnicos, es importante comprender los conceptos ambientales 

que se monitorean en sistemas IoT, como la temperatura y la humedad. 

 

Para garantizar que los sistemas de monitoreo ambiental cumplan con los requisitos 

necesarios, es fundamental seguir estándares internacionales, como los establecidos por 

la ASHRAE. 

V.11 ASHRAE y los Estándares para Centros de Datos 

La American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 

es una organización que establece estándares internacionales para el control ambiental en 

infraestructuras tecnológicas, incluyendo data centers y sites de telecomunicaciones. En su 

documento ASHRAE TC 9.9, se establecen las recomendaciones de temperatura y 

humedad que deben mantenerse en estos entornos para garantizar la estabilidad operativa 

y la longevidad de los equipos. 



29 
 

Según ASHRAE (2021), el rango recomendado de temperatura y humedad para los centros 

de datos clasificados en la Clase A1, que corresponde a equipos de misión crítica, es el 

siguiente: 

• Temperatura: 18°C a 27°C (64.4°F a 80.6°F), siendo el rango óptimo entre 20°C y 

25°C (68°F a 77°F). 

• Humedad relativa: 40% a 60%. 

El mantenimiento de estos parámetros es crucial para evitar problemas como: 

• Temperaturas elevadas: Pueden provocar sobrecalentamiento, degradación 

prematura de los componentes electrónicos y fallos en servidores. 

• Temperaturas bajas: Pueden generar condensación y fallos eléctricos. 

• Humedad baja (<40%): Aumenta la acumulación de electricidad estática, que puede 

dañar los equipos sensibles. 

Humedad alta (>60%): Favorece la corrosión de componentes y la aparición de 

condensación, lo que puede causar cortocircuitos. Para desarrollar sistemas IoT, es 

necesario utilizar herramientas y lenguajes de programación específicos, como el Arduino 

IDE, HTML, CSS, JavaScript, Node.js, Docker, API y Vite. 

V.12 Arduino Integrated Development Environment IDE 

El entorno de programación de la placa de Arduino se denomina Integrated Development 

Environment (IDE) el cual permite llevar a cabo la escritura de las sentencias para el 

funcionamiento de los elementos físicos de la placa de Arduino. Este software tiene por si 

solo un conjunto de herramientas que permite, editar el código, compilar y depurar todo a 

través de una interfaz gráfica, así mismo, nos da la oportunidad de interactuar con el 

microcontrolador almacenando los programas realizados en su memoria interna para poner 

en marcha todo el hardware. El aplicativo de IDE es un software libre, ya que está disponible 

su código fuente mismo que está alojado en GitHub y ofrece instrucciones de compilado 

Pérez-Tavera (2023). 

V.13 Hypertext Markup Language (HTML) 

Lenguaje de marcado, utilizado para estructurar y presentar contenido web. Introdujo 

nuevas etiquetas semánticas como <article>, <section>, y <footer>, lo que mejora la 



30 
 

accesibilidad y SEO de las páginas web. Además, añadió soporte para multimedia con 

elementos como <audio> y <video>, eliminando la necesidad de plugins externos como 

Flash (HTML5 - MDN Web Docs Glossary: Definitions Of Web-related Terms | MDN, 2024). 

HTML5 (HyperText Markup Language, versión 5) representa la quinta revisión fundamental 

del lenguaje estándar para estructurar y presentar contenido en la World Wide Web. 

Desarrollado por el World Wide Web Consortium (W3C) y el Web Hypertext Application 

Technology Working Group (WHATWG), este estándar fue publicado oficialmente en 

octubre de 2014, marcando un hito en el desarrollo web (HTML5 - MDN Web Docs Glossary: 

Definitions Of Web-related Terms | MDN, 2024). 

Avances significativos en semántica: 

HTML5 introdujo un conjunto revolucionario de elementos semánticos que trascienden la 

simple presentación para dotar de significado estructural al contenido: 

• <article>: Define contenido independiente y autónomo (entradas de blog, artículos 

de noticias) 

• <section>: Delimita agrupaciones temáticas de contenido 

• <nav>: Especifica bloques de navegación principal 

• <header> y <footer>: Marcan cabeceras y pies de sección/documento 

• <main>: Identifica el contenido principal de la página 

Estas etiquetas mejoran sustancialmente: 

• Accesibilidad: Los lectores de pantalla pueden interpretar mejor la estructura lógica 

• SEO: Los motores de búsqueda comprenden con mayor precisión la jerarquía del 

contenido 

• Mantenibilidad: El código se organiza de forma más lógica y comprensible 

Impacto en el desarrollo web moderno: 

Según el reporte anual de W3Techs (2023), el 94.3% de todos los sitios web utilizan 

actualmente HTML5, demostrando su adopción como estándar dominante. Su diseño 

forward-compatible garantiza que el contenido permanecerá accesible incluso con futuras 

evoluciones del lenguaje. 



31 
 

V.14 Cascading Style Sheets (CSS) 

CSS3 representa la culminación de años de evolución en el lenguaje de hojas de estilo, 

estableciendo un nuevo paradigma en el diseño web moderno. A diferencia de sus 

predecesores, CSS3 se desarrolló como un conjunto modular de especificaciones que 

permitieron una implementación gradual y más eficiente por parte de los navegadores (CSS 

| MDN, 2024). Esta arquitectura modular ha facilitado la adopción progresiva de nuevas 

características sin romper la compatibilidad con versiones anteriores. 

La verdadera revolución de CSS3 radica en su capacidad para crear experiencias visuales 

ricas y dinámicas directamente en el navegador, sin depender de tecnologías externas. Las 

transiciones y animaciones, por ejemplo, han liberado a los desarrolladores de la 

dependencia de JavaScript para efectos visuales básicos, permitiendo crear interfaces más 

fluidas con un código más limpio y mantenible. Las transformaciones en 2D y 3D, por su 

parte, han abierto nuevas posibilidades en el diseño de interfaces modernas, desde sutiles 

efectos de hover hasta complejas composiciones espaciales. 

El diseño responsivo experimentó un salto cualitativo con la maduración de las media 

queries, que permiten adaptar el layout no solo al tamaño de pantalla, sino también a 

características específicas del dispositivo como la resolución, la orientación o incluso las 

preferencias del usuario. Esta capacidad ha sido fundamental en una era donde el acceso 

móvil supera ampliamente al escritorio. 

Los nuevos sistemas de layout como Flexbox y Grid han resuelto problemas que 

perseguían a los desarrolladores durante años, ofreciendo finalmente un control preciso 

sobre el diseño y la distribución espacial de los elementos. Flexbox simplificó enormemente 

la creación de layouts flexibles en una dimensión, mientras que Grid introdujo un sistema 

bidimensional completo y potente. 

La inclusión de características tipográficas avanzadas, variables CSS y capacidades de 

filtrado ha completado un ecosistema que permite crear diseños consistentes y sofisticados 

con un grado de control sin precedentes. Todo esto mientras se mantiene la filosofía central 

de CSS: separar claramente la presentación del contenido. 

V.15 Javascript 

JavaScript es un lenguaje de programación orientado a eventos, esencial para agregar 

interactividad a las páginas web. Junto con HTML5 y CSS3, forma el núcleo del desarrollo 



32 
 

web moderno. Es un lenguaje versátil que puede ser utilizado tanto en el frontend como en 

el back-end, sobre todo con la aparición de frameworks y bibliotecas como React y Node.js 

(JavaScript | MDN, 2023). 

Un Lenguaje con Alcance Universal 

Lo que distingue a JavaScript es su versatilidad sin precedentes. Originalmente concebido 

para ejecutarse en el navegador, hoy se ha expandido a prácticamente todos los ámbitos 

del desarrollo de software: 

Frontend Moderno 

• Frameworks como React, Angular y Vue.js han redefinido la creación de interfaces 

de usuario 

• Permite construir Single Page Applications (SPAs) con experiencias fluidas 

similares a aplicaciones nativas 

• Facilita el desarrollo de interfaces reactivas mediante el Virtual DOM 

Backend y Más Allá 

• Node.js permitió la ejecución de JavaScript en el servidor 

• Ecosistema de paquetes (npm) más grande del mundo 

• Uso creciente en IoT, machine learning (TensorFlow.js) y desarrollo móvil (React 

Native) 

Características Técnicas Clave 

JavaScript es un lenguaje: 

• Multi-paradigma: Soporta programación orientada a objetos, funcional y basada en 

eventos 

• No bloqueante: Modelo de ejecución asíncrono mediante el event loop 

• Dinámico: Tipado débil y flexible que acelera el desarrollo 

• Universal: Ejecutable en cualquier navegador sin necesidad de compilación 

Impacto en la Web Moderna 

Según el informe Stack Overflow 2023, JavaScript lleva 10 años consecutivos como el 

lenguaje más utilizado. Su evolución continua (ES6+, TypeScript) asegura su relevancia 

frente a nuevos desafíos como: 



33 
 

• Aplicaciones web progresivas (PWAs) 

• Renderizado del lado del servidor (SSR) 

• WebAssembly para tareas intensivas 

V.16 Node.js 

Node.js es un entorno de ejecución que permite ejecutar JavaScript del lado del servidor. 

Basado en el motor V8 de Google, Node.js es altamente eficiente, especialmente para 

aplicaciones que requieren manejar múltiples solicitudes de forma concurrente. Su 

arquitectura no bloqueante y orientada a eventos lo hace ideal para aplicaciones en tiempo 

real, como chats o transmisiones de datos (Kinsta, 2023). 

Motor V8: Compilador JIT (Just-in-Time) que transforma JavaScript a código máquina 

nativo, logrando performance comparable a lenguajes compilados 

• Optimizaciones: Inline caching, hidden classes 

• Gestión de memoria: Generational garbage collection 

Event Loop: Implementación del patrón Reactor que maneja operaciones asíncronas 

mediante: 

• Fase de polling (epoll/kqueue/IOCP) 

• Cola de callbacks (FIFO) 

• Thread pool para operaciones blocking (libuv) 

Módulo Cluster: Permite escalamiento vertical mediante: 

• Fork de procesos hijos (master-worker) 

• Balanceo de carga round-robin 

V.17 Docker 

Docker es una plataforma que permite crear, ejecutar y gestionar contenedores. Los 

contenedores empaquetan el código de una aplicación junto con sus dependencias, 

asegurando que la aplicación se ejecute de manera uniforme en cualquier entorno. Docker 

facilita el despliegue y la escalabilidad de aplicaciones al separar las aplicaciones del 

sistema operativo (Contenedores de Docker | ¿Qué Es Docker? | AWS, s. f.). 



34 
 

V.18 Application Programming Interface (API) 

Una API es un conjunto de reglas y protocolos que permite la comunicación entre diferentes 

aplicaciones o servicios. Las APIs son fundamentales en el desarrollo de aplicaciones web 

modernas, ya que permiten la interacción entre el frontend y el backend. Existen diferentes 

tipos de APIs, como las RESTful APIs, que utilizan métodos HTTP (GET, POST, PUT, 

DELETE) para la comunicación (Introduction To Web APIs - Learn Web Development | 

MDN, 2024). 

 

Figura V.6 API 

V.19 VITE 

Vite es una herramienta de construcción rápida para proyectos de frontend, que aprovecha 

el soporte nativo de los módulos ES de los navegadores modernos. Se diferencia de otras 

herramientas como Webpack por su velocidad y simplicidad, ya que inicia un servidor de 

desarrollo casi al instante sin necesidad de empaquetar el código (Introducción, s. f.). 

Además de los aspectos técnicos, es importante comprender los conceptos ambientales 

que se monitorean en sistemas IoT, como la temperatura y la humedad. 

V.20 Temperatura 

La temperatura es una magnitud escalar que se define como la cantidad de energía cinética 

de las partículas de una masa gaseosa, líquida o sólida. Cuanto mayor es la velocidad de 

las partículas, mayor es la temperatura y viceversa. 

