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Resumen

La genética de poblaciones es el estudio de los cambios en las frecuen-
cias génicas a lo largo del tiempo debido a la selecciéon natural y los efectos
de muestreo aleatorio (deriva[[). Comparar la seleccion y la deriva en dos
poblaciones diferentes puede ser dificil, ya que cada poblaciéon puede tener
su propio conjunto de factores adicionales que inducen ruido. Ejemplos de
tales factores adicionales incluyen el comportamiento, las fluctuaciones en
el tamanio de la poblacién (por ejemplo, estacionalidad), la estructura de la
poblacién y la endogamia. Para facilitar la comparacion entre poblaciones, se
introdujo el concepto de “tamano efectivo de la poblacién” (denotado como
N.), definido como el tamano constante de una poblacién idealizada para la
cual las propiedades estocasticas de las frecuencias génicas son equivalentes
a las de la poblacién real que se modela. Esta equivalencia estocastica ha
sido muy exitosa al modelar poblaciones “bien mezcladas”. Sin embargo,
la mayoria de las poblaciones reales no cumplen con el criterio de “bien
mezcladas”, ya que estan distribuidas en el espacio fisico. Para abordar
la heterogeneidad espacial, los modelos previos han asumido simplemente
que diferentes regiones del espacio tienen diferentes valores de N,. Pero en-
tonces surgen preguntas, como ;qué tan granular debe ser el valor de A, en
el espacio? En otras palabras, jcudntas poblaciones distintas existen, cada
una con su propio tamano efectivo, y cada una bien mezclada? Debido a
factores intrinsecos a la biologia, es realmente dificil elaborar modelos es-
paciales de otra manera, y como se puede observar, tales modelos no son
realmente modelos espaciales. Por estas razones, muchos cientificos creen
que la genética de poblaciones en un espacio verdaderamente continuo sigue
siendo un problema abierto. Proponemos el uso de una segunda equivalencia
estocastica: el nimero efectivo de dimensiones (D,), para absorber las com-
plejidades espaciales de manera similar a cémo N, absorbe las complejidades
demograficas. Hemos desarrollado un método para estimar D, utilizando la
teoria de la coalescencia modificada y el calculo estocastico. Demostramos
la utilidad practica de este resultado al estimar la dimensionalidad efectiva
utilizando datos de la influenza aviar altamente patégena (HPAI) subtipo
A(H5N1). Finalmente, discutimos nuestros hallazgos en un contexto mas
amplio y preguntamos si podrian representar un paso clave hacia una teoria
de la genética de poblaciones en un espacio continuo.

1Observamos que la palabra “drift” puede resultar confusa, ya que en fisica se refiere
a un movimiento direccional; sin embargo, en genética de poblaciones hace referencia
a fluctuaciones aleatorias en las frecuencias génicas de una poblacién, causadas por su
tamano finito. Por lo tanto, en realidad se asemeja més a un proceso de difusion.






Abstract

Population genetics is the study of changes in gene frequencies over time
due to natural selection and random sampling effects (driftﬂ). Comparing
selection and drift in two different populations can be difficult because each
population can have its own set of additional noise-inducing factors. Exam-
ples of such additional factors include behavior, fluctuations in population
size (e.g., seasonality), population structure, and inbreeding. To facilitate
comparison between populations, the concept of “effective population size”
(denoted N.) was introduced, defined as the constant size of an idealized
population for which the stochastic properties of gene frequencies are equiv-
alent to the real population being modeled. This stochastic equivalence has
been very successful in modeling populations that are “well-mixed”. How-
ever, most real populations do not meet the “well-mixed” criterion because
they are distributed in physical space. To address spatial heterogeneity,
previous models have simply assumed that different regions in space have
different A,. But then questions arise, like how granular should we make
N, over space? In other words, how many distinct populations exist, each
with its own effective size, and each one well-mixed? For reasons unique to
biology, it is really difficult to make spatial models in any other way, and
as we can see, such models are not really spatial models. For these reasons,
many scientists believe that population genetics in a truly continuous space
remains an open problem. Here, we propose the use of a second stochas-
tic equivalence, the effective number of dimensions (D., a real number),
to absorb spatial complexities in a way similar to how N, absorbs demo-
graphic complexities. We have developed a method for estimating D, from
spatially-sampled DNA sequences, using correlations in allele frequencies,
modified coalescent theory and stochastic calculus. We demonstrate the
practical utility of this result by estimating the effective dimensionality us-
ing data from highly pathogenic avian influenza (HPAI) subtype A(H5N1).
We discuss our findings in the larger context and ask if they might provide
a useful step towards a theory of population genetics in continuous space.

2We note that the word “drift” can be confusing because in physics it means direc-
tional movement; in population genetics, however, it means random fluctuations in gene
frequencies in a population because of the finite size of the population, so it is actually
more like diffusion.
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Introduction

Studying biological sequence data, particularly genetic variation, is impor-
tant for understanding the evolutionary processes that shape populations.
By analyzing genetic variation, we can infer how populations evolve in re-
sponse to mechanisms such as natural selection, genetic drift, migration,
and mutation. This field, known as population genetics, aims to describe
the dynamics of populations over time and space.

The origins of population genetics can be traced to the need to reconcile
Charles Darwin’s theory of natural selection with Gregor Mendel’s work on
inheritance. Initially, Darwin’s theory was in conflict with the inheritance
mechanisms that were widely accepted during his time. It was only through
the mathematical work of G. Hardy and W. Weinberg that this apparent
paradox was resolved, forming the basis of population genetics. From these
early foundations, the field has developed to focus on the stochastic nature
of evolution, particularly how genetic variation changes over time due to
random and directional processes.

A central concept in population genetics is the effective population size
(NL), first introduced by Sewall Wright (1931) in [78]. N, refers to the size
of an idealized population that experiences the same level of genetic drift
as the actual population. This concept has since been extended to various
scenarios involving overlapping generations and inbreeding. However, while
N, has proven to be a powerful tool in studying genetic drift, it may not
fully capture the complexities of populations that are spatially structured
and vary not only over time but also across physical space.

Traditional models in population genetics rely on summary statistics such
as NV, to characterize the entire population. However, when populations have
spatial structure, these models become inadequate. We hypothesize that
a second summary statistic is necessary to account for the additional
stochasticity introduced by spatial distribution. This new statistic, which
we introduce as the effective dimensionality (D,), will complement N, and
provide a more comprehensive framework for understanding spatially struc-
tured populations.

11
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The effective dimensionality D, is a novel concept that extends the idea
of effective population size into the spatial domain. Unlike traditional di-
mensions, D, can take non-integer values and represents the number of spa-
tial dimensions that effectively describe the population’s distribution. This
concept utilizes stochastic processes, including Bessel processes and mathe-
matical theory, to model spatial evolution more accurately.

In summary, the hypothesis explored in this thesis is as follows:

The single stochastic equivalence, A, is not sufficient to model
populations evolving in continuous space. A second stochastic
equivalence, D,, is needed to capture the effects of spatial struc-
ture.

The applications of this work have the potential to benefit various fields.
For example, consider a population in which a highly pathogenic avian in-
fluenza virus spreads across North America, affecting dairy cattle as well
as wild birds. The spread of the virus is not uniform; certain regions ex-
perience rapid transmission, while others remain largely unaffected due to
geographic barriers and varying population densities. Migratory wild bird
populations play an important role in the virus spread. Our aim is to un-
derstand how these genetic differences evolve over time and spread across
avian and mammalian populations.

In classical population genetics, we often rely on the concept of effective
population size (M), which summarizes the genetic drift experienced by a
population. However, this measure assumes a well-mixed population and
does not account for spatial structure, such as the fact that wild bird popu-
lations are spread across different geographic locations. This is an example
that will be studied in the thesis.

The objectives of this thesis are to introduce the concept of effective di-
mensionality as a second summary statistic alongside N, for spatially struc-
tured populations, to extend coalescent theory to include spatial structure,
allowing us to better understand genetic variation in populations distributed
across physical space, and to apply this framework to real-world population
data, such as high pathogenicity avian influenza HPAT A(H5N1), by esti-
mating D, and its relevance to different fields such as conservation biology
and epidemiology.