Existen distintos tipos de escalas para medir la temperatura. Las más comunes son: 

La escala Celsius. También conocida como “escala centígrada”, es la más utilizada junto 

con la escala Fahrenheit. En esta escala, el punto de congelación del agua equivale a 0 °C 

(cero grados centígrados) y su punto de ebullición a 100 °C. 



35 
 

La escala Fahrenheit. Es la medida utilizada en la mayoría de los países de habla inglesa. 

En esta escala, el punto de congelación del agua ocurre a los 32 °F (treinta y dos grados 

Fahrenheit) y su punto de ebullición a los 212 °F. 

La escala Kelvin. Es la medida que suele utilizarse en ciencia y establece el “cero absolutos” 

como punto cero, lo que supone que el objeto no desprende calor alguno y equivale a -

273,15 °C (grados centígrados). 

La escala Rankine. Es la medida usada comúnmente en Estados Unidos para la medición 

de temperatura termodinámica y se define al medir los grados Fahrenheit sobre el cero 

absoluto, por lo que carece de valores negativos o bajo cero. 

La temperatura se mide mediante magnitudes termométricas, es decir, diferentes unidades 

que representan la temperatura a distintas escalas. Para eso se emplea un dispositivo 

llamado “termómetro” del que existen varios tipos dependiendo del fenómeno que se 

necesite medir, por ejemplo: 

Dilatación y contracción. Existen termómetros para medir los gases (termómetro de gas a 

presión constante), los líquidos (termómetro de mercurio) y los sólidos (termómetro de 

columna líquida o bimetálico), que son elementos que se expanden con temperaturas altas 

o se contraen con temperaturas bajas. 

Variación de resistencia eléctrica. Las resistencias eléctricas, es decir, los flujos de 

electrones que se mueven a través de un material conductor varían según la temperatura 

que adquieren. Para su medición se emplean termómetros de resistencia eléctrica como 

los sensores (en base a una resistencia capaz de transformar la variación eléctrica en una 

variación de temperatura) y los termoeléctricos (que generan fuerza motriz). 

Termómetro de radiación térmica. Los fenómenos de radiación emitidos en el sector 

industrial pueden ser medidos mediante sensores de temperatura como los pirómetros 

infrarrojos (para medir temperaturas muy bajas de refrigeración) y los pirómetros ópticos 

(para medir altas temperaturas de hornos y metales de fusión). 

Potencial termoeléctrico. La unión de dos metales diferentes que se someten a 

temperaturas distintas entre sí genera una fuerza electromotriz que se convierte en 

potencial eléctrico y que se mide en voltios Leskow (2024). 



36 
 

V.21 Humedad 

La humedad es la cantidad de vapor de agua que contiene el aire. Siempre hay vapor de 

agua en el aire y la cantidad varía según diversos factores, por ejemplo, si recién llovió, si 

se está cerca del mar, si hay o no vegetación en el terreno, la temperatura del aire, entre 

otros. 

Los tipos de humedad pueden ser: 

Humedad relativa. Es la capacidad del aire para almacenar agua, que depende del punto 

de saturación (límite de ese aire para contener agua) y de una determinada temperatura. 

Su cálculo se define por el cociente entre la cantidad de vapor presente en la atmósfera, 

dividido la máxima cantidad que podría contener, multiplicado por cien (y el resultado se 

expresa como porcentaje). Una humedad relativa del 100% indica que ha llegado a su punto 

límite de saturación y, a partir de ahí, todo excedente de vapor de agua se condensa (se 

convierte en líquido). 

Humedad absoluta. Es la masa de vapor de agua que está presente en determinado 

volumen de aire, antes de que sea condensada (humedad relativa). Es importante destacar 

que la temperatura condiciona a la humedad absoluta: las masas de aire caliente poseen 

mayor capacidad de almacenar vapor de agua que las masas de aire frío. La humedad 

absoluta se expresa en gramos por metro cúbico.  

Humedad normal: El rango de humedad de un laboratorio debe estar entre el 35 - 70 %, 

considerándose ideal entre el 35 - 55 % (Equipo editorial, Etecé, 2020). 

 

 

 

 

 



37 
 

VI. ESTADO DEL ARTE  

El Internet de las Cosas (IoT) ha revolucionado el monitoreo ambiental en diversos sectores, 

proporcionando soluciones eficientes para la supervisión de variables como temperatura y 

humedad en tiempo real. La evolución de esta tecnología ha permitido la integración de 

sensores con plataformas digitales, facilitando la toma de decisiones basada en datos y 

optimizando el mantenimiento de infraestructuras críticas. A medida que la digitalización y 

la automatización avanzan, los sistemas IoT se han convertido en una pieza clave para 

mejorar la eficiencia operativa en múltiples industrias (Gubbi et al., 2013). 

Aplicaciones de IoT en Diferentes Sectores 

A lo largo de los años, el IoT ha demostrado su aplicabilidad en distintas áreas, como la 

manufactura, la salud, la agricultura y la gestión de ciudades inteligentes. En el ámbito 

industrial, como menciona Zhang y sus colaboradores en 2023, la adopción de sistemas 

IoT ha permitido la implementación de redes de monitoreo ambiental que optimizan la 

eficiencia energética y previenen fallos en maquinaria crítica. Sensores avanzados y 

dispositivos conectados recopilan datos en tiempo real sobre condiciones ambientales y 

operativas, lo que permite predecir fallos antes de que ocurran y reducir costos de 

mantenimiento. 

En 2015, Islam y algunos colegas del sector mencionan que los sensores IoT han mejorado 

el seguimiento de pacientes mediante dispositivos portátiles que transmiten datos 

biomédicos en tiempo real, asegurando una respuesta rápida ante emergencias (Islam et 

al., 2015). Dispositivos como marcapasos inteligentes y monitores de glucosa permiten a 

los profesionales de la salud monitorear a los pacientes de manera remota, optimizando la 

atención médica y reduciendo hospitalizaciones innecesarias. 

En la agricultura, el uso de IoT ha dado paso a la agricultura de precisión, donde sensores 

monitorean la humedad del suelo, la temperatura y otros factores ambientales para 

optimizar el uso de recursos como el agua y los fertilizantes (Wolfert et al., 2017). Esta 

tecnología permite tomar decisiones basadas en datos en tiempo real, mejorando la 

productividad y sostenibilidad de los cultivos. 

 

En el contexto urbano, las ciudades inteligentes han implementado IoT en sistemas de 

tráfico, iluminación, recolección de residuos y monitoreo de la calidad del aire. Sensores 



38 
 

conectados a la infraestructura urbana optimizan el consumo energético y mejoran la 

gestión de servicios públicos, reduciendo costos y mejorando la calidad de vida de los 

ciudadanos (Zanella et al., 2014). 

Tendencias Recientes en IoT para el Monitoreo Ambiental 

El monitoreo ambiental mediante IoT ha cobrado una gran importancia en los últimos años 

debido a la creciente necesidad de garantizar la eficiencia y seguridad de los sistemas 

tecnológicos en infraestructuras críticas. Estudios recientes han demostrado que el uso de 

microcontroladores como el ESP32 y sensores como el DHT11 ofrece una solución 

accesible para la supervisión de temperatura y humedad en centros de datos (Huancayo, 

2022). 

Otra tendencia en IoT es el uso de computación en el borde (Edge Computing), donde los 

datos se procesan cerca del sensor, reduciendo la latencia y el tráfico en la red. Esta 

tecnología es fundamental para sistemas de monitoreo ambiental en tiempo real, ya que 

permite respuestas rápidas sin necesidad de enviar todos los datos a la nube. Estudios 

como los de Zhang, Qian y He (2021) han demostrado que el protocolo MQTT es una de 

las opciones más viables para estos entornos debido a su bajo consumo de ancho de banda 

y capacidad para operar en redes con conectividad inestable. 

Además, la implementación de inteligencia artificial (IA) en IoT ha permitido que los 

sistemas de monitoreo ambiental no solo recopilen datos, sino que también detecten 

patrones y generen predicciones sobre posibles fallos en la infraestructura. Por ejemplo, un 

análisis comparativo realizado por Gharavi y Ghafurian (2021) sobre redes eléctricas 

inteligentes subraya la necesidad de integrar sensores IoT con modelos de IA para mejorar 

la gestión de recursos y prevenir fallos en el suministro energético. 

Normativas y Estándares para IoT en Centros de Datos 

En el ámbito de la gestión de centros de datos, la normatividad establecida por la ASHRAE 

(American Society of Heating, Refrigerating and Air-Conditioning Engineers) ha definido 

estándares clave para la regulación de temperatura y humedad en estos entornos. Según 

ASHRAE TC 9.9 (2021), la temperatura en un data center debe mantenerse entre 18 °C y 

27 °C, con un rango óptimo de 20 °C a 25 °C, mientras que la humedad relativa debe estar 

entre el 40% y el 60%. 

Desafíos en la Implementación de IoT en el Monitoreo Ambiental 



39 
 

Uno de los principales desafíos en la implementación de IoT es la seguridad y privacidad 

de los datos, ya que los dispositivos IoT están expuestos a posibles ciberataques. La 

adopción de protocolos seguros como TLS y la autenticación mediante JWT han sido 

estrategias utilizadas para mitigar estos riesgos (CICS Transaction Server for Z/OS 6.x, 

s.f.). 

Otro desafío es la dependencia de la conectividad a Internet, especialmente en entornos 

donde las redes pueden ser inestables. Para abordar este problema, se han desarrollado 

soluciones que permiten el almacenamiento temporal de datos en los dispositivos IoT y su 

transmisión cuando la conexión se restablece (Gubbi et al., 2013). 

Además, la escalabilidad de los sistemas IoT es un factor crítico. A medida que aumenta la 

cantidad de dispositivos conectados, se requiere una infraestructura robusta para gestionar 

el tráfico de datos y garantizar tiempos de respuesta adecuados. Tecnologías emergentes 

como 5G y LoRaWAN han sido implementadas para mejorar la cobertura y la eficiencia en 

la transmisión de datos en redes IoT de gran escala (Zhang et al., 2021). 

 

 

 

 

 

 

 

 

 



40 
 

VII. DESARROLLO 

El desarrollo del prototipo se llevó a cabo en varias etapas, comenzando con la 

configuración del hardware y software, seguido de la implementación del sistema de 

monitoreo y la validación de los resultados. 

VII.1 Descripción del prototipo 

El prototipo desarrollado tiene como objetivo principal monitorear la temperatura y humedad 

dentro del site de la Universidad Autónoma del Estado de Hidalgo, utilizando un sensor 

DHT11. Este sistema está basado en el microcontrolador ESP32, que se encarga de 

procesar y enviar los datos recolectados hacia una plataforma centralizada mediante el 

protocolo MQTT, donde posteriormente son almacenados en una base de datos NoSQL 

para su visualización y análisis en tiempo real. 

VII.2 Componentes del prototipo 

El prototipo está compuesto por los siguientes elementos clave: 

1. Sensor DHT11: Este sensor digital es utilizado para medir la temperatura y la 

humedad del ambiente. Sus características principales incluyen: 

o Rango de medición de temperatura: 0°C a 50°C, con una precisión de ±2°C. 

o Rango de medición de humedad: 20% a 90% de humedad relativa, con una 

precisión de ±5%. 

o Comunicación digital: Utiliza un único pin de datos para transmitir las lecturas 

al ESP32, lo que simplifica la conexión. 

2. ESP32: El ESP32 es un microcontrolador de bajo costo y alto rendimiento, que 

cuenta con conectividad WiFi y Bluetooth integrados, lo que permite la transmisión 

inalámbrica de datos. Las principales características que lo hacen ideal para este 

prototipo incluyen: 

o WiFi integrado: Permite la conexión a redes inalámbricas para la transmisión 

de datos en tiempo real. 

o Programable con Arduino IDE: Facilita la implementación de código para la 

adquisición y procesamiento de datos. 