The structure of this thesis is organized as follows: Chapter 1 introduces
the mathematical concepts and tools used throughout the thesis, including
probability theory, stochastic processes, Brownian motion (BM), and Bessel
processes. Chapter 2 explores classical population genetics, covering the his-
torical background, genetic concepts, random genetic drift, and models such
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as the Wright—Fisher and Moran models, as well as the effective population
size (EPS) and the coalescent process. In Chapter 3, we analyze spatial
population genetics, discussing the spatial movement of genetic lineages,
challenges in modeling evolution in continuous space. Chapter 4 presents
the results, detailing the extraction of probabilities of neutral mutations and
employing methods like Fourier analysis to derive pgfs. Chapter 5 applies the
mathematical models to real-world data, specifically in the context of HPAI
A(H5N1) and the genetic analysis of influenza A virus genes (HA, NA, and
MP), and interprets the results. Finally, the thesis concludes by suggesting
future research directions and potential applications, with supplementary
code included in the appendices.
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Chapter 1

Mathematical preliminaries

This chapter introduces the mathematical concepts and theoretical back-
ground necessary for the developments presented in this thesis. It begins
with a review of fundamental concepts from probability theory. We then
provide an introduction to stochastic processes and Brownian motion, which
we will refer to as BM throughout the rest of the text. This includes the
strong Markov property and the reflection principle, both of which will be
essential to the results that follow. Finally, we introduce Bessel processes,
discuss their main properties, and present methods for their simulation.

Finally, we discuss topics such as recurrence and transience, as well as
the Skorokhod embedding theorem, all of which are fundamental to the
probabilistic modeling of biological systems. As an interdisciplinary study,
this thesis makes use of these mathematical concepts to analyze genetic
variation within biological populations.

1.1 Probability theory concepts

For this section, we will be consulting several texts, such as [64], [25] and
[21].

Definition 1.1.1 (c-algebra). A o-algebra F over a sample space () is a
collection of subsets of €2 that satisfies the following properties:

1. Qe F,
2. If Ae F, then A¢ € F,
3. If Ay, Ay,--- € F, then |~ 4, € F.

Definition 1.1.2. A measurable space is a pair (£2, F), where € is a sample
space and F is a o-algebra over 2.

15



16 CHAPTER 1. MATHEMATICAL PRELIMINARIES

Definition 1.1.3 (o-algebra generated). Let A be a collection of subsets of
a set Q. The o-algebra generated by A, denoted by o(A), is the smallest
o-algebra on (2 that contains every set in A. In other words, o(A) is the
intersection of all g-algebras on 2 that contain A, i.e.,

o(A) = ﬂ {F | Fis a o-algebra on  and A C F}.

Definition 1.1.4 (Borel o-algebra). The Borel o-algebra on the real num-
bers R, denoted B(R), is the o-algebra generated by the collection of open
intervals in R.

Formally, let

A={(a,b) CR |a,beR,a<b}.

be the collection of all open intervals in R.
Then, the Borel o-algebra is the smallest o-algebra containing all open
intervals, i.e.,

B(R) = o(A),

where o(A) denotes the o-algebra generated by A.

Definition 1.1.5 (Probability measure). Let (€2, F) be a measurable space.
A probability measure P on (§2, F) is a function P : F — [0, 1] that satisfies:

2. For all A € F, we have P(A) > 0,

3. If Ay, Ag,--- € F are disjoint sets, then:
P (U An> => P(A,).
n=1 n=1
It is said in [29] that the probability measure is a special example of what

is called a measure on the pair (2, F).

Definition 1.1.6 (Measure). A measure is a function p : F — [0, 00] that
satisfies the following properties:

L u(@) =0,

2. For all A € F, we have u(A) >0,
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3. If A, € F for each n € N, and {4, },en is a countable collection of
disjoint sets, then:

1 (U An) =) u(An).

neN neN

We can observe that a measure p is a probability measure if p(2) = 1.

Definition 1.1.7 (Measure space). A measure space is a triple (Q, F, u),
where:

e (2 is a non-empty set,
e F is a og-algebra of subsets of 2,

e i is a measure defined on F.

Additionally, for any set B € F, the value u(B) is called the measure of
the set B. When u(€2) is finite, meaning p(£2) < oo, we refer to p as a finite
measure. Specifically, if ©(£2) = 1, p becomes a probability measure, often
denoted by P. In this case, P(B) represents the probability of the event B
for any B € F.

Definition 1.1.8 (Probability space). A probability space is a triple defined
by (2, F,P), where:
1. Q is the sample space,

2. F is a sigma-algebra of events (a collection of subsets of ),

3. P is a probability measure, which assigns a probability to each event
in F.
Definition 1.1.9 (Random variable). A random wvariable is a measurable

function X : © — R defined on a probability space (€2, F,P), that is, X is a
function that satisfies:

X ((~o0,2]) ={weQ: X(w) <z} € F.
for all z € R.

Definition 1.1.10 (Probability measure induced by a random variable).
Let X be a random variable on the probability space (€2, F,P) with values
in R. The probability measure induced by X is defined for any Borel set
B € B(R) as:

Py(B)=P({we Q| X(w) € B}).
This represents the probability that X takes values in B, with Px(B) being
the probability of the set {w | X(w) € B} under the original measure P.
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Definition 1.1.11 (Cumulative distribution function (cdf)). The cdf of a
random variable X is defined as:

Fx(z) =P(X <x).

This function gives the probability that X will take a value less than or
equal to x.

Definition 1.1.12 (Probability density function (pdf)). For continuous ran-
dom variables, the pdf fx(z) describes the likelihood of X taking a particular
value. The cdf can be obtained by integrating the pdf:

The probability that X lies in the interval [a, b] is:

Pla< X <b)= /be(x)dx.

Definition 1.1.13 (Probability mass function (pmf)). For discrete random
variables, the pmf px(x) gives the probability that X = x:

px(z) =P(X = z).

Definition 1.1.14 (Expected value (mean)). The expected value E[X] is
the “average” or “central value” of the random variable X. It is given by:

e For discrete random variables:

E[X] = Zx -px(x).

e For continuous random variables:

E[X] = /Zx - Fe(@) da.

Notation: The expectation of X is also denoted as px = E(X).

Definition 1.1.15 (Variance). The wvariance Var(X) measures the spread
of the distribution of X. It is expressed as:

Var(X) = E[X?] — (E[X])*.
The standard deviation o(X) is the square root of the variance:

o(X) =/ Var(X).
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Definition 1.1.16 (Covariance). The covariance between two random vari-
ables X and Y is a measure of how much the two variables change together.
It is given by:

Cov(X,Y) = E[(X — E[X])(Y — E[Y])] = E[XY] — E[X|E[Y].

If Cov(X,Y) > 0, then X and Y tend to increase together. If Cov(X,Y") < 0,
when one increases, the other tends to decrease.

Definition 1.1.17 (Independence). Two events A and B are independent
if:

P(AN B) = P(A) - P(B).

For random variables X and Y, independence means:
P(X e AYeB)=P(XeA) -PY €B).

Definition 1.1.18 (Conditional probability). The conditional probability of
event A given event B is:

P(AN B)

PIAIB) = 55

The conditional expectation of X given Y is:

E[X|Y] = Zm -pxjy(z). (discrete case)

or
E[X|Y] :/ zfx)y(x)dx. (continuous case)

[e.e]

Definition 1.1.19 (Moment-generating function (mgf)). The mgf of a ran-
dom variable X is:

My () = EletX].

The mgf is useful for deriving the moments (mean, variance, etc.) of X.

Definition 1.1.20 (Characteristic function). The characteristic function of
a random variable X is:

px(t) = E[e"™].

This function is always well-defined, even when the mgf is not.



20 CHAPTER 1. MATHEMATICAL PRELIMINARIES

Definition 1.1.21 (Law of large numbers). The law of large numbers states
that the sample average of independent, identically distributed random vari-
ables converges to the expected value as the sample size grows:

1 n
=Y X, > E[X].
n =1

with probability 1 (strong law) or in probability (weak law). We note the
implicit assumption that E[X] < oco.

Definition 1.1.22 (Central limit theorem). The central limit theorem is a
consequence of the law of large numbers. It states that, if the convergence
stated in the law of large numbers holds true, then it necessarily follows
that the sum (or average) of a large number of independent, identically
distributed random variables has a normal distribution:

% (X~ EIX]) % N(0,0%).

Now, having established the fundamental probability concepts, we move
on to the definition and properties of stochastic processes, which are central
to understanding BM and Bessel processes.