41 
 

o Eficiencia energética: El ESP32 está diseñado para operar con bajo 

consumo de energía, lo que es ideal para un sistema de monitoreo continuo. 

VII.3 Funcionamiento del prototipo 

El prototipo sigue un flujo continuo para la captura y transmisión de datos ambientales, el 

cual se detalla a continuación: 

1. Captura de datos con el sensor DHT11: El sensor DHT11 mide la temperatura en 

grados Celsius (°C) y la humedad en porcentaje de humedad relativa (%HR) del 

ambiente dentro del site. Las mediciones se toman de manera periódica en 

intervalos confiables, lo que asegura que el sistema tenga datos actualizados de las 

condiciones ambientales sin comprometer el rendimiento del sistema ni agotar la 

batería del ESP32. 

2. Procesamiento de datos en el ESP32: Una vez que el sensor DHT11 realiza una 

medición, los datos se envían al ESP32 a través de su pin de datos. El ESP32, 

programado con el entorno Arduino IDE, procesa estas lecturas y las prepara para 

su envío. La programación del ESP32 incluye: 

o Lectura de las señales digitales del DHT11: Convertir las señales 

provenientes del sensor en valores legibles de temperatura y humedad. 

o Validación de las lecturas: Asegurar que los datos no estén corruptos o fuera 

de los rangos permitidos. 

o Preparación para el envío: Los valores de temperatura y humedad son 

empaquetados en un mensaje que será transmitido al broker MQTT en 

formato JSON. 

3. Transmisión de datos mediante MQTT: El ESP32 utiliza su módulo WiFi integrado 

para conectarse a una red local previamente configurada, especificando los 

parámetros de red como el SSID y la contraseña. Posteriormente, utiliza el protocolo 

MQTT para enviar los datos al broker MQTT. Este protocolo fue seleccionado por 

su eficiencia en la transmisión de datos en redes de ancho de banda limitado y su 

capacidad de operar en entornos con latencia. 

 

 



42 
 

El flujo de comunicación es el siguiente: 

o Conexión a la red WiFi: El ESP32 establece una conexión segura con la red 

WiFi del site. 

o Publicación de datos: Los valores de temperatura y humedad son enviados 

a un topic específico en el broker MQTT. 

o Broker MQTT: Actúa como un intermediario, recibiendo los datos del ESP32 

y retransmitiéndolos a los suscriptores correspondientes, en este caso, un 

servidor que almacenará los datos. 

4. Almacenamiento en MongoDB: Los datos de temperatura y humedad transmitidos 

por el ESP32 son recibidos por el servidor, que actúa como un suscriptor del broker 

MQTT. Este servidor, utilizando un backend desarrollado en Node.js, almacena los 

datos en una base de datos NoSQL MongoDB. La elección de MongoDB se debe a 

su flexibilidad en el manejo de datos no estructurados y a su capacidad para 

gestionar grandes volúmenes de información sin sacrificar el rendimiento. 

5. Intervalo de envío de datos: El intervalo de envío de datos ha sido configurado en 

30 segundos para balancear la frecuencia de actualizaciones con el consumo 

energético del sistema. Este intervalo es suficientemente corto para ofrecer un 

monitoreo en tiempo real, pero lo suficientemente largo para no agotar los recursos 

del ESP32 y la red WiFi. En un entorno de producción, este intervalo podría 

ajustarse según las necesidades del site. 

VII.4 Validación del prototipo 

Para asegurar la fiabilidad del sistema, se realizarán pruebas en las siguientes áreas: 

• Pruebas de precisión: Comparación de lecturas del DHT11 con un sensor de mayor 

precisión (DHT22). 

• Pruebas de conectividad: Evaluación de la estabilidad de la transmisión WiFi y el 

rendimiento del protocolo MQTT. 

• Pruebas de carga: Simulación con múltiples sensores para analizar el 

comportamiento del sistema bajo alta demanda. 

• Pruebas de latencia: Medición del tiempo desde la captura del dato hasta su 

visualización en la interfaz. 



43 
 

VII.5 Visualización de los datos en tiempo real 

El sistema también incluye una interfaz web desarrollada con HTML5, CSS3 y JavaScript, 

que permite visualizar en tiempo real las mediciones de temperatura y humedad capturadas 

por el ESP32. La interfaz es accesible desde cualquier dispositivo con conexión a Internet, 

permitiendo que los usuarios supervisen el estado del site desde cualquier lugar. Además 

de mostrar las lecturas actuales, la plataforma permite consultar datos históricos 

almacenados en MongoDB, lo que facilita la detección de patrones o anomalías en el 

ambiente del site. 

VII.6 Arquitectura del sistema 

La arquitectura se divide en tres capas principales: hardware, software y comunicación, que 

trabajan de manera conjunta para ofrecer un sistema robusto y fácil de mantener. 

VII.7 Configuración del hardware 

El hardware del sistema se compone principalmente del microcontrolador ESP32 y el 

sensor DHT11. El ESP32 fue seleccionado por su capacidad de conectividad WiFi integrada 

y su bajo consumo energético, lo que lo hace ideal para aplicaciones de monitoreo continuo. 

El sensor DHT11, por su parte, fue elegido por su bajo costo y facilidad de uso, aunque con 

limitaciones en la precisión (±2°C para temperatura y ±5% para humedad). 

Durante la configuración del hardware, se enfrentaron algunos desafíos técnicos, como la 

interferencia en la señal del sensor debido a la proximidad de otros dispositivos 

electrónicos. Para resolver este problema, se implementó un cable apantallado entre el 

sensor y el ESP32, lo que mejoró la estabilidad de las lecturas. 

• Sensor DHT11: Este sensor digital se encarga de medir la temperatura y la humedad 

dentro del site. Está conectado directamente al ESP32 mediante uno de sus pines 

de entrada, utilizando un protocolo de comunicación simple y eficiente que le permite 

enviar lecturas precisas al microcontrolador. El sensor tiene un rango de medición 

adecuado para el entorno del centro de datos y es capaz de detectar cambios 

ambientales significativos que podrían afectar el rendimiento de los equipos dentro 

del site. 

• ESP32: El microcontrolador ESP32 es el cerebro del sistema. Este dispositivo, 

programado a través del entorno Arduino IDE, procesa las lecturas de temperatura 



44 
 

y humedad, y las transmite a través de su módulo WiFi incorporado. Su capacidad 

para conectarse a redes inalámbricas lo convierte en una opción ideal para este tipo 

de sistemas, ya que no requiere cables adicionales para transmitir los datos. 

Además, el ESP32 puede conectarse a varios sensores en caso de que sea 

necesario monitorear múltiples puntos dentro del site. 

 

Figura VII.1 Conexión sensor DHT11 a ESP32 

 

En la siguiente imagen se muestra el prototipo para tomar las lecturas: 

 

Figura VII.2 Prototipo sistema de monitoreo de temperatura y humedad 

VII.8 Implementación del software 

El sistema de monitoreo está impulsado por un software que sigue una estructura 

organizada y modular, facilitando tanto la lectura de datos como la visualización y 

almacenamiento de los mismos. Los componentes de software incluyen: 



45 
 

• Código en ESP32 (Arduino IDE): El código programado en el ESP32 tiene dos 

funciones principales: leer los datos del sensor DHT11 y transmitir esos datos a un 

servidor central mediante el protocolo MQTT. Este código está diseñado para operar 

de manera continua, con intervalos de 30 segundos entre cada medición, lo que 

garantiza una actualización constante de los datos ambientales. Adicionalmente, el 

código maneja situaciones de error, como la falta de conexión a la red WiFi o la 

recepción de datos erróneos del sensor, intentando reconectar o leer de nuevo hasta 

que los problemas se resuelvan. 

• Servidor MQTT y broker: El protocolo MQTT se utiliza para transmitir los datos desde 

el ESP32 hasta el servidor central. MQTT es ideal para este tipo de aplicaciones 

debido a su eficiencia en redes con ancho de banda limitado. El ESP32 publica los 

datos de temperatura y humedad en un "topic" del broker MQTT, donde el servidor 

Node.js suscribe a esos datos y los almacena en una base de datos MongoDB. 

El siguiente diagrama muestra el ciclo de funcionamiento desde la captura de los datos 

hasta su almacenamiento: 

 

Figura VII.3 Arquitectura de funcionamiento del sistema 

 

VII.9 Comunicación  

La comunicación en el sistema de monitoreo sigue una arquitectura cliente-servidor, donde 

el ESP32 actúa como cliente y el servidor (implementado en Node.js) actúa como receptor 

de los datos publicados. La arquitectura de comunicación incluye: 



46 
 

• Protocolo MQTT: Este protocolo de mensajería ligera facilita la transmisión de los 

datos entre el ESP32 y el servidor. MQTT utiliza un modelo de "publish/subscribe" 

donde el ESP32, como cliente, publica los datos en un broker MQTT, y el servidor 

central, como suscriptor, recibe esos datos en tiempo real. El protocolo está 

diseñado para operar en entornos con latencia y garantiza la entrega de los 

mensajes a pesar de interrupciones temporales en la red. 

• Conectividad WiFi: El ESP32 se conecta a la red WiFi del site para transmitir los 

datos. La red inalámbrica debe estar configurada con acceso a Internet para 

asegurar que el ESP32 pueda enviar los datos al broker MQTT alojado en un 

servidor externo. La configuración de red, incluyendo el SSID y la clave de acceso, 

se almacena en el ESP32, permitiendo que el dispositivo se conecte de manera 

automática tras reiniciar. 

• Servidor Node.js: El servidor, desarrollado en Node.js, recibe los datos que el 

ESP32 envía a través del broker MQTT y los almacena en una base de datos 

MongoDB. Además, este servidor expone una API que permite a los clientes, como 

la interfaz web, consultar los datos almacenados en tiempo real y acceder a los 

datos históricos. 

VII.10 Desarrollo de la interfaz web 

El diseño de la interfaz web se desarrolló utilizando HTML5, CSS3, y JavaScript, con un 

enfoque en el diseño responsive para asegurar que la visualización sea óptima en 

dispositivos con distintos tamaños de pantalla. La estructura de la página se adapta 

automáticamente para garantizar que los usuarios puedan visualizar los datos sin importar 

si acceden desde una computadora de escritorio, una tableta o un teléfono móvil. 



47 
 

 

Figura VII.4 Página principal del sistema 

 

Figura VII.5 Lista de centros de datos agregados en el sistema 

La interfaz permite monitorear la temperatura y humedad en tiempo real, actualizando los 

valores cada 30 segundos, que es el intervalo de medición configurado en el ESP32. Los 



48 
 

datos se presentan de manera gráfica y numérica para facilitar su interpretación. Se utilizan 

gráficas dinámicas para mostrar la temperatura y humedad en el site, lo que permite al 

usuario detectar posibles anomalías de manera visual. 

 

Figura VII.6 Gráficas del sistema 

La interfaz permite no solo visualizar los datos en tiempo real, sino también acceder a los 

datos históricos almacenados en la base de datos MongoDB. Los usuarios pueden 

seleccionar un rango de fechas y horas para consultar las lecturas pasadas, lo que es útil 

para identificar patrones o posibles problemas en el site a lo largo del tiempo. 

VII.11 Back-End: Procesamiento y almacenamiento de datos 

El back-end del sistema de monitoreo ambiental es el núcleo encargado de procesar y 

almacenar los datos enviados por los sensores conectados al ESP32. Para garantizar la 

eficiencia y escalabilidad del sistema, se ha implementado una arquitectura basada en 

Node.js para procesar los datos y MongoDB como base de datos NoSQL, que almacena 

de manera segura las lecturas de temperatura y humedad. 

 

 



49 
 

Estructura general del back-end 

El back-end se diseñó como un API RESTful que recibe los datos de los sensores, los 

procesa, y los almacena en una base de datos. Este enfoque permite que el sistema sea 

flexible y fácilmente escalable, facilitando la integración de nuevos sensores o futuras 

ampliaciones del sistema. 

El flujo de trabajo del back-end es el siguiente: 

1. El ESP32 envía los datos de temperatura y humedad al servidor mediante 

solicitudes HTTP POST al endpoint correspondiente. 

2. El servidor recibe los datos y realiza las validaciones necesarias para asegurarse 

de que los datos sean correctos y completos. 

3. Los datos se almacenan en MongoDB, donde se organizan en documentos que 

incluyen las lecturas junto con una marca temporal. 

4. La API también ofrece endpoints para recuperar los datos almacenados, 

permitiendo a la interfaz web mostrar la información en tiempo real o consultar datos 

históricos. 

 

Figura VII.7 Esquema de comunicación endpoints 

VII.12 Procesamiento de datos 

Cuando el ESP32 envía una nueva lectura de temperatura y humedad, el servidor procesa 

la solicitud y verifica que los datos recibidos sean válidos antes de almacenarlos. El 

siguiente código muestra un ejemplo de un endpoint POST que recibe los datos de los 

sensores. 



50 
 

 

Figura VII.8 Solicitud de tipo POST 

Se muestra cómo se recibe una solicitud POST con los datos del sensor y se almacenan 

en MongoDB. La validación básica garantiza que se reciban tanto la temperatura como la 

humedad antes de guardar los datos. 

VII.13 Almacenamiento de datos MongoDB 

El almacenamiento de datos se realiza en MongoDB, una base de datos NoSQL que 

permite almacenar los datos de manera eficiente en documentos JSON. Cada lectura de 

los sensores se guarda como un documento que incluye los campos de temperatura, 

humedad, y un timestamp que registra el momento exacto en que se tomó la medición. 

La estructura de los documentos almacenados en MongoDB es la siguiente: 

 

Figura VII.9 Estructura de objeto de datos 



51 
 

Esta estructura permite consultas rápidas y eficientes sobre los datos, tanto para 

visualización en tiempo real como para el análisis histórico. 

 

Figura VII.10 Histórico de datos recopilados 

VII.14 Endpoints para consultar los datos 

El sistema también ofrece endpoints que permiten consultar los datos almacenados en 

MongoDB. Estos endpoints son utilizados por la interfaz web para mostrar las mediciones 

en tiempo real y para acceder a los datos históricos. A continuación, se presenta un ejemplo 

de un endpoint GET que recupera las últimas lecturas de la base de datos.  



52 
 

 

Figura VII.11 Solicitud GET para obtención de las lecturas datos históricos 

Las últimas lecturas de los sensores para ser mostradas en la interfaz en tiempo real. 

Datos históricos dentro de un rango de fechas, que pueden ser utilizados para analizar las 

tendencias de temperatura y humedad a lo largo del tiempo. 

VII.15 Escalabilidad y despliegue para la aplicación en 

contenedores 

Para asegurar que el sistema pueda escalar fácilmente y adaptarse a futuras necesidades, 

se ha implementado en un entorno de contenedores Docker. Esto permite aislar el entorno 

de ejecución, facilitando el despliegue tanto en entornos de prueba como de producción sin 

depender de la infraestructura subyacente Dockerfile para el back-end: 



53 
 

 

Figura VII.12 Estructura del archivo Docker file 

Este contenedor encapsula el servidor Node.js y lo prepara para su despliegue, asegurando 

que el sistema pueda ejecutarse en cualquier máquina o infraestructura que soporte 

Docker. 

 

VII.16 Pruebas y validación 

Para validar el sistema, se realizaron varias pruebas de funcionamiento, incluyendo pruebas 

de estrés para evaluar la estabilidad del sistema bajo condiciones extremas. Durante estas 

pruebas, se observó que el sistema es capaz de manejar hasta 1000 lecturas por hora sin 

pérdida de datos. 

Se llevaron a cabo las siguientes pruebas: 

• Pruebas de precisión: Se compararon las lecturas del sensor DHT11 con un sensor 

de mayor precisión (DHT22) y se observó una variación promedio de 1.8°C en 

temperatura y 4% en humedad. 

• Pruebas de conectividad: Se realizaron pruebas de conexión WiFi con diferentes 

configuraciones de red para evaluar la estabilidad de la transmisión de datos. 

• Pruebas de carga: Se simuló el funcionamiento con múltiples sensores 

transmitiendo datos simultáneamente para evaluar el rendimiento del servidor y la 

base de datos. 



54 
 

• Pruebas de latencia: Se midieron los tiempos de respuesta desde la captura del dato 

hasta su visualización en la interfaz web, obteniendo un promedio de 1.2 segundos. 

En la siguiente imagen su muestra la lectura de la temperatura y humedad del site:  

 

Figura VII.13 Lectura de temperatura y humedad 

VII.17 Seguridad del sistema 

La seguridad en sistemas IoT es un aspecto fundamental. Se tomaron las siguientes 

medidas para proteger los datos transmitidos y almacenados: 

• Cifrado de datos: Se implementó TLS para asegurar la comunicación MQTT y 

HTTPS en la interfaz web. 

• Autenticación de usuarios: Se utilizó JWT (JSON Web Tokens) para gestionar el 

acceso seguro a la API. 

• Protección contra ataques: Se implementaron firewalls y listas de control de 

acceso (ACL) en el servidor para evitar intrusiones no autorizadas. 

 

 

 



55 
 

VIII. RESULTADOS Y DISCUSIÓN 

VIII.1 Resultados de las pruebas 

Para evaluar el desempeño del sistema de monitoreo de temperatura y humedad, se 

realizaron pruebas en diferentes condiciones operativas. A continuación, se presentan los 

principales resultados obtenidos: 

Datos de mediciones 

Los datos recopilados por el sistema fueron los siguientes: 

• Temperatura registrada: 23°C 

• Humedad registrada: 50% 

• ID del dispositivo: 1 

• Fecha y hora de la muestra: 11 de noviembre de 2024, 12:45:47 

En la siguiente imagen se muestra el objeto de datos recopilado de las lecturas: 

 

Figura VIII.1 Estructura de objeto de datos temperatura y humedad 

Estos valores se encuentran dentro del rango esperado para un site bien climatizado, lo 

que confirma que el sistema es capaz de capturar datos confiables en tiempo real. 

VIII.2 Tiempos de respuesta 

Se evaluaron los tiempos de ejecución del sistema mediante herramientas de monitoreo y 

perfilado en MongoDB y Google PageSpeed Insights: 

• Tiempo de consulta en MongoDB: 2 segundos. Se utilizó el MongoDB Profiler, el 

cual permite registrar todas las operaciones realizadas en la base de datos y medir 



56 
 

su tiempo de ejecución. También se empleó el comando explain("executionStats") 

para analizar el rendimiento de consultas específicas. 

En la siguiente imagen se muestran los comandos de ejecución para el monitoreo de los 

datos:  

 

Figura VIII.2 Comandos para la ejecución del monitoreo de datos mongodb 

• Tiempo de visualización en la interfaz web: Se utilizaron métricas de Google 

PageSpeed Insights para evaluar la velocidad de carga: 

o First Contentful Paint (FCP) - 2.7 segundos: Indica el tiempo en el que se 

renderiza el primer elemento visible en la página. Un menor tiempo de FCP 

mejora la percepción de velocidad por parte del usuario. 

o Renderizado del mayor elemento con contenido (LCP) - 4.6 segundos: Mide 

el tiempo en el que el elemento de mayor tamaño dentro de la vista se carga 

completamente. Es un indicador clave de rendimiento en la experiencia del 

usuario. 

o Speed Index - 5.1 segundos: Evalúa la rapidez con la que el contenido se 

visualiza en la pantalla. Un menor índice implica una carga más rápida y 

fluida. 

o Tiempo de respuesta inicial del servidor - 50 ms: Indica el tiempo que tarda 

el servidor en responder a la primera solicitud del navegador. Un valor bajo 

significa una infraestructura optimizada y con buen rendimiento. 



57 
 

 

Figura VIII.3 Pruebas de rendimiento del sistema 

Estos resultados indican que el sistema tiene un rendimiento aceptable, aunque con margen 

de optimización en la carga de la interfaz web, especialmente en la reducción de recursos 

innecesarios en JavaScript y CSS. Se recomienda mejorar la compresión de archivos, 

minimizar las solicitudes HTTP y optimizar la estrategia de almacenamiento en caché para 

reducir los tiempos de carga. 

VIII.3 Análisis de desempeño 

El análisis de desempeño del sistema de monitoreo de temperatura y humedad se centró 

en evaluar la fiabilidad, estabilidad y eficiencia del sistema en diferentes condiciones 

operativas. A continuación, se desglosan los aspectos clave: 

1. Fiabilidad del monitoreo: 

o Consistencia de los datos: Los datos capturados por el sensor DHT11 

mostraron una consistencia razonable dentro de los rangos esperados para 

un site climatizado. Aunque el sensor tiene una precisión limitada (±2°C en 

temperatura y ±5% en humedad), las mediciones se mantuvieron dentro de 

los parámetros aceptables para un entorno no crítico. 

o Validación de datos: Durante las pruebas, se compararon las lecturas del 

DHT11 con un sensor de mayor precisión (DHT22), observándose una 

variación promedio de 1.8°C en temperatura y 4% en humedad. Esto 



58 
 

confirma que, aunque el DHT11 no es el sensor más preciso, es adecuado 

para aplicaciones básicas de monitoreo ambiental. 

2. Estabilidad de la transmisión: 

o Conectividad WiFi: El sistema demostró una estabilidad aceptable en la 

transmisión de datos a través de la red WiFi. Sin embargo, se identificó que 

la estabilidad de la red es un factor crítico. En caso de interrupciones en la 

conectividad, el sistema deja de transmitir datos, lo que podría ser un 

problema en entornos con redes inestables. 

o Protocolo MQTT: El uso del protocolo MQTT permitió una transmisión 

eficiente de datos, incluso en redes con ancho de banda limitado. El tiempo 

de latencia promedio desde la captura del dato hasta su visualización en la 

interfaz web fue de 1.2 segundos, lo que es aceptable para un sistema de 

monitoreo en tiempo real. 

3. Carga y eficiencia del servidor: 

o Tiempos de consulta en MongoDB: Las consultas a la base de datos 

MongoDB mostraron un tiempo de respuesta promedio de 2 segundos, lo 

que es adecuado para la mayoría de las aplicaciones. Sin embargo, en 

entornos con grandes volúmenes de datos, este tiempo podría aumentar, lo 

que sugiere la necesidad de optimizar las consultas o escalar la 

infraestructura de la base de datos. 

o Rendimiento de la interfaz web: Las métricas de Google PageSpeed Insights 

revelaron que la interfaz web tiene un tiempo de carga inicial (First Contentful 

Paint) de 2.7 segundos y un tiempo de renderizado del mayor elemento con 

contenido (LCP) de 4.6 segundos. Aunque estos valores son aceptables, se 

identificaron oportunidades de mejora, como la reducción del uso de archivos 

CSS y JavaScript innecesarios, y la implementación de almacenamiento en 

caché para recursos estáticos. 

4. Escalabilidad: 

o Capacidad de manejo de datos: El sistema demostró ser capaz de manejar 

hasta 1000 lecturas por hora sin pérdida de datos, lo que es suficiente para 

un entorno con un solo sensor. Sin embargo, en caso de expandir el sistema 



59 
 

para monitorear múltiples puntos dentro del site, se requeriría una 

arquitectura más robusta, como la implementación de un sistema de colas 

(por ejemplo, RabbitMQ) para gestionar la transmisión de datos desde 

múltiples dispositivos. 