1.2 Introduction to stochastic processes

The framework used in this work is based on a branch of probability known as
stochastic processes. These processes are important in population genetics,
as they allow us to model and analyze the randomness and uncertainty in
genetic variation and evolutionary processes. In this work, we will make
use of a family of stochastic processes collectively known as BM and Bessel
processes. The main reference for this chapter is [63]. The texts that we
used as a guides are: [4], [69], [49], [19], [61].

A stochastic process is a collection of random variables indexed by time
(or space) that describes the evolution of a system over time under uncer-
tainty. It is a mathematical model used to represent random phenomena
that evolve over time. In a stochastic process, the index set can be either
discrete or continuous.

Definition 1.2.1 (Stochastic process). A stochastic process is a collection
of random variables, denoted as {X(t)(w) : t € T,w € Q}, where t takes
values in the index set 7" and 2 is the state space.
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The variable ¢ represents time, and X (¢) denotes the state of the process
at time £. The index set T is the set of possible times at which the process
can be evaluated. A discrete-time stochastic process is indexed by a discrete
set of time points, typically t € Z, or t € N, such as the random walk.
A continuous-time stochastic process is indexed by a continuous set of time
points, typically t € R, , such as BM. We will discuss some types of stochastic
processes.

1.2.1 Types of stochastic processes

1. A Markov process is a special type of stochastic process with the
Markov property. This property is that the future state of the sys-
tem depends only on the present state and not on the sequence of
events that preceded it. Past events do not influence future states;
they are independent of the past. For a process {X(¢)}, it holds that:

PX(t+ D) =a | X{t) =2, X(t—1) =24 1,...)
=P(X(t+1)=z]|X(t)=m),

meaning the future is independent of the past, given the present.

2. A stationary process is a process whose statistical properties do not
change over time. For example, the joint distribution of the process
values remains the same regardless of the time shift. This means that
the behavior of the process is invariant to time shifts.

Let X(t), X(t+h),..., X(t+nh) represent a sequence of random vari-
ables. If the joint distribution of X (¢) is the same for all A~ > 0 and

for any increasing sequence t; < ty < ... < t,, where t; € T and
ti + h € T, then the process {X(t) : t € T} is called a stationary
process.

3. A process has independent increments if the increments over disjoint
time intervals are independent. Formally, let X (¢) be a stochastic
process. The process X (t) has independent increments if, for any
set of disjoint time intervals [tq,ts], [ts,t4], ..., [tn, tns1], the random
variables corresponding to the increments,

X(ta) — X(t1), X(ts) — X(t3),. .., X(tnt1) — X(tn),

are independent. That is, for any set of indices 1 <, 7 < n, we have:
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P((X(t2) — X (1)) € Ay, (X(ta) — X(t3)) € As, ..,
(X (tns1) = X(tn)) € An) = [[P((X(t21) = X (tai1)) € A;). (1.1)

i=1

where Aq, As, ..., A, are sets in the respective sample spaces.

For example, in Poisson processes, the number of events occurring in
non-overlapping intervals are independent of each other.

. Poisson process: Let X (t) be a stochastic process in continuous time
where t > 0. Let T1,7T5,... model the number of events occurring
in a fixed time interval, where the events occur independently. The
number of events that occur in separate time intervals does not affect
each other.

Let X(t) be a non-negative integer-valued stochastic process, where
t € T =[0,00), satisfying the following conditions:

(a) X(0) =0 and P(X(0) =0) = 1. This means that no events can
occur at time ¢ = 0.

(b) {X(t) : t € T} has independent increments; i.e., for any time
points 0 <ty < t; < ... <t, in T, the random variables X (¢;) —
X(tg), X(t2) — X (t1),..., X (t,) — X(t,_1) are independent. This
means that the counts of events in non-overlapping intervals are
independent of each other.

(¢) {X(t) : t € T} has stationary increments; i.e., for t > s, X (t) —
X (s) has the same distribution as X (t+h)— X (s+h) for all h such
that t+h and s+ h are in 7. This means that the distribution of
the number of events that occur in an interval does not depend
on its position in time.

(d) For t > s, the probability P[X(t) — X(s) = k| = w,
where A > 0 and £ =0,1,2,....

5. Brownian motion: A continuous-time process where the increments

over disjoint intervals are independent and normally distributed. In
the next section, we will define this process in more detail and explore
its properties.

These are just a few examples of stochastic processes; there are many more.
For further study, the following books can be consulted: [62] and [5].
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1.3 Brownian motion

We will now introduce one of the most important stochastic processes, widely
used in fields such as physics, finance, and biology. This process models the
random movement of particles suspended in a fluid, as well as various other
types of random motion. Over the years, it has been extensively studied,
leading to significant advances in both theoretical research and practical
applications. We will base our discussion on the following references: [52],
[6], [42], [67], and [16].

1.3.1 Definition of Brownian motion

Definition 1.3.1 (One-dimensional BM). A Brownian motion (BM) is a
continuous-time stochastic process {B(t),t > 0} taking real values. It is
called a one-dimensional BM (or linear process) started at = € R if it
satisfies the following properties:

1. Initial condition:
B0)==z, xeR.

This means that the process starts at an arbitrary real value x, which
is not necessarily zero.

2. Independent increments: The increments of the process over disjoint
time intervals are independent. Specifically, for any sequence of times
0<t <ty <---<t,, the random variables

B(tn) = B(tn-1), B(tn-1) = Blta—2), ..., B(tz) = Bl(t1)
are independent.

3. Normal increments: For any t > s, the increment B(t) — B(s) is nor-
mally distributed:

B(t) — B(s) ~ N(0,t — s).

This means that the increment over any interval [s,¢] has mean zero
and variance t — s, proportional to the length of the interval.

4. Continuity of paths: With probability 1, the function ¢ — B(t) is
continuous, meaning that BM has continuous sample paths. However,
these paths are almost surely nowhere differentiable.

If z = 0, we refer to the process {B(t),t > 0} as a standard BM.
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We now define the d-dimensional BM as a generalization of the one-
dimensional case to higher dimensions.

Definition 1.3.2 (d-dimensional BM). A d-dimensional BM is a continuous-
time stochastic process

B(t) = (Bi(t), Bs(t),. .., Ba(t)), >0,

where each component B;(t) (fori = 1,...,d) is an independent one-dimensional
BM. The process is said to be started at x € R? if

B(0) = x.
The process satisfies the following properties:
1. Initial condition:

B(0) =x, where x= (z1,2s,...,14) € R

2. Independent increments: For any sequence of times 0 < t; < ty <
-+ < t,, the increments

B(tn) _B(tn—1>a B(tn—l) _B(tn—2)7 sy B(tQ) _B<t1)
are independent random vectors in R?.

3. Normal increments: The increments of the process are normally dis-
tributed:
B(t) — B(s) ~ N(0,(t — s)I,), fort>s,

meaning that each component B;(t) — B;(s) ~ N(0,t — s) indepen-
dently, and the covariance matrix is (t — s)I4, where I, is the d x d
identity matrix.

4. Continuity of paths: With probability 1, the function t — B(t) is con-
tinuous, meaning that BM has continuous sample paths in R?. How-
ever, these paths are almost surely nowhere differentiable.

If x =0, we call B(t) a standard d-dimensional BM.

As a note, two-dimensional BM is often referred to as planar BM. A
d-dimensional BM can be constructed from independent one-dimensional
BMs. If a process starts at z € R instead of 0, it is given by

B(t)+x, t>0.
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This process retains all the properties of a BM but is initialized at x rather
than the origin.

There are three well-known approaches to constructing a BM: those of
Wiener, Kolmogorov, and Lévy. Each method provides a distinct mathemat-
ical perspective on the process. For a detailed discussion of these approaches,
see [66].

1.3.2 Properties of Brownian motion

There are several important properties to consider when studying BM, such
as:

Proposition 1.3.3 (Translation). For every x € R, the process X(t) =
x+B(t) is a BM starting at x. That is, this property means that the behavior
of the process is the same regardless of the starting point.

BM translation

3.0 1
—— BM starting at x=0

2.51 BM starting at x = 2

2.01

1.5 1

1.0 1

Position

0.5 1

0.0 1

_0'5 4

0.0 02 0.4 0.6 0.8 1.0
Time

Figure 1.1: Translation. One process starts at x = 0, and the other starts at
x = 2. The two trajectories were simulated with same seed for the random
number generator.

Proof. We will show that the process X(t) = x + B(t) satisfies all four
properties of a d-dimensional BM initiated at x. We need to show that
X (0) = z almost surely.

X(0)=2+B(0)=2+0=uz.

Then to prove that the increments of X () are independent, let s be such
that 0 < s < t:

X(t)—X(s) = (x+ B(t)) — (z+ B(s)) = B(t) — B(s).
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Since B(t) has independent increments, X (¢) also has this property.
Now we need to show that the increments X () — X (s) are normally
distributed. For ¢ > s:

By the properties of B(t):
B(t) — B(s) ~ N(0, (t — s)I4).

Thus, X (t) — X(s) ~ N(0, (t — s)14).

And last we need to show that X (¢) has continuous paths. Since B(t)
has continuous paths almost surely, the process X (t) = x + B(t) will also be
continuous almost surely.

Then we conclude that « + B(t) is indeed a d-dimensional BM initiated
at x. [

Proposition 1.3.4 (Symmetry). If {B(t) : t > 0} is a BM, then we have
that {—B(t) : t > 0} is also a BM.

Symmetry of BM

— B(t)
1.0 —5(t)

0.5 1

oo oo,
iy W

Position

—-1.01

0.0 0.2 0.4
Time

Figure 1.2: Standard BM B(t) and its reflection —B(¢), illustrating the
symmetry property.

Proof. The proof is similar to the previous one. In this case, we have to
show that the process X (t) = —B(t) is also a d-dimensional BM.
We first verify the initial condition:
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Thus, X(0) = 0 almost surely.
Next, we consider the increments of X (¢). For 0 < s < ¢

X(t) = X(s) = =B(t) — (=B(s)) = =[B(t) = B(s)].

Since the increments of B(t) are independent, it follows that X (¢) inherits
this property and has independent increments.
We now show that the increments of X (¢) are normally distributed. For
t > s:
X(t) = X(s) = =[B(t) — B(s)].
Given that B(t) — B(s) ~ N(0,(t — s)I4), it follows by symmetry of the
normal distribution that:

X(t) — X(s) ~N(0, (t — s)1y).

Finally, we examine the continuity of paths. Since B(t) has continuous
paths almost surely, it follows that X (t) = —B(¢) also has continuous paths
almost surely.

Therefore, we conclude that X (t) = —B(t) is indeed a d-dimensional
BM.

[

The proofs of the following propositions are analogous to those presented
before and follow from similar arguments. For brevity, the details are omit-
ted and can be found in [7].

Proposition 1.3.5. Let {B(t) : t > 0} be a d-dimensional BM. For a given
t >0, then for {B(a) : 0 <a <t},

{B(t—a)—B(t):0<a<t}.
18 also a d-dimensional BM.

Proposition 1.3.6 (Scaling). Let {B(t) : t > 0} be a d-dimensional BM.
For every ¢ > 0, the process:

{VcB(t/c) .t > 0}.
18 also a d—dimenstonal BM.

Proposition 1.3.7 (Time Inversion). Let {B(t) : t > 0} be a d-dimensional
BM. The process given by:

0, t=0,
Z(t) = )
tB(1), t>0,

1s also a d-dimensional BM.



28 CHAPTER 1. MATHEMATICAL PRELIMINARIES

1.3.3 The Markov property, the strong Markov prop-
erty and the reflection principle

In the study of stochastic processes, the Markov property plays a fundamen-
tal role in understanding the evolution of processes over time. It states that
the future behavior of a process depends only on its present state, indepen-
dent of the past. The strong Markov property is an extension, particularly
significant when we are dealing with random times, such as stopping times.
It ensures that a process can be “restarted” at any stopping time, with the
future evolution behaving as if it were starting anew, while maintaining the
same statistical properties. A significant application of the strong Markov
property is the reflection principle for BM, which is used to analyze the
behavior of the process after hitting a boundary. This principle provides
an important method for deriving probabilities related to the maximum of
BM, making it useful in both theoretical and applied probability. We will
first review the basic notions of the Markov property and the strong Markov
property, and then demonstrate how the reflection principle can be derived
using these properties.

The Markov property states that the process has no memory of its past
once its current state is known. More formally, for BM, this means that for
any fixed time s, the future evolution of the process after time s depends
only on the state of the process at s, and is independent of the history
before that time. This property enables us to treat the increments of the
process after time s as if the process were starting anew. As illustrated in
Figure [I.3] this lack of memory allows for the “restarting” of the process at
any stopping time, preserving the distributional properties of BM.

Theorem 1.3.8 (Markov property). Let {B(t) : t > 0} be a d-dimensional
BM. Then for any fized time s > 0, the process

{B(t+s)—B(s):t>0}.
is a d-dimensional BM independent of the process {B(t) : 0 <t < s}.

Proof. Let {B(t) : t > 0} be a d-dimensional BM started at some point
x € R%. Fix s > 0. Define the process

B(t) .= B(t +s) — B(s), t>0.

We aim to show that B(t) is a standard d-dimensional BM that is inde-
pendent of the past process {B(t) : 0 <t < s}.

1. Initial condition: Clearly, B(0) = B(s) — B(s) = 0.
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Position

Markov property

— B(t)

1.514 --- Times

-~~~ Shifted B(t +s) — B(s)

1.0

0.5 1

0.0

—0.51

—1.01

—1.51

Time

Figure 1.3: The future increments of the process from time s are independent

of its

2.

past, depending only on the current state at s.

Independent increments: Let 0 < t; < ty < --+ < t,. Since B(t) has
independent increments, the random vectors

B(t)), B(ts) — B(t1), ..., B(t,) — B(t.-1)

are just

B(ti +s) — B(s), B(ta+s) —B(t1+5), ..., B(tn +s) — B(tn—1 + 9),
which are independent by the independent increments property of B(t).

Normal increments: For 0 < t; < ty, we have:

B(tQ) — B(tl) = B(tg + S) — B(tl + S) ~ N(O, (tg — tl)Id>,
since BM has stationary, normally distributed increments.

Continuity: Since B(t) has continuous sample paths, and we have that
B(t) = B(t + s) — B(s), it follows that B(t) is also continuous in ¢.

Independence from the past: The increments B(t + s) — B(s) are in-
dependent of {B(u) : 0 < u < s} due to the independent increments
property. Therefore, B (t) is independent of Fy, the filtration generated
by B(u) up to time s.

Thus, B(t) is a standard d-dimensional BM, completing the proof.  [J
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In order to define the strong Markov property, it is necessary to first
introduce two fundamental concepts.

Definition 1.3.9 (Filtration). Let {B(t) : t > 0} be a stochastic process.
A filtration {F; : t > 0} is a family of o-algebras, where each F; represents
the information available up to time ¢. More formally, a filtration is a non-
decreasing sequence of g-algebras, meaning that for any 0 < s < ¢, we have
Fs € F;. In the context of BM, F; typically represents all the information
about the path of the process up to time t.

Definition 1.3.10 (Stopping Time). Let {B(t) : ¢ > 0} be a BM and
{Fi : t > 0} be a filtration associated with the process. A random variable
T is called a stopping time if, for every t > 0, the event {T" < t} is in the
o-algebra F;, i.e., it is measurable with respect to the information available
up to time t. Formally, we require that:

{T <t} eF foral t>0.

This means that the decision of whether the stopping time has occurred by
time ¢ can be made using the information available up to that time.

The strong Markov property is a fundamental tool in the study of BM.
While the Markov property asserts that the future evolution of a process
depends only on its present state, the strong Markov property extends this
to random times known as stopping times. This property allows BM to be
“restarted” at any stopping time, behaving as if it were a new, independent
BM starting from that point, while maintaining its fundamental distribu-
tional properties.

We do not present a full proof here, but one may be found in [40] and
[22].

Theorem 1.3.11 (Strong Markov property). Let {B(t) : ¢ > 0} be a BM,
and let F; be the filtration of the process up to time t. For any stopping time
T, the process:

{B(t+71)—B(r) : t > 0}.
is a BM, independent of F,, the filtration up to time T.

This result states that the future increments of BM after a stopping time
7 depend only on the current state at that time and not on the path taken
to reach it. More detailed information on this can be found in [52].

We have already stated the strong Markov property, which claims that,
given a stopping time, the future evolution of a process depends only on its
state at that stopping time and is independent of its past. This property
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plays an important role in understanding BM. In the following subsection,
we will explore the reflection principle, which is a direct application of the
strong Markov property. The reflection principle uses the fact that once a
BM reaches a specific level, its future evolution can be treated as if it were
starting anew from that level, independent of the path taken to reach it.
Using this principle, we can compute probabilities for BM with boundaries.