VIII.4 Impacto del sistema y prototipo 

El sistema de monitoreo de temperatura y humedad ha tenido un impacto significativo en la 

gestión ambiental del site de la Universidad Autónoma del Estado de Hidalgo. A 

continuación, se detallan los principales beneficios y mejoras observadas: 

1. Mejora en la eficiencia del monitoreo: 

o Reducción de revisiones manuales: Antes de la implementación del sistema, 

el monitoreo ambiental dependía de revisiones manuales esporádicas, lo 

que limitaba la capacidad de detectar cambios bruscos en las condiciones 

ambientales. Con el sistema IoT, el monitoreo se realiza de manera continua 

y en tiempo real, lo que permite una supervisión más eficiente y proactiva. 

o Automatización de procesos: La automatización del monitoreo ha liberado 

recursos humanos que antes se dedicaban a tareas manuales, permitiendo 

que el personal se enfoque en actividades más estratégicas. 

2. Reducción del riesgo de fallos: 

o Detección temprana de anomalías: El sistema permite detectar cambios 

bruscos en la temperatura y humedad, lo que facilita la identificación 

temprana de posibles problemas en el sistema de climatización. Esto reduce 

el riesgo de fallos catastróficos que podrían afectar la operatividad de los 

equipos críticos. 

o Alertas en tiempo real: Aunque el sistema actual no incluye notificaciones 

automáticas (como SMS o correo electrónico), la visualización en tiempo real 

de los datos permite a los responsables del site tomar acciones inmediatas 

en caso de detectar condiciones fuera de los rangos óptimos. 

3. Optimización del uso de la infraestructura: 

o Toma de decisiones informadas: Con los datos históricos almacenados en 

MongoDB, los administradores del site pueden analizar tendencias y 



60 
 

patrones en las condiciones ambientales, lo que facilita la toma de 

decisiones informadas sobre el mantenimiento preventivo y la optimización 

del sistema de climatización. 

o Ahorro energético: Al mantener las condiciones ambientales dentro de los 

rangos óptimos, el sistema contribuye a reducir el consumo energético del 

site, lo que se traduce en ahorros económicos y una menor huella de 

carbono. 

4. Impacto en la continuidad de los servicios: 

o Protección de equipos críticos: Al garantizar que la temperatura y humedad 

se mantengan dentro de los rangos recomendados por la ASHRAE, el 

sistema protege los servidores y equipos de red de posibles daños causados 

por sobrecalentamiento o humedad excesiva. Esto asegura la continuidad 

de los servicios académicos y administrativos que dependen de la 

infraestructura tecnológica del site. 

o Mejora en la confiabilidad de la red: Al minimizar los riesgos de fallos en los 

equipos, el sistema contribuye a mejorar la confiabilidad y estabilidad de la 

red universitaria, lo que beneficia tanto a estudiantes como al personal 

administrativo. 

5. Posibilidades de expansión: 

o Integración de nuevos sensores: La arquitectura del sistema permite la fácil 

integración de nuevos sensores, como sensores de presión atmosférica o 

calidad del aire, lo que ampliaría las capacidades de monitoreo del site. 

o Implementación de alertas avanzadas: En futuras iteraciones, se podría 

implementar un sistema de notificaciones automáticas (SMS, correo 

electrónico) para alertar a los responsables en caso de condiciones críticas, 

lo que mejoraría aún más la capacidad de respuesta del sistema. 

 

 



61 
 

VIII.5 Hallazgos durante el desarrollo 

Durante el desarrollo del prototipo, se identificaron varios hallazgos importantes: 

1. Precisión del sensor DHT11: Aunque el sensor DHT11 es adecuado para 

aplicaciones básicas, se observó que su precisión es limitada en comparación con 

sensores más avanzados como el DHT22 o el BME280. Esto podría afectar la 

fiabilidad del sistema en entornos donde se requiera una mayor precisión. 

2. Dependencia de la red WiFi: El sistema depende completamente de la red WiFi para 

la transmisión de datos. Durante las pruebas, se observó que la estabilidad de la 

red es crucial para el funcionamiento del sistema. En caso de interrupciones en la 

red, el sistema deja de transmitir datos, lo que podría ser un problema en entornos 

con redes inestables. 

3. Escalabilidad del sistema: El sistema actual está diseñado para monitorear un solo 

punto dentro del site. Sin embargo, se identificó que el uso de múltiples sensores y 

ESP32 podría requerir una arquitectura más robusta, como la implementación de un 

sistema de colas (por ejemplo, RabbitMQ) para gestionar la transmisión de datos 

desde múltiples dispositivos. 

4. Consumo energético: Aunque el ESP32 tiene un consumo bajo, el monitoreo 

continuo podría reducir su eficiencia en entornos sin suministro constante de 

energía. Se recomienda evaluar la integración de baterías recargables o sistemas 

de energía alternativos. 

VIII.6 Comparación con soluciones comerciales 

Comparando este sistema con soluciones comerciales como NetBotz 200 o Sensaphone, 

se pueden destacar las siguientes diferencias: 

1. Costo-Beneficio: 

• Prototipo: El costo del prototipo es significativamente menor en comparación con los 

sistemas comerciales, que pueden superar los $500 USD. Esta ventaja económica 

lo convierte en una opción atractiva para usuarios con presupuestos limitados. 

• Soluciones Comerciales: Ofrecen un mayor nivel de sofisticación y funcionalidades, 

pero su precio refleja la inversión en desarrollo, hardware y soporte técnico. 



62 
 

2. Personalización y Escalabilidad: 

• Prototipo: La arquitectura del sistema facilita la integración de nuevos sensores y 

funcionalidades según las necesidades del usuario. Esto permite adaptar el sistema 

a diferentes escenarios y aplicaciones. 

• Soluciones Comerciales: Por lo general, ofrecen un conjunto predefinido de 

sensores y funcionalidades, lo que puede limitar la flexibilidad para la 

personalización. 

3. Precisión: 

• Prototipo: El sensor DHT11, utilizado en el prototipo, cumple con su función en 

entornos no críticos. Sin embargo, para aplicaciones que requieren una mayor 

precisión, sensores más avanzados como el BME280 o SHT31 podrían ser una 

mejor alternativa. 

• Soluciones Comerciales: Emplean sensores de mayor precisión para obtener datos 

más confiables en entornos que requieren mediciones exactas. 

4. Capacidad de Alerta: 

• Prototipo: El sistema desarrollado aún no incluye funcionalidades de alerta como 

notificaciones SMS o correo electrónico. Esta funcionalidad podría implementarse 

en futuras versiones para mejorar la reactividad ante eventos críticos. 

• Soluciones Comerciales: Ofrecen notificaciones SMS y correo electrónico, 

permitiendo una respuesta rápida ante eventos como cambios de temperatura, 

humedad o intrusiones. 

 

 

 

 

 

 



63 
 

IX. CONCLUSIONES Y RECOMENDACIONES 

El desarrollo e implementación del sistema IoT para el monitoreo en tiempo real de 

temperatura y humedad en el site de la Universidad Autónoma del Estado de Hidalgo 

(UAEH) ha demostrado ser una solución viable y efectiva para la gestión ambiental de 

infraestructuras críticas. A través de la integración de tecnologías como el microcontrolador 

ESP32, el sensor DHT11, el protocolo MQTT y la base de datos NoSQL MongoDB, se ha 

logrado crear un sistema que permite la captura, transmisión, almacenamiento y 

visualización de datos ambientales en tiempo real. Este sistema no solo optimiza el 

monitoreo de las condiciones ambientales, sino que también contribuye a la prevención de 

fallos en los equipos tecnológicos, asegurando la continuidad de los servicios académicos 

y administrativos. 

Entre las principales conclusiones del proyecto se encuentran: 

1. Funcionalidad del sistema: El sistema desarrollado cumple con los objetivos 

planteados, permitiendo el monitoreo continuo de la temperatura y humedad en el 

site de la UAEH. La integración de tecnologías IoT ha demostrado ser eficiente para 

la transmisión de datos en tiempo real, lo que facilita la toma de decisiones 

proactivas en caso de detectar condiciones ambientales adversas. 

2. Precisión y limitaciones del sensor DHT11: Aunque el sensor DHT11 es adecuado 

para aplicaciones básicas de monitoreo, se identificó que su precisión es limitada 

en comparación con sensores más avanzados como el DHT22 o el BME280. Esto 

sugiere que, en entornos donde se requiera una mayor precisión, sería 

recomendable considerar la integración de sensores más precisos. 

3. Dependencia de la red WiFi: El sistema depende completamente de la red WiFi para 

la transmisión de datos. Durante las pruebas, se observó que la estabilidad de la 

red es un factor crítico para el funcionamiento del sistema. En caso de interrupciones 

en la conectividad, el sistema deja de transmitir datos, lo que podría ser un problema 

en entornos con redes inestables. Por lo tanto, se recomienda explorar soluciones 

de respaldo, como la integración de baterías o sistemas de energía ininterrumpida 

(UPS). 

4. Escalabilidad y optimización: El sistema actual está diseñado para monitorear un 

solo punto dentro del site. Sin embargo, se identificó que la integración de múltiples 



64 
 

sensores y dispositivos podría requerir una arquitectura más robusta, como la 

implementación de un sistema de colas (por ejemplo, RabbitMQ) para gestionar la 

transmisión de datos desde múltiples dispositivos. Además, se recomienda 

optimizar el consumo energético del sistema, especialmente en entornos donde el 

suministro de energía no sea constante. 

5. Impacto en la gestión del site: La implementación del sistema ha permitido una 

mejora significativa en la eficiencia del monitoreo ambiental, reduciendo la 

dependencia de revisiones manuales y permitiendo una supervisión continua y en 

tiempo real. Esto ha contribuido a la detección temprana de anomalías y a la 

reducción del riesgo de fallos en los equipos críticos. 

IX.1 Recomendaciones 

Con base en los hallazgos y conclusiones del proyecto, se proponen las siguientes 

recomendaciones para futuras iteraciones y mejoras del sistema: 

1. Integración de sensores más avanzados: Para mejorar la precisión de las 

mediciones, se recomienda evaluar la integración de sensores más avanzados, 

como el DHT22 o el BME280, que ofrecen una mayor precisión en la medición de 

temperatura, humedad y presión atmosférica. Esto sería especialmente útil en 

entornos donde se requiera un monitoreo más preciso y confiable. 

2. Implementación de sistemas de respaldo: Dada la dependencia del sistema de la 

red WiFi, se recomienda explorar soluciones de respaldo, como la integración de 

baterías recargables o sistemas de energía ininterrumpida (UPS), para garantizar la 

continuidad del monitoreo en caso de cortes de energía o fallos en la red. 

3. Optimización del consumo energético: Para mejorar la eficiencia energética del 

sistema, se sugiere explorar la integración de fuentes de energía alternativas, como 

paneles solares, o la implementación de estrategias de bajo consumo en el ESP32, 

como el uso de modos de suspensión o hibernación. 

4. Expansión del sistema: El sistema actual está diseñado para monitorear un solo 

punto dentro del site. Sin embargo, se recomienda explorar la expansión del sistema 

para incluir múltiples sensores y dispositivos, lo que permitiría un monitoreo más 

completo de las condiciones ambientales en diferentes áreas del site. Para ello, se 



65 
 

podría implementar un sistema de colas (por ejemplo, RabbitMQ) para gestionar la 

transmisión de datos desde múltiples dispositivos. 

5. Implementación de alertas avanzadas: Aunque el sistema actual permite la 

visualización de datos en tiempo real, se recomienda implementar un sistema de 

notificaciones automáticas, como alertas por SMS o correo electrónico, para 

informar a los responsables del site en caso de detectar condiciones críticas. Esto 

mejoraría la capacidad de respuesta del sistema y permitiría una gestión más 

proactiva de las condiciones ambientales. 