The reflection principle

Imagine a particle undergoing random motion along a line, such as pollen
floating on the surface of water. Consider a fixed time horizon. A natural
question arises: what is the probability that this particle crosses a certain
level before this specified time? The answer is not immediately obvious.
However, the symmetry inherent in BM provides a tool to resolve this ques-
tion: the reflection principle.

The reflection principle relies on the symmetry of Brownian paths. It
shows that if the path crosses a given level at a stopping time, the portion
of the path beyond this level can be reflected across it, resulting in a new
valid Brownian path with the same probabilistic properties. This reflection
allows us to compute the probability of reaching a barrier by relating it
to the probability of exceeding the level at the final time. In doing so, it
transforms the problem of finding the probability that the supremum of the
process over time exceeding a level into a simpler problem of finding the
probability of the process being above that level at the final time.

This construction is illustrated in Figure [[.4] where a Brownian path is
reflected at the level a after the first hitting time T,. To accurately state
the reflection principle, we first introduce the concept of first hitting time.

Definition 1.3.12 (First hitting time). Let {B(¢) : ¢t > 0} be a BM and
a € R. The first hitting time T, of level a is the first time that the process
B(t) reaches or exceeds the value a. Formally, it is defined as:

T, =inf{t > 0: B(t) = a}.
If the process never reaches a, then T, = co.

We now formally present the reflection principle theorem, which, in its
fundamental form, applies to one-dimensional BM due to the straightforward
nature of reflection across a single level in a line.

Theorem 1.3.13 (Reflection principle). Let (B(t)):>0 be a standard one-
dimensional BM, and fir a > 0 and T > 0. Then the probability that the
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Reflection principle in BM

—— Brownian path B(t) : ) A
: "
--- a=1.0 f?‘h”\ " 0 ‘,\” P
- Reflected path after hitting a | g [, S
A I
L5 Hitting time : i T

1.0
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Figure 1.4: The Brownian path B(t) reaches level a for the first time at the
hitting time T,. The portion of the path after this time is reflected across
level a = 1, illustrating the reflection principle.

BM reaches or exceeds level a before time T is given by:

P ( sup B(t) > a> — 2P(B(T) > a).

0<t<T

Proof. Let T, = inf{s > 0 : B(s) = a} denote the first hitting time of the
level a. Consider the event {sup,., B(s) > a,B(t) < a}. For each path in
this event, reflect the part of the path after T, over the level a to construct

a new path:
e B < Taa
B(s) = (5), o=
2a — B(s), s>1,.
By the strong Markov property and the symmetry of BM, this new process
has the same distribution as a BM starting from a. Thus, the probability

of paths that reach a before time T is twice the probability that the process
ends above a, yielding the result:

P (021%5(1:) > a) = 9P(B(T) > a).

]

The reflection principle is attributed to D. André, as demonstrated in
André’s work [2]. The original problem he addressed was as follows: if two
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candidates in a ballot receive a and b votes respectively, with a > b, what
is the probability that the first candidate was always ahead throughout the
counting process? More information on this problem can be found in [25].
A formulation of the reflection principle for BM was later given by Lévy in
[50], though it is important to note that Lévy’s formulation was established
independently of the strong Markov property.

In one physical dimension, the Euclidean norm process is simply the
absolute difference between positions. In this case, we can take advantage of
the reflection principle to model the process efficiently. However, in higher
dimensions, the situation becomes more complex. The Euclidean distance
is no longer a straightforward difference between positions, and instead, it
involves the root of the sum of squared positions. So, we cannot apply
the reflection principle in this case. Because we are interested in this the
Euclidean norm process, we see that it is equivalent to a Bessel process.
This has the advantage of being not restricted to integer dimensions. This
allows us to work with properties in non-integer dimensions, which we will
be working on.

1.4 Bessel processes

The Bessel process is a type of stochastic process closely related to BM. It is
often used to model random motion in multi-dimensional spaces, especially
when expressed in radial coordinates. Specifically, a Bessel process repre-
sents the radial component of BM in R?. It describes the distance from the
origin of a d-dimensional BM, describing how far the motion is from the ori-
gin over time, without keeping track of the direction. For example, consider
a particle undergoing two- or three-dimensional BM. While the full process
tracks its exact position in space, the associated Bessel process records only
how far the particle is from its starting point. This radial component defines
a stochastic process, whose dynamics depend on the dimension d of the BM.

1.4.1 Definition of Bessel processes

Definition 1.4.1 (SDE definition of Bessel process). A 0-dimensional Bessel
process is defined as the solution {X; : ¢ > 0} to the SDE

5—1
AX, = S dt+dB(1), X020,

t

where {B(t)} is a standard one-dimensional BM.
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Geometric interpretation for Bessel process When § = d € N, the
Bessel process coincides in distribution with the Euclidean norm of a d-
dimensional BM:

X; = [B(t)|| = V/Bu(t)? + - - + Ba(t)?,

where B(t) = (Bi(t), ..., Ba(t)) is a standard d-dimensional BM starting at
the origin. Thus, in integer dimensions, the Bessel process describes the
radial distance of BM from the origin.

The SDFE formulation, can be extended to non-integer dimensions, pro-
viding a broader analytical framework. For example, the Bessel process
can describe the random movement of a particle in d-dimensional space.
This framework also extends naturally to modeling various phenomena such
as the migration of organisms, cellular motion within a spatial domain, or
the movement of animals. It effectively captures the inherent randomness
present in such movement patterns, as we will see in Chapter 3.

1.4.2 Properties of Bessel processes

There are several properties of Bessel processes that are relevant both for
theoretical understanding and practical modeling:

1. Non-negativity and continuity: Bessel processes are continuous and
remain non-negative for all ¢ > 0, making them suitable for modeling
distances and other quantities that cannot take negative values.

2. Scaling property: Bessel processes satisfy the scaling relation, for any
constant ¢ > 0,

R(ct) = Ve R(t),

This property is useful in both simulations and theoretical analysis.

3. Representation from BM: For integer d € N, the Bessel process can be
constructed as the Euclidean norm of d independent standard BMs:

R(t) = /Bi(t)> + - -+ + By(t)2.

The process {R(t) : t > 0} describes the distance of a Brownian par-
ticle from the origin at time ¢. It represents the radial component of
BM in R%.
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4. Behavior near the origin: For d < 2, the process almost surely hits
zero in finite time. For d = 2, the process comes arbitrarily close to the
origin infinitely often but never hits it (null recurrent). For d > 2, the
process remains strictly positive with probability one if it starts away
from zero. Although the Bessel process is often introduced starting at
the origin, this is not required in general. We will see this property in
the following sections.

1.4.3 Simulations of Bessel processes

Simulating Bessel processes is a useful way to visualize their stochastic be-
havior and how it depends on the dimension parameter §. While Bessel
processes are defined for any real 6 > 0, they can be simulated directly when
0 = d € N, since they correspond to the Euclidean norm of a d-dimensional
BM:

R(t) = [IB@t)|| = v/Bi(t)* + -+ + Ba(t)*.

These simulations provide a concrete sense of how the process behaves
for different values of d, especially around the critical threshold 6 = 2, which
separates recurrent from transient behavior (a topic we explore in the next
section). For instance, we can observe how in low dimensions the process
tends to stay close to the origin, while in higher dimensions it tends to move
away. We present the Python code used to simulate Bessel processes for
integer values of ¢ = d.

import numpy as np
import matplotlib.pyplot as plt

def simulate_bessel(d, T=1.0, n=1000, seed=None):

if seed:
np.random.seed (seed)
dt = T / n
B = np.cumsum(np.sqrt(dt) * np.random.randn(d, n), axis
=1)
R = np.linalg.norm(B, axis=0)

return np.linspace(0, T, n), R

# Example for d = 1, 2, 3

3 dimensions = [1, 2, 3]

plt.figure(figsize=(10, 6))

5 for d in dimensions:

t, R = simulate_bessel (d)
plt.plot(t, R, label=f’d = {d}’)
plt.title(’Simulated Bessel Processes for Different
Dimensions’)
plt.xlabel (’Time’)
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.ylabel (’R(t)’)

.legend ()

.grid (True)
.show ()

Listing 1.1: Simulation of a Bessel process with integer dimension d.

Figure [1.5] shows three simulated paths:

e For d = 1, the process behaves like reflected BM and frequently returns
to the origin. It is a recurrent process.

e For d = 2, the process avoids the origin but still returns arbitrarily
close to it with probability one. It is neighborhood-recurrent.

e For d = 3, the process tends to drift away from the origin and is
transient, meaning it avoids the origin in the long run.

2.01

1.5 1

0.51

0.0

Simulated Bessel processes for different dimensions

d
d
d

nnn
w N =

0.4 0.6 0.8 1.0

Time
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Figure 1.5: Sample paths of Bessel processes for dimensions d = 1,2, 3.

1.5 Recurrence and transience of BM and

Bessel processes

In the study of stochastic processes, the concepts of recurrence and tran-
sience describe whether a process tends to return to a particular state (usu-
ally the origin) or instead tends to escape to infinity. These properties
depend crucially on the dimension of the space in which the process evolves.
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Let B(t) denote BM in R?, starting at the origin. To determine whether
the process is recurrent or transient, we first distinguish between two types
of recurrence:

e Point recurrence: the process returns to its exact starting point with
probability one:
P(3t>0:B(t)=0) =1.

e Neighborhood recurrence: for every € > 0, the process enters the ball
B(0, ¢) infinitely often:

P (B(t) € B(0,¢) for infinitely many ¢ > 0) = 1.

The following properties we present demonstrate that the recurrence or
transience of BM depends entirely on the spatial dimension d:

e For d = 1, BM is point recurrent. It returns to the origin infinitely
often with probability one.

e For d = 2, BM is neighborhood recurrent but is not point recurrent.
That is, it almost surely visits every neighborhood of the origin in-
finitely often, but the probability of hitting the exact origin is zero.

e For d > 2, BM is transient. With probability one, the process even-
tually escapes to infinity and visits any bounded region only finitely
many times.

We note that the transition at d = 2 is critical and leads to a change in the
qualitative behavior of the process.
This result highlights how spatial dimension determines the qualitative be-
havior of BM. In lower dimensions (d = 1, 2), the process exhibits a recurrent
behavior, returning to (or near) the origin with probability one. In higher di-
mensions (d > 2), the process is transient and eventually escapes to infinity.
This has important implications in probability theory and mathematical bi-
ology, where dimension affects whether stochastic trajectories revisit earlier
states or diverge over time, as we will see in Chapter 3.

The Bessel process R; of order v can be defined as the Euclidean norm
of BM in R¢, where the dimension and order are related by

V= C—l —1.
2

That is, R, = ||B(t)]|, so the Bessel process represents the radial part of

BM, as discussed in the previous section.
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As with BM, the recurrence or transience of Bessel processes depends on
the dimension d (or equivalently, the order v). The difference is that Bessel
processes are always non-negative.

e For d < 2 (i.e., v <0), the Bessel process is recurrent at zero and hits
the origin infinitely often.

e For d = 2 (i.e., v = 0), the Bessel process is null recurrent: it ap-
proaches zero arbitrarily closely infinitely often but never actually hits
it.

e For d > 2 (i.e., v > 0), the Bessel process is transient: it drifts away
from the origin over time and almost surely does not return.

We now present simulated paths of Bessel processes for three different
values of the dimension parameter d, which determines the process behavior
near the origin.

In the first case (Figure , where d = 1, the Bessel process displays
recurrent behavior by frequently approaching and eventually hitting the ori-
gin. This reflects the property that when d < 2, the origin can be reached
in finite time with probability one. Once it reaches zero, the process is
absorbed, confirming its recurrence at the origin.

Bessel process (d = 1)

0.0 0.2 0.4 0.6 08 1.0
Time

Figure 1.6: Bessel process for d = 1.
In the second case (Figure , where d = 2, we observe the critical

behavior of the Bessel process. Although the process never actually hits the
origin, it returns arbitrarily close to it infinitely often. This illustrates the
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property that for d = 2, the origin cannot be reached in finite time, but it
remains recurrent in the sense that the process repeatedly visits neighbor-
hoods around zero. Unlike the case d < 2, the origin is not absorbing, yet
the process does not escape to infinity either.

Bessel process (d = 2)
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Figure 1.7: Bessel process for d = 2.

In the final case (Figure , where d = 3, the Bessel process exhibits
clear transience. The path quickly drifts away from the origin and continues
to grow without returning. This reflects the fact that for d > 2, the process
tends to escape to infinity and, with probability one, does not return to any
neighborhood of the origin. The process develops a persistent tendency to
move away from zero, leading it to almost surely avoid the origin.

These simulations offer a clear and intuitive demonstration of how dimen-
sionality shapes the long-term dynamics of Bessel processes. They confirm
the theoretical result that recurrence and transience are completely deter-
mined by the dimension, with the critical threshold at d = 2 distinguishing
recurrent behavior for d < 2 from transient behavior when d > 2.

1.6 The Skorokhod embedding theorem

Having explored the recurrence and transience properties of BM and Bessel
processes, we now turn to the Skorokhod embedding theorem, a result in
stochastic process theory.

The Skorokhod embedding theorem is an important result in probability
theory. It states that if X is a real-valued random variable with mean zero
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Bessel process (d = 3)
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Figure 1.8: Bessel process for d = 3.

and finite variance, then there exists a stopping time 7 such that a standard
BM {B(t) }+>0 stopped at time 7 satisfies B(7) ~ X.

This theorem is useful because it shows how certain random variables
can be represented as the value of BM at a suitable random time. In this
thesis, we mention the Skorokhod embedding theorem because it is what
allows us map stochastic calculus onto the real world. It justifies the map-
ping from random fluctuations happening in infinitessimal time intervals (as
dt — 0) onto random fluctuations happening in real time intervals, so this
means we can simulate stochastic processes. This theorem can be applied
to any stochastic process, such as Bessel processes. The following theorem
is presented in [67].

Theorem 1.6.1 (Skorokhod embedding theorem). Let X be a real-valued
random variable with E[X] = 0 and E[X?] < co. Then there exists a stopping
time T with respect to the natural filtration of a standard BM {B(t) }+>o such
that

B(t) ~ X and E[r]=E[X?.

The construction of such a stopping time provides a way to embed the
distribution of X into a Brownian path, which is the idea behind many meth-
ods in stochastic simulation and optimal stopping theory. This theorem has
many applications, particularly in simulating complex stochastic processes
such as BM and Bessel processes.

The Skorokhod embedding theorem provides a method to transform a
given random variable into a Brownian path through an appropriate stopping
time. This is useful in situations where direct simulation of the process is
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difficult or impossible. For example, in biology and physics, the theorem
helps in modeling processes such as the movement of particles (e.g., BM) or
organisms (e.g., Bessel processes) under random influences.

By using the Skorokhod embedding, one can derive realistic simulations
of such processes that closely mimic real-world phenomena, while maintain-
ing mathematical rigor and ensuring computational feasibility.

1.7 SDE formulation

Having established the theory of the Skorokhod Embedding Theorem, we
now present the dynamics of Bessel processes.

SDE are important for modeling systems influenced by randomness or
random processes. In this section, we focus on the norm ||B(t)|| of n-
dimensional BM B(t) and its Markovian properties. We explore the rela-
tionship between this norm and the squared Bessel process, deriving the
corresponding SDE. Also, we provide numerical solutions to illustrate the
dynamics of the Bessel process.

The norm ||B(t)|| of an n-dimensional BM is Markov. More precisely,
letting F; = o (B(s) : s <t) be its natural filtration, then X = ||B||* has
the following property. For times s < ¢, conditional on Fg, X(t)/(t — s)
is distributed as x2 (X (s)/(t — s)). This is known as the “n-dimensional”
squared Bessel process, and denoted by BES 2.

Alternatively, the process X can be described by a SDE. Applying inte-
gration by parts,

dX =2) BB +) d[B]. (1.2)

As the standard BMs have quadratic variation [B'], = ¢, the final term
on the right-hand side is equal to ndt. Also, the covariations [BY, B’] are
zero for i # j from which it can be seen that

t '
W, = Z/O 175.0,d8B". (1.3)

is a continuous local martingale with [WW], = ¢t. By Lévy’s characterization,
W is a BM and, substituting this back into (2), the squared Bessel process
X solves the SDE:

dX = 2V XdW + ndt.