6. Optimización de la interfaz web: Se identificaron oportunidades de mejora en la 

velocidad de carga de la interfaz web, especialmente en la reducción del uso de 

archivos CSS y JavaScript innecesarios. Se recomienda implementar estrategias de 

optimización, como la compresión de archivos, la minimización de solicitudes HTTP 

y el uso de almacenamiento en caché para recursos estáticos. 

7. Integración con inteligencia artificial: En futuras iteraciones, se podría explorar la 

integración de algoritmos de aprendizaje automático para predecir fallos en el site 

basados en los datos históricos recopilados. Esto permitiría una gestión más 

proactiva y preventiva de la infraestructura tecnológica. 

IX.2 Proyecciones futuras 

El sistema de monitoreo desarrollado tiene un gran potencial para ser expandido y mejorado 

en futuras iteraciones. Algunas de las proyecciones futuras incluyen: 

1. Integración de nuevos sensores: Además de la temperatura y humedad, se podría 

integrar sensores para monitorear otros parámetros ambientales, como la presión 

atmosférica, la calidad del aire o los niveles de CO2. Esto permitiría un monitoreo 

más completo de las condiciones ambientales en el site. 

2. Implementación de sistemas de control automático: En el futuro, se podría explorar 

la integración de sistemas de control automático que permitan ajustar las 

condiciones ambientales en el site de manera remota. Por ejemplo, se podría 

implementar un sistema que active o desactive los sistemas de climatización en 

función de las lecturas de los sensores. 

3. Expansión a otros sitios: El sistema desarrollado podría ser implementado en otros 

sitios de la universidad o en otras instituciones educativas que requieran un 



66 
 

monitoreo ambiental similar. La arquitectura modular del sistema facilita su 

adaptación a diferentes entornos y necesidades. 

4. Integración con sistemas de gestión de infraestructuras (DCIM): En el futuro, se 

podría explorar la integración del sistema con sistemas de gestión de 

infraestructuras de centros de datos (DCIM), lo que permitiría una gestión más 

integral de los recursos tecnológicos y ambientales en el site. 

IX.3 Reflexión final  

El desarrollo de este sistema de monitoreo IoT ha demostrado que es posible implementar 

soluciones tecnológicas de bajo costo para mejorar la gestión de infraestructuras críticas 

en entornos académicos. Aunque el sistema actual tiene algunas limitaciones, como la 

precisión del sensor y la dependencia de la red WiFi, ha demostrado ser una herramienta 

valiosa para la prevención de fallos y la optimización del uso de los recursos tecnológicos 

en el site de la UAEH. 

Este proyecto no solo ha contribuido a la mejora de la infraestructura tecnológica de la 

universidad, sino que también ha abierto la puerta a futuras investigaciones y desarrollos 

en el campo del IoT y la gestión ambiental de centros de datos. Se espera que este sistema 

sirva como base para futuras implementaciones y mejoras, contribuyendo así a la creación 

de entornos más seguros y eficientes para el desarrollo de actividades académicas y 

administrativas. 

 

 

 

 

 

 

 

 



67 
 

X. Referencias  

Bonilla, L., & Bonilla, L. (2024, 27 junio). Riesgos de un Data Center en 2024: 

principales problemas. Data Center Market. 

https://www.datacentermarket.es/dcm-xl/riesgos-de-un-data-center-principales-

problemas/ 

Chernicoff, D. (2013, 12 junio). When it’s raining inside your data center, you have 

a problem. ZDNET. https://www.zdnet.com/article/when-its-raining-inside-

your-datacenter-you-have-a-problem/ 

SHRAE TC9.9 Data Center Power Equipment Thermal Guidelines and Best 

Practices. (n.d.). Retrieved April 30, 2022, from 

https://www.ashrae.org/File%20Library/Technical%20Resources/Bookstore/

ASHRAE_TC0909_Power_White_Paper_22_June_2016_REVISED.pdf 

Qué es la Internet de las cosas (IoT) y qué son los dispositivos de IoT (2019, 12 

marzo). /. https://latam.kaspersky.com/resource-center/definitions/what-is-

iot AV Electronics. (2024b, octubre 7).  

DHT11 Temperatura y humedad – AV 

Electronics. https://avelectronics.cc/producto/dht11-temperatura-y-

humedad/ 

ESP32 38 Pines ESP WROOM 32. (s/f). UNIT Electronics. Recuperado el 8 de 

octubre de 2024, de https://uelectronics.com/producto/esp32-38-pines-esp-

wroom32/?srsltid=AfmBOop3NWvtlCqJSeb9pb4YXUTfblNw0gvApb05ajxVntefflVd

FaIA Pérez-Tavera, I. H. (2023, 5 enero).  

Arduino 

IDE. https://repository.uaeh.edu.mx/revistas/index.php/prepa4/article/view/10474 

https://www.datacentermarket.es/dcm-xl/riesgos-de-un-data-center-principales-problemas/
https://www.datacentermarket.es/dcm-xl/riesgos-de-un-data-center-principales-problemas/
https://www.zdnet.com/article/when-its-raining-inside-your-datacenter-you-have-a-problem/
https://www.zdnet.com/article/when-its-raining-inside-your-datacenter-you-have-a-problem/
https://www.ashrae.org/File%20Library/Technical%20Resources/Bookstore/ASHRAE_TC0909_Power_White_Paper_22_June_2016_REVISED.pdf
https://www.ashrae.org/File%20Library/Technical%20Resources/Bookstore/ASHRAE_TC0909_Power_White_Paper_22_June_2016_REVISED.pdf
https://latam.kaspersky.com/resource-center/definitions/what-is-iot
https://latam.kaspersky.com/resource-center/definitions/what-is-iot
https://avelectronics.cc/producto/dht11-temperatura-y-humedad/
https://avelectronics.cc/producto/dht11-temperatura-y-humedad/
https://uelectronics.com/producto/esp32-38-pines-esp-wroom32/?srsltid=AfmBOop3NWvtlCqJSeb9pb4YXUTfblNw0gvApb05ajxVntefflVdFaIA
https://uelectronics.com/producto/esp32-38-pines-esp-wroom32/?srsltid=AfmBOop3NWvtlCqJSeb9pb4YXUTfblNw0gvApb05ajxVntefflVdFaIA
https://uelectronics.com/producto/esp32-38-pines-esp-wroom32/?srsltid=AfmBOop3NWvtlCqJSeb9pb4YXUTfblNw0gvApb05ajxVntefflVdFaIA
https://repository.uaeh.edu.mx/revistas/index.php/prepa4/article/view/10474


68 
 

HTML5 - MDN Web Docs Glossary: Definitions of Web-related terms | MDN. (2024, 

25 julio). MDN Web Docs. https://developer.mozilla.org/en-

US/docs/Glossary/HTML5 

CSS | MDN. (2024, 6 junio). MDN Web Docs. 

https://developer.mozilla.org/es/docs/Web/CSS 

JavaScript | MDN. (2023, 24 julio). MDN Web Docs. 

https://developer.mozilla.org/es/docs/Web/JavaScript 

Qué es Node.js y por qué deberías usarlo. Kinsta®. https://kinsta.com/es/base-de-

conocimiento/que-es-node-js/ 

Contenedores de Docker | ¿Qué es Docker? | AWS. (s. f.). Amazon Web Services, 

Inc. https://aws.amazon.com/es/docker/ 

Introduction to web APIs - Learn web development | MDN. (2024, 5 agosto). MDN 

Web Docs. https://developer.mozilla.org/en-

US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction 

Introducción. (s. f.). Vitejs. https://es.vitejs.dev/guide/ 

MQTT - Explicación del protocolo MQTT - AWS. (s. f.). Amazon Web Services, Inc. 

https://aws.amazon.com/es/what-is/mqtt/ 

IBM. (2023, 12 mayo). ¿Qué es MongoDB? | IBM. https://www.ibm.com/mx-

es/topics/mongodb 

CICS Transaction Server for z/OS 6.x. (s. f.). https://www.ibm.com/docs/es/cics-

ts/6.x?topic=cics-json-web-token-jw 

Qué es el wifi - Tipos de conexiones wifi y seguridad | Proofpoint ES. (2023, 24 

diciembre). Proofpoint. https://www.proofpoint.com/es/threat-

reference/wifi#:~:text=Wifi%2C%20que%20es%20una%20contracci%C3%

B3n,red%20mediante%20frecuencias%20de%20radio.  

https://developer.mozilla.org/en-US/docs/Glossary/HTML5
https://developer.mozilla.org/en-US/docs/Glossary/HTML5
https://developer.mozilla.org/es/docs/Web/CSS
https://developer.mozilla.org/es/docs/Web/JavaScript
https://kinsta.com/es/base-de-conocimiento/que-es-node-js/
https://kinsta.com/es/base-de-conocimiento/que-es-node-js/
https://aws.amazon.com/es/docker/
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Introduction
https://es.vitejs.dev/guide/
https://aws.amazon.com/es/what-is/mqtt/
https://www.ibm.com/mx-es/topics/mongodb
https://www.ibm.com/mx-es/topics/mongodb
https://www.ibm.com/docs/es/cics-ts/6.x?topic=cics-json-web-token-jw
https://www.ibm.com/docs/es/cics-ts/6.x?topic=cics-json-web-token-jw
https://www.proofpoint.com/es/threat-reference/wifi#:~:text=Wifi%2C%20que%20es%20una%20contracci%C3%B3n,red%20mediante%20frecuencias%20de%20radio
https://www.proofpoint.com/es/threat-reference/wifi#:~:text=Wifi%2C%20que%20es%20una%20contracci%C3%B3n,red%20mediante%20frecuencias%20de%20radio
https://www.proofpoint.com/es/threat-reference/wifi#:~:text=Wifi%2C%20que%20es%20una%20contracci%C3%B3n,red%20mediante%20frecuencias%20de%20radio


69 
 

Leskow, E. C. (2024, 2 septiembre). Temperatura - Concepto, escalas, medición, 

tipos y ejemplos. Concepto. https://concepto.de/temperatura/ 

Equipo editorial, Etecé. (2020, 29 agosto). Humedad - Concepto, tipos, medición, 

clima y nubes. Concepto. https://concepto.de/humedad/ 

Martín, A., Chávez, S. B., Rodríguez, N. R., Valenzuela, A., y Murazzo, M. A. 

(2013). Bases de datos NoSQL en Cloud Computing (p. 166).  

Gharavi, H., & Ghafurian, R. (2011). Smart grid: The electric energy system of the 

future. Proceedings of the IEEE, 99(6), 917-921. 

Islam, S. M. R., Kwak, D., Kabir, M. H., Hossain, M., & Kwak, K. S. (2015). The 

Internet of Things for health care: A comprehensive survey. IEEE Access, 

3, 678-708. 

Montalvo, R. M. (2020). Cyber risk from IoT technologies in the supply chain. 

Computers in Industry, 123, 103335. 

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart 

farming–A review. Agricultural Systems, 153, 69-80. 

Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of 

Things for smart cities. IEEE Internet of Things Journal, 1(1), 22-32. 

Funcionamiento. (2008, 21 septiembre). TECNOLOGÌA DE COMUNICACIÒN 

INALÀMBRICA. https://arodriguezr.wordpress.com/como-funciona-lo-inalambrico/ 

Zhang, Y., Qian, C., & He, Z. (2021). Wireless energy transfer technologies for IoT 

devices. IEEE Internet of Things Journal, 8(5), 3297-3308. 