The Bessel process itself (not the squared process) has SDE. If z > 0 then
X (t) satisfies:

dX, = —dt + dB,, X, = .
Xy
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where v = (n — 2)/2 and n is the number of dimensions.
Figures and illustrate the ensemble dynamics of the Bessel pro-
cess for two distinct values of D, showing the numerical solution of the SDE.
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Figure 1.9: Ensemble of simulated paths for a Bessel process with dimension
D = 1.0, obtained by numerically solving the corresponding SDE given in

Equation [I.2]
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Figure 1.10: Ensemble of simulated paths for a Bessel process with dimension
D = 1.01, obtained by the numerical solution of the SDE. It is important to
note the transition to non-negative process.

These Figures provide insight into how the Bessel process behaves as
the dimension D varies. As we approach the critical dimension D = 2, the
process begins to exhibit a different qualitative behavior, transitioning from
a regime that goes toward the origin to one that drifts away:.

In Figure [1.9] it shows the evolution of the Bessel process in one dimen-
sion (D = 1.0) based on a numerical solution to the corresponding SDE.
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In this case, the process tends to move towards the origin, as we are in a
dimension lower than 2, which is consistent with the theoretical understand-
ing of Bessel processes in subcritical dimensions. As the process evolves, we
see that the path often fluctuates, but is more likely to approach zero rather
than drift away. This highlights the tendency of the process to return to the
origin, which is a characteristic of Bessel processes when D < 2.

In Figure|l.10, we simulate the Bessel process in a slightly higher dimen-
sion, D = 1.01. At this value, the process exhibits behavior that starts to
transition toward non-negative values, as the dimension is now very close to
the critical value of two. While the Bessel process still tends to return to
the origin in this dimension, we begin to observe a slight repulsion from the
origin, which is characteristic of processes in dimensions slightly higher than
two. This illustrates the shift from the recurrent behavior typical of subcriti-
cal dimensions (approaching the origin) to the more stable, outward-drifting
behavior seen in dimensions greater than two.
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Chapter 2

Classical population genetics

The study of population genetics is an important field in biology, more specif-
ically in the study of genetic variation, DNA (Deoxyribonucleic Acid) data,
coalescence processes and evolutionary biology. The concept of effective
population in classical population genetics serves as a stochastic equivalence
that reflects how a population behaves under certain conditions. We are
going to look for this effective population size, which can fluctuate due to
varying degrees of inbreeding, to represent an ideal population that operates
with a constant size. In this work, we will begin by having a background
on the history of population genetics and summarizing terminology that is
useful to genetics, which we may refer to throughout this chapter. The fol-
lowing books will be particularly useful for this chapter: [27], [20], |34],
[32].

2.1 Historical background

In the introduction, we have seen the historical background of population
genetics. Now, we will summarize what was previously mentioned and mo-
tivate the work we have been doing. Important researchers such as Sewall
Wright, Ronald A. Fisher, and J. B. S. Haldane were instrumental in shaping
the field of population genetics, establishing principles of genetic variation
influenced by factors such as migration, selection, and random genetic drift.

Wright'’s paper, see [78], introduced the concept of genetic drift and the
notion of effective population size, emphasizing the role of random processes
in evolution. Fisher’s paper [26], provided a mathematical framework for
understanding natural selection and its effects on genetic variation, merging
Mendelian genetics with Darwinian theory. Haldane’s article [30], expanded
on Fisher’s work, focusing on the mathematical models of selection processes
and the dynamics of gene frequency changes over time. Together, these

45
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contributions show how important it is to integrate math with genetics, as
this helps us better understand the processes of evolution.

Figure 2.1: Ronald A. Fisher, Sewall Wright, and J. B. S. Haldane

2.2 Genetics basic concepts

We will introduce some fundamental terminology that will be used through-
out the thesis. Although not every term may be explicitly addressed later,
these basic concepts are useful to understanding genetics.

The first step might be to define genes, which are the fundamental units
of heredity passed from parents to offspring. A gene is a segment of DNA
(Deoxyribonucleic Acid) that contains the instructions for synthesizing a
specific protein or functional RNA (Ribonucleic Acid). Each gene has a de-
fined location, called a locus, on a chromosome and can influence particular
characteristics, such as the color of the eyes or susceptibility to diseases.
Different versions of a gene are called alleles, which are crucial in the follow-
ing theory because we want to understand how their frequencies change over
time in a population. Earlier, we mentioned chromosomes, the structures
that contain genetic material. In humans, there are 23 pairs of chromosomes.
However, the number of pairs of chromosomes varies between different or-
ganisms.

It is interesting to mention that the genetic code is a list of all codons,
each of which corresponds to a specific amino acid. Codons are triplets of
nucleotides, which are the basic building blocks of nucleic acids, such as DNA
or RNA. Each nucleotide consists of three components: a nitrogenous base
(adenine (A), guanine (G), cytosine (C), thymine (T), or uracil (U)), a sugar
molecule (deoxyribose in DNA or ribose in RNA), and a phosphate group.
For example, a codon could be UUU, AAU or CAU in RNA. In contrast, in
DNA, thymine (T) is used instead of uracil (U), so the corresponding DNA
codons would use T instead of U. The corresponding listing all the codons
is provided in

We can now explore the concept of genotype, which refers to the specific
genetic constitution of an organism, including all alleles present for a given
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Codon Amino Acid Codon Amino Acid
TTT | Phenylalanine (Phe) | TTC Phenylalanine (Phe)
TTA Leucine (Leu) TTG Leucine (Leu)
CTT Leucine (Leu) CTC Leucine (Leu)
CTA Leucine (Leu) CTG Leucine (Leu)
ATT Isoleucine (Ile) ATC Isoleucine (Ile)
ATA Isoleucine (Ile) ATG | Methionine (Met, Start)
GTT Valine (Val) GTC Valine (Val)
GTA Valine (Val) GTG Valine (Val)
TCT Serine (Ser) TCC Serine (Ser)
TCA Serine (Ser) TCG Serine (Ser)
CCT Proline (Pro) cCC Proline (Pro)
CCA Proline (Pro) CCG Proline (Pro)
ACT Threonine (Thr) ACC Threonine (Thr)
ACA Threonine (Thr) ACG Threonine (Thr)
GCT Alanine (Ala) GCC Alanine (Ala)
GCA Alanine (Ala) GCG Alanine (Ala)
TAT Tyrosine (Tyr) TAC Tyrosine (Tyr)
TAA Stop TAG Stop
CAT Histidine (His) CAC Histidine (His)
CAA Glutamine (Gln) CAG Glutamine (Gln)
AAT Asparagine (Asn) AAC Asparagine (Asn)
AAA Lysine (Lys) AAG Lysine (Lys)
GAT | Aspartic Acid (Asp) | GAC Aspartic Acid (Asp)
GAA | Glutamic Acid (Glu) | GAG Glutamic Acid (Glu)
TGT Cysteine (Cys) TGC Cysteine (Cys)
TGA Stop TGG Tryptophan (Trp)
CGT Arginine (Arg) CGC Arginine (Arg)
CGA Arginine (Arg) CGG Arginine (Arg)
AGT Serine (Ser) AGC Serine (Ser)
AGA Arginine (Arg) AGG Arginine (Arg)
GGT Glycine (Gly) GGC Glycine (Gly)
GGA Glycine (Gly) GGG Glycine (Gly)

47

Table 2.1: The complete genetic code showing all 64 DNA codons and their
corresponding amino acids. The start codon (ATG) and stop codons (TAA,
TAG, TGA) are indicated.

set of genes. It represents the genetic information that determines the po-
tential traits (or phenotypes) of an organism. However, the genotype does
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Figure 2.2: Representation of a gene illustrating its structure within DNA.

not always result in visible characteristics, as its expression can be influ-
enced by interactions with the environment and other genetic factors. For
example, an individual may have alleles for brown eyes (B) and blue eyes
(b), but the expression of these traits depends on dominance relationships
and environmental influences.

2.2.1 Population genetics basic concepts

This was a brief introduction to genetic concept. Now, we will introduce
some of the concepts that will be using in population genetics.

One of the first concepts we will explore is the population. A popula-
tion refers to a group of individuals of the same species living in a specific
geographic area. This concept is of significant importance in population
genetics because genetic variation arises within populations. The collective
genetic material of all individuals in a population is known as the gene pool,
encompassing all alleles for all genes present within the population.

We have already mentioned some concepts that are yet to be defined.
Genetic variation refers to differences in alleles and genotypes between in-
dividuals within a population. This variation is fundamental to evolution,
as it provides the raw material upon which natural selection acts. Genetic
variation can arise through mutations, gene flow, and sexual reproduction,
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resulting in various characteristics within a population.