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things 

(IoT): A vision, architectural elements, and future directions. Future 

Generation Computer Systems, 29(7), 1645-1660. 

https://concepto.de/temperatura/
https://concepto.de/humedad/
https://arodriguezr.wordpress.com/como-funciona-lo-inalambrico/


70 
 

Huancayo, (2022). Diseño de módulo de control basado en plataforma IoT para 

monitoreo de motor de inducción de baja potencia. Repositorio Continental. 

https://repositorio.continental.edu.pe/handle/20.500.12394/12585 

Escobar, J., & Sánchez, L. (2022). Implementación de un prototipo de un sistema 

de monitoreo ambiental de temperatura, humedad, presión y calidad del 

aire basado en ESP32 y página web. Escuela Politécnica Nacional. 

https://bibdigital.epn.edu.ec/handle/15000/25599 

Zhang, Y., Shan, K., Li, X., Li, H., & Wang, S. (2023). Research and technologies 

for next-generation high-temperature data centers: State-of-the-art and 

future perspectives. Renewable and Sustainable Energy Reviews, 171, 

Article 112991. https://doi.org/10.1016/j.rser.2022.112991 

CICS Transaction Server for Z/OS 6.x. (s.f.). Security mechanisms in IoT 

environments. IBM. 

Gharavi, H., & Ghafurian, R. (2021). Smart Grid: The Electric Energy System of the 

Future. IEEE Xplore. 

Zhang, Y., Shan, K., Li, X., Li, H., & Wang, S. (2023). Advancements in IoT-Based 

Industrial Monitoring Systems. 

Estudio Electrónica. (2023). ¿Qué es un microcontrolador? Estudio 

Electrónica. https://www.estudioelectronica.com/que-es-un-microcontrolador/ 

IBM. (2023). ¿Qué es un microcontrolador? 

IBM. https://www.ibm.com/mxes/think/topics/microcontroller 

Universidad Europea. (2023). Microcontrolador: ¿Qué es y para qué sirve? 

Universidad Europea. https://universidadeuropea.com/blog/que-

esmicrocontrolador/ 

https://repositorio.continental.edu.pe/handle/20.500.12394/12585
https://bibdigital.epn.edu.ec/handle/15000/25599
https://doi.org/10.1016/j.rser.2022.112991
https://www.estudioelectronica.com/que-es-un-microcontrolador/
https://www.ibm.com/mxes/think/topics/microcontroller
https://universidadeuropea.com/blog/que-esmicrocontrolador/
https://universidadeuropea.com/blog/que-esmicrocontrolador/


71 
 

Sherlin.xBot.es. (2023). 1. ¿Qué es un microcontrolador? 

Sherlin.xBot.es. https://sherlin.xbot.es/microcontroladores/introduccion-a-

los microcontroladores/que-es-un-microcontrolador 

Amazon. (2023). Placa de desarrollo ESP32 Procesador de microcontrolador de 

doble .... Amazon.com.mx. https://www.amazon.com.mx/desarrollo-

Procesador microcontrolador-Bluetooth-integrado/dp/B07RY9MVCV 

Espressif. (2023). ESP32 Series. Espressif 

Systems. https://www.espressif.com/en/products/socs/esp32 

Microdesys. (2023). Microcontrolador Esp32. 

Microdesys. https://microdesys.es/docs/microcontrolador-esp32/ 

Programar Fácil. (2023). ESP32 Wifi + Bluetooth en un solo lugar. Programar 

Fácil. https://programarfacil.com/esp8266/esp32/ 

Universidad Autónoma del Estado de Hidalgo. (2008). Pone en marcha la UAEH 

Red Metropolitana de Fibra Óptica y la Red de Microondas WiMax. Garceta 

UAEH, 61. https://www.uaeh.edu.mx/garceta/n61/nota2.htm 

Universidad Autónoma del Estado de Hidalgo. (2016). Programa WorkLabs 2016. 

https://www.uaeh.edu.mx/dlcyt/documentos/programa_worklabs_2016.pdf 

Universidad Autónoma del Estado de Hidalgo. (2025). Manual de organización de 

la Dirección de Información y Sistemas. 

https://www.uaeh.edu.mx/planeacion/sistemas/images/documentosAdminist

rativos/2025/mo-diys-v6.pdf 

Chen, J., Yang, A., & Chen, S. (2021). IEEE Internet of Things Journal, 8(4), 2634-

2652. https://doi.org/10.1109/JIOT.2020.3026400 

 

Farooq, M. S., Riaz, S., Abid, A., Abid, K., & Naeem, M. A. (2023). Computers and 

Electronics in Agriculture, 204, 107541. 

https://doi.org/10.1016/j.compag.2022.107541 

 

https://sherlin.xbot.es/microcontroladores/introduccion-a-los%20microcontroladores/que-es-un-microcontrolador
https://sherlin.xbot.es/microcontroladores/introduccion-a-los%20microcontroladores/que-es-un-microcontrolador
https://amazon.com/
https://www.amazon.com.mx/desarrollo-Procesador%20microcontrolador-Bluetooth-integrado/dp/B07RY9MVCV
https://www.amazon.com.mx/desarrollo-Procesador%20microcontrolador-Bluetooth-integrado/dp/B07RY9MVCV
https://www.espressif.com/en/products/socs/esp32
https://microdesys.es/docs/microcontrolador-esp32/
https://programarfacil.com/esp8266/esp32/
https://www.uaeh.edu.mx/garceta/n61/nota2.htm
https://www.uaeh.edu.mx/dlcyt/documentos/programa_worklabs_2016.pdf
https://www.uaeh.edu.mx/planeacion/sistemas/images/documentosAdministrativos/2025/mo-diys-v6.pdf
https://www.uaeh.edu.mx/planeacion/sistemas/images/documentosAdministrativos/2025/mo-diys-v6.pdf


72 
 

Hasan, M., Islam, M. M., Zarif, M. I. I., & Hashem, M. M. A. (2023). IEEE Access, 

11, 1833-1862. https://doi.org/10.1109/ACCESS.2022.3233315 

 

Rahman, M. A., Hossain, M. S., Alrajeh, N. A., & Gupta, B. B. (2022). IEEE 

Transactions on Industrial Informatics, 18(5), 3511-3521. 

https://doi.org/10.1109/TII.2021.3105720 

 

Rayes, A., & Salam, S. (2022). Internet of Things from Hype to Reality (3rd ed.). 

Springer. https://doi.org/10.1007/978-3-030-90158-5 

 

Xu, X., Lu, Y., Vogel-Heuser, B., & Wang, L. (2023). *IEEE/CAA Journal of 

Automatica Sinica, 10*(1), 1-17. https://doi.org/10.1109/JAS.2022.106061 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

XI. Anexos 

XI.1 Código del microcontrolador ESP32 

#include <ESP8266WiFi.h> 

#include <ESP8266HTTPClient.h> 

#include <DHT.h> 

// --- Configuración WiFi --- 

const char* ssid = "TU_SSID";       // Nombre de tu red WiFi 

const char* password = "TU_PASSWORD"; // Contraseña de tu WiFi 

// --- Configuración del DHT11 --- 

#define DHTPIN D4       // Pin de datos del DHT11 (ajusta según tu conexión) 

#define DHTTYPE DHT11 

DHT dht(DHTPIN, DHTTYPE); 

// --- Configuración de la URL destino --- 

String serverName = "http://TU-SERVIDOR.com/api/datos";  // tu endpoint 

void setup() { 

  Serial.begin(115200); 

  dht.begin(); 

  // Conexión WiFi 

  WiFi.begin(ssid, password); 

  Serial.print("Conectando a WiFi..."); 

  while (WiFi.status() != WL_CONNECTED) { 

    delay(500); 

    Serial.print("."); 

  } 

  Serial.println("\nConectado a WiFi!"); 

} 

void loop() { 

  if (WiFi.status() == WL_CONNECTED) { 

    float humedad = dht.readHumidity(); 

    float temperatura = dht.readTemperature(); 



74 
 

 

    if (isnan(humedad) || isnan(temperatura)) { 

      Serial.println("Error al leer el sensor DHT11!"); 

      return; 

    } 

    // Crear el JSON o query para enviar 

    String postData = "temperatura=" + String(temperatura) + "&humedad=" + 
String(humedad); 

    // --- Enviar datos por HTTP POST --- 

    HTTPClient http; 

    http.begin(serverName);   

    http.addHeader("Content-Type", "application/x-www-form-urlencoded"); 

    int httpResponseCode = http.POST(postData); 

    if (httpResponseCode > 0) { 

      String respuesta = http.getString(); 

      Serial.println("Respuesta del servidor: " + respuesta); 

    } else { 

      Serial.println("Error en la petición: " + String(httpResponseCode)); 

    } 

    http.end(); 

  } else { 

    Serial.println("WiFi desconectado!"); 

  } 

  delay(10000); // cada 10 segundos 

} 

XI.2 Código del contendor para la API y la aplicación 

const bodyParser = require('body-parser'); 

const express = require('express'); 

const mongoose = require('mongoose'); 

const cors = require('cors'); 

const dayjs = require('dayjs'); 



75 
 

const axios = require('axios'); 

const moment = require('moment-timezone'); 

const nodemailer = require('nodemailer'); 

//configuracion a mongo 

const app = express() 

app.use(cors()); 

app.use(bodyParser.json()); 

// Conexión a MongoDB 

mongoose.connect(uri) 

  .then(() => console.log('Conectado a MongoDB')) 

  .catch(err => console.error('Error al conectar a MongoDB:', err)); 

// Definición del esquema y modelo 

const fecha = dayjs(); 

const SensorSchema = new mongoose.Schema({ 

    temperatura: Number, 

    humedad: Number, 

    idDispositivo: Number, 

    date: Date, 

    hora: String 

}); 

const SensorData = mongoose.model('data', SensorSchema); // Nombre de la colección 

const UsuarioSchema = new mongoose.Schema({ 

    nombre: String, 

    apellidoPaterno: String, 

    apellidoMaterno: String, 

    correo: String, 

    contrasena: String, 

    date: Date, 

    hora: String            

}); 

const UsuarioData = mongoose.model('usuarios', UsuarioSchema); // Nombre de la 
colección 



76 
 

const SensorInventarioSchema = new mongoose.Schema({ 

    nombre_dispositivo: String, 

    numero_serie: String, 

    versionDispositivo: String, 

    idDispositivo: Number, 

    date: Date, 

    hora: String 

}); 

const SensorInventarioData = mongoose.model('inventario', SensorInventarioSchema); // 
Nombre de la colección 

 

const usuarioDispositivoSchema = new mongoose.Schema({ 

    idUsuario: String, 

    numero_serie: String, 

    nombre_dispositiv_ubicacion: String, 

    nombre_dispositivo: String, 

    idDispositivo: Number, 

    date: Date, 

    hora: String 

}); 

const UsuarioDispositivoData = mongoose.model('usuarioDispositivo', 
usuarioDispositivoSchema); // Nombre de la colección 

app.post('/api/data', async (req, res) => { 

    try { 

        const moment = require('moment-timezone'); 

        // Obtener la fecha y hora en la zona horaria específica 

        const fechaConZonaHoraria = moment.tz(new Date(), 'America/Mexico_City'); 

        // Extraer las horas, minutos y segundos 

        const horas = fechaConZonaHoraria.format('HH'); 

        const minutos = fechaConZonaHoraria.format('mm'); 

        const segundos = fechaConZonaHoraria.format('ss'); 

        // Formatear la hora como "HH:mm:ss" 



77 
 

        const horaFormateada = `${horas}:${minutos}:${segundos}`; 

 

        const { temperatura, humedad, idDispositivo } = req.body; 

        const dataDataCenter = new SensorData({ temperatura, humedad, idDispositivo, date: 
fecha.format("YYYY-MM-DD"), hora: horaFormateada }); 

        await dataDataCenter.save(); 

        res.status(201).json({ message: 'Datos guardados correctamente',response:201}); 

    } catch (error) {  

    } 

}); 

app.post('/api/usuarios', async (req, res) => { 

    try { 

        const { nombre, apellidoPaterno, apellidoMaterno, correo, contrasena } = req.body; 

        const dataUsuario = new UsuarioData({ nombre, apellidoPaterno, apellidoMaterno, 
correo, contrasena, date: fecha.format("YYYY-MM-DD"), hora: fecha.format("HH:mm:ss") 
}); 

        await dataUsuario.save(); 

        res.status(201).json({ message: 'Usuario guardado correctamente',response:201}); 

    } catch (error) {  

    } 

}); 

app.post('/api/usuarioConsularDatos', async (req, res) => { 

    try { 

        const { idUsuario } = req.body; 

        const user = await UsuarioData.findById(idUsuario); 

        res.status(200).json({ user }); 

    } catch (error) { 

        res.status(500).json({ error: 'Error al procesar la solicitud', message: 'error', status: 500 
}); 

        console.log(error); 

    } 

}); 

app.post('/api/usuarioActualizarDatos', async (req, res) => { 



78 
 

    try { 

        const {idUsuario ,nombre, apellidoPaterno, apellidoMaterno, correo} = req.body; 

        const user = await UsuarioData.findById(idUsuario); 

        user.nombre = nombre; 

        user.correo = correo; 

        user.apellidoPaterno = apellidoPaterno; 

        user.apellidoMaterno = apellidoMaterno; 

        user.save(); 

        res.status(200).json({ message: 'Datos actualizados correctamente', status: 200 }); 

    } catch (error) { 

        res.status(500).json({ error: 'Error al procesar la solicitud', message: 'error', status: 500 
}); 

    } 

}); 

app.post('/api/inventario', async (req, res) => { 

    try { 

 

        const moment = require('moment-timezone'); 

        // Obtener la fecha y hora en la zona horaria específica 

        const fechaConZonaHoraria = moment.tz(new Date(), 'America/Mexico_City'); 

        // Extraer las horas, minutos y segundos 

        const horas = fechaConZonaHoraria.format('HH'); 

        const minutos = fechaConZonaHoraria.format('mm'); 

        const segundos = fechaConZonaHoraria.format('ss'); 

        // Formatear la hora como "HH:mm:ss" 

        const horaFormateada = `${horas}:${minutos}:${segundos}`; 

        const { nombre_dispositivo, numero_serie, versionDispositivo, idDispositivo } = 
req.body; 

        const sensorInventarioData = new SensorInventarioData({ nombre_dispositivo, 
numero_serie, versionDispositivo, idDispositivo, date: fecha.format("YYYY-MM-DD"), hora: 
horaFormateada }); 

        await sensorInventarioData.save(); 

        res.status(201).json({ message: 'Datos guardados correctamente' }); 



79 
 

    } catch (error) { 

        res.status(500).json({ error: 'Error al guardar los datos' }); 

        console.log(error); 

    } 

}); 

// Ruta para el login 

app.post('/api/login', async (req, res) => { 

    try { 

        const { correo, contrasena } = req.body; 

        const user = await UsuarioData.findOne({ correo, contrasena }); 

 

        if (user) { 

            res.status(200).json({ message: 'success', nombre: user.nombre, idUsuario: 
user._id }); 

        } else { 

            res.status(401).json({ error: 'Usuario o contraseña incorrectos', message: 'error', 
status: 401 }); 

        } 

    } catch (error) { 

        res.status(500).json({ error: 'Error al procesar la solicitud' }); 

        console.log(error); 

    } 

}); 

app.post('/api/usuarioDispositivo', async (req, res) => { 

    try { 

        const moment = require('moment-timezone'); 

        // Obtener la fecha y hora en la zona horaria específica 

        const fechaConZonaHoraria = moment.tz(new Date(), 'America/Mexico_City'); 

        // Extraer las horas, minutos y segundos 

        const horas = fechaConZonaHoraria.format('HH'); 

        const minutos = fechaConZonaHoraria.format('mm'); 

        const segundos = fechaConZonaHoraria.format('ss'); 



80 
 

        // Formatear la hora como "HH:mm:ss" 

        const horaFormateada = `${horas}:${minutos}:${segundos}`; 

        const { idUsuario, numero_serie,nombre_dispositiv_ubicacion } = req.body; 

        const dispositivo = await SensorInventarioData.findOne({ numero_serie }); 

        let nombre_dispositivo = dispositivo.nombre_dispositivo; 

        let idDispositivo = dispositivo.idDispositivo; 

        const usuarioDispositivo = new UsuarioDispositivoData({ idUsuario, 
numero_serie,nombre_dispositiv_ubicacion, nombre_dispositivo,idDispositivo, date: 
fecha.format("YYYY-MM-DD"), hora: horaFormateada }); 

        await usuarioDispositivo.save(); 

        res.status(201).json({ message: 'Datos guardados correctamente', status: 201 }); 

    } catch (error) { 

        res.status(500).json({ error: 'Error al guardar los datos', message: 'error', status: 500 
}); 

        console.log(error); 

    } 

}); 

app.post('/api/usuarioDispositivoData', async (req, res) => { 

    try { 

        const { idUsuario } = req.body; 

        const dispositivos = await UsuarioDispositivoData.find({ idUsuario }); 

        res.status(200).json({ dispositivos }); 

    } catch (error) { 

        res.status(500).json({ error: 'Error al procesar la solicitud', message: 'error', status: 500 
}); 

        console.log(error); 

    } 

}); 

app.post('/api/sensorData', async (req, res) => { 

    try { 

        const { idDispositivo } = req.body; 

        //const sensorData = await SensorData.find({ idDispositivo }); 

        //const sensorData = await SensorData.findOne({ idDispositivo }).sort({ _id: -1 }); 



81 
 

        let numero_serie = idDispositivo; 

        const dispositivo = await SensorInventarioData.findOne({ numero_serie }); 

        let dataSensorDashboard = { 

            sensorData:await SensorData.findOne({ idDispositivo }).sort({ _id: -1 }), 

            dispositivo:dispositivo 

        } 

        res.status(200).json({ dataSensorDashboard }); 

    } catch (error) { 

        res.status(500).json({ error: 'Error al procesar la solicitud', message: 'error', status: 500 
}); 

        console.log(error); 

    } 

}); 

app.post('/api/condicionDataCenter', async (req, res) => { 

    try { 

        const { idDispositivo } = req.body; 

        const sensorData = await SensorData.findOne({ idDispositivo }).sort({ _id: -1 }) 

        // Determinar si la temperatura y la humedad son adecuadas 

        let indicador = 'En condiciones óptimas'; 

        if (sensorData.temperatura < 18 || sensorData.temperatura > 27) { 

            indicador = 'Temperatura fuera del rango óptimo'; 

        } else if (sensorData.humedad < 40 || sensorData.humedad > 60) { 

            indicador = 'Humedad fuera del rango óptimo'; 

        } 

        // Incluir el indicador en la respuesta JSON 

        res.status(200).json({ sensorData, indicador }); 

        //res.status(200).json({ sensorData }); 

    } catch (error) { 

        res.status(500).json({ error: 'Error al procesar la solicitud', message: 'error', status: 500 
}); 

        console.log(error); 

    } 



82 
 

}); 

app.post('/api/consultarDatosMes', async (req, res) => { 

    try { 

        const { idDispositivo} = req.body; 

        const datosPorMes = await SensorData.aggregate([ 

            { $match: { idDispositivo } }, // Filtrar por idDispositivo 

            { 

                $group: { 

                    _id: { 

                        year: { $year: "$date" }, 

                        month: { $month: "$date" } 

                    }, 

                    totalDatos: { $sum: 1 }, 

                    sumaTemperatura: { $sum: "$temperatura" }, 

                    sumaHumedad: { $sum: "$humedad" } 

                } 

            }, 

            { 

                $addFields: { 

                    monthName: { 

                        $arrayElemAt: [ 

                            [ 

                                "", "January", "February", "March", "April", "May", "June", 

                                "July", "August", "September", "October", "November", "December" 

                            ], 

                            "$_id.month" 

                        ] 

                    } 

                } 

            }, 

            { 



83 
 

                $project: { 

                    _id: 0, 

                    year: "$_id.year", 

                    month: "$monthName", 

                    promedioTemperatura: { $cond: [{ $eq: ["$totalDatos", 0] }, 0, { $divide: 
["$sumaTemperatura", "$totalDatos"] }] }, 

                    promedioHumedad: { $cond: [{ $eq: ["$totalDatos", 0] }, 0, { $divide: 
["$sumaHumedad", "$totalDatos"] }] } 

                } 

            }, 

            { $sort: { year: 1, "_id.month": 1 } } // Ordenar por año y mes 

        ]); 

        res.status(200).json({ datosPorMes }); 

    } catch (error) { 

        res.status(500).json({ error: 'Error al procesar la solicitud', message: 'error', status: 500 
}); 

        console.log(error); 

    } 

}); 

 

 

app.post('/api/email', async (req, res) => { 

    try { 

        const { correo, asunto, mensaje } = req.body; 

        // Configura el transporte 

        let transporter = nodemailer.createTransport({ 

            host: 'smtp.gmail.com', // Servidor SMTP de Gmail 

            port: 465,              // Puerto para SSL 

            secure: true,   

            auth: { 

                user: '@uaeh.edu.mx', // tu correo 

                pass: ''        // tu contraseña de correo 

            } 



84 
 

        }); 

        // Define los detalles del correo 

        let mailOptions = { 

            from: 'victor_martinez@uaeh.edu.mx',       // Remitente 

            to: correo,   // Destinatario 

            subject: asunto,     // Asunto 

            //text: mensaje, // Contenido en texto 

            html: '<p>'+mensaje+'</p>' // Opcional: contenido HTML 

        }; 

        // Envía el correo 

        transporter.sendMail(mailOptions, (error, info) => { 

            if (error) { 

            return console.log('Error al enviar el correo:', error); 

            } 

            console.log('Correo enviado:', info.response); 

        }); 

        res.status(200).json({ message: 'Correo enviado correctamente', status: 200 }); 

    } catch (error) { 

        res.status(500).json({ error: 'Error al enviar el correo', message: 'error', status: 500 }); 

        console.log(error); 

    } 

}) 

// Iniciar el servidor 

const PORT = process.env.PORT || 5003; 

app.listen(PORT, () => console.log(`Servidor corriendo en http://localhost:${PORT}`)); 

 

 

 



85 
 

GLOSARIO  

IoT: Internet de las Cosas (Internet of Things). 

UAEH: Universidad Autónoma del Estado de Hidalgo. 

MQTT: Message Queuing Telemetry Transport (Protocolo de mensajería para IoT). 

NoSQL: Not Only SQL (Bases de datos no relacionales). 

ESP32: Microcontrolador con conectividad WiFi y Bluetooth. 

DHT11: Sensor digital de temperatura y humedad. 

API: Interfaz de Programación de Aplicaciones (Application Programming Interface). 

HTML5: Lenguaje de marcado para la estructuración de contenido web. 

CSS3: Hojas de estilo en cascada para el diseño web. 

JavaScript: Lenguaje de programación para interactividad en páginas web. 

Node.js: Entorno de ejecución de JavaScript en el servidor. 

MongoDB: Base de datos NoSQL orientada a documentos. 

JWT: JSON Web Token (Token de autenticación basado en JSON). 

ASHRAE: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 

DCIM: Data Center Infrastructure Management (Gestión de infraestructura de centros de 

datos). 

WiFi: Wireless Fidelity (Tecnología de red inalámbrica). 

HTTP: Protocolo de Transferencia de Hipertexto (Hypertext Transfer Protocol). 

CoAP: Constrained Application Protocol (Protocolo de aplicación para dispositivos 

limitados). 

Zigbee: Protocolo de comunicación inalámbrica para IoT. 

LoRaWAN: Long Range Wide Area Network (Red de área amplia de largo alcance). 

5G: Quinta generación de tecnología de redes móviles. 

UPS: Sistema de alimentación ininterrumpida (Uninterruptible Power Supply) 