Next, we will look at the concept of Hardy—Weinberg equilibrium, a prin-
ciple that describes a theoretical state in which allele and genotype fre-
quencies in a population remain constant across generations, provided that
certain conditions are met: such as no selection, mutation, migration or
genetic drift. This equilibrium serves as a null hypothesis for studying evo-
lutionary processes, allowing researchers to determine whether populations
are evolving.

This next concept, genetic drift, will be explained in more detail in the
next section. Genetic drift is a random process that causes allele frequencies
to fluctuate over time due to chance events, particularly in small populations.
Unlike natural selection, which is a non-random process, genetic drift can
lead to the loss of genetic diversity and fixation of alleles (where only one
allele is expressed in the population). As a result, genetic drift can drive
significant evolutionary changes. Additionally, the term selection, which has
not yet been defined, refers to the process by which certain characteristics
become more common in a population due to their beneficial effects on
an organism’s survival and reproductive success. Natural selection acts on
heritable traits, leading to adaptation.

Maigration involves the movement of individuals between populations,
leading to gene flow. This process can introduce new alleles into a popu-
lation, increasing genetic diversity, and reducing differences between pop-
ulations. Migration plays a crucial role in shaping genetic structure and
dynamics. Next, mutation refers to a change in DNA sequence that intro-
duces new genetic variations into a population. Mutations can be caused by
errors in DNA replication, environmental factors, or radiation.

Gene flow refers to the transfer of alleles between populations through
migration and mating. It contributed to genetic diversity within populations
and can prevent populations from diverging genetically, playing a vital role in
maintaining species integrity. So, the genetic equilibrium is a state in which
allele frequencies in a population remain constant over time, typically under
the Hardy-Weinberg equilibrium conditions. Finally, the evolutionary pro-
cesses describe processes such as natural selection, genetic drift, mutation,
and gene flow that drive changes in the genetic composition of populations
over time.

These concepts provide a foundation for studying the dynamics of genetic
variation and how it is shaped within populations over time through various
evolutionary processes. For more precise definitions, see [53].
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2.3 Random genetic drift

Before diving into the study of the concept of Effective Population Size,
which we will refer to as EPS, it is necessary to understand the concept of
random genetic drift. There are several mechanisms of evolution, such as
natural selection, genetic drift, gene flow, and mutation. In this chapter, we
will focus on random genetic drift.

In each generation, random changes can occur in the frequency of alleles
in a population. These changes occur due to the random transmission of
genetic material from one generation to the next. Even without selective
pressures acting on the population, this randomness can cause some alleles to
become more common while others decrease or even disappear. When only
one allele remains in the population, this is called fization. This means that
all individuals in the population carry the same allele, and this characteristic
becomes fixed for the entire population, meaning that genetic variation at
that particular locus is lost. However, this could change if migration or
mutation introduces new alleles into the population. Since these changes
are not predictable or directed by any specific environmental factor, this
process is known as random genetic drift.

While genetic drift is a stochastic process involving randomness, natu-
ral selection is non-random. In natural selection, certain traits provide a
survival advantage in a particular environment. Organisms with those ad-
vantageous traits are more likely to survive, reproduce, and pass on their
alleles. In contrast, genetic drift acts by random events rather than any
specific selective pressures. For example, in an hypothetical scenario of a
natural disaster, alleles that survive are chosen by chance, not because they
offer any survival advantage. The alleles passed on to the next generation
are not necessarily representative of the entire population, but instead are
determined by random events. Some alleles might become overrepresented,
while others may become less frequent or even lost entirely.

2.3.1 The Wright—Fisher and the Moran model

We have established the concept of genetic drift and its role in determining
allele frequencies in populations, we can explore two foundational models
that describe how this process works. Both the Wright-Fisher and Moran
models illustrate the effects of genetic drift on population dynamics. While
they share some similarities in their focus on randomness and stochastic
processes, they differ in their assumptions about population structure and
reproductive strategies. In this subsection, we will examine both models
to better understand how they contribute to the random genetic drift in
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evolving populations.

The first model we will discuss was introduced by Sewall Wright (1931)
[78] and Ronald A. Fisher (1930) [26]. Although they worked independently,
they arrived at similar conclusions around the same time. This model, known
as the Wright—Fisher model, provides a mathematical framework for under-
standing how the distribution of allele frequencies in populations changes
from one generation to the next due to genetic drift.

In the Wright-Fisher model, the population we work with can be diploid
or haploid, each with N individuals. A diploid population means that the
individuals have two sets of chromosomes, one inherited from the mother and
one from the father, having 2N copies of each gene, each of the individuals
carrying two alleles at a specific genetic locus (for example it is usually
expressed as A and a), This is the case in humans, and most of the animals.
But we can also apply this model to haploid population, such as bacteria,
in this case this organism has only one set of chromosomes and in this case
only carrying one allele at each locus. The idea of the model is that, in each
generation, individuals randomly pass on their alleles to the next generation
through a process of random genetic sampling.

The second model we will briefly look at is the Moran model, introduced
by Patrick Alfred Pierce Moran (1917-1988), who is known for his significant
contributions to population genetics. He is best known for developing the
Moran model, which was introduced in 1958 in his paper [51], a few years
after the Wright-Fisher model discussed earlier. The Moran model shared
similarities with the Wright-Fisher model, as both describe random genetic
drift in populations. However, the Moran model also incorporates spatial
structure into population genetics simulations, allowing the study of genetic
drift and selection in structured populations.

The Wright-Fisher and Moran models differ in how generations are struc-
tured and how reproduction occurs. In the Wright-Fisher model, as we have
seen, generations are discrete, meaning that individuals from one generation
do not interact with those from the next. In contrast, the Moran model
allows for overlapping generations, where individuals from different genera-
tions can coexist and interact within the same population.

Another difference between the Wright-Fisher model and the Moran
models is that, in the first case, at each generation the entire population
reproduces at once, meaning that all alleles randomly sampled form the in-
dividuals, and those alleles contribute to the next generation. And in the
second case, individuals are chosen one at a time: one individual is randomly
selected to reproduce, and the offspring may replace another individual that
dies or needs to be replaced. This structure allows us to observe genetic
drift on an individual level.
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We will not look deeper into the details of the Wright—Fisher and Moran
models, the ideas from these models will help us introduce the concept and
the importance of the EPS. It is interesting to see that even though the
Moran model has been applied in numerous studies. it is less popular than
the Wright-Fisher model. For a more comprehensive understanding of these
models and detailed examples, we recommend Hartl’s book [33], which pro-
vides an interesting discussion of the topics.

2.4 The effective population size

As we discussed earlier, genetic drift plays a fundamental role in the study
of population dynamics. The concept of EPS, denoted as M., helps us
understand how drift works in real populations by comparing them to an
idealized population. An idealized population is one that experiences the
same rate of genetic drift as a real population, under hypothetical conditions.

Consider a population with the following characteristics: diploid organ-
ism, has sexual reproduction, non overlapping generations, many indepen-
dent subpopulations of constant size IV, random mating within each subpop-
ulation, no migration between subpopulations, no mutation and no selection,
as described in [33]. This idealized situation is rare in real world populations,
as most populations do not meet all of these conditons. Therefore, there
must be corrections for such complications such as fluctuations in popula-
tion size, unequal number of females than males, differences in age, and so
on, as we could see in [20]. Therefore, to study these complexities, we need
to adjust our models to reflect the real conditions under which populations
evolve. One important question that arises is whether individuals who do
not contribute to the next generation should be included in the population
size. This brings us to the concept of EPS. This concept was introduced by
Sewall Wright in 1931 in the paper title Evolution in Mendelian populations.

The EPS refers to the number of individuals in a theoretically ideal pop-
ulation having the same magnitude of random genetic drift as the actual
population.

EPS accounts for various factors influencing genetic drift, such as fluctu-
ations in population size, disparities in reproductive success among individ-
uals, and the population’s structure. Usually, N, is smaller than the actual
population size N because not all individuals contribute equally to the gene
pool. Estimating A, can sometimes be complex and often involves different
ways to estimate this number, depending on how we choose to measure the
magnitude. As Hartl [33] discusses, the first method involves the change in
the average inbreeding coefficient, the second method examines the change
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in variance in allele frequencies, and the last one looks at the rate of loss in
heterozygosity. Additionally, there is a method based on coalescent effective
size, but we first need to introduce the concept of coalescence.

For more information on EPS | the following references can be consulted:
i, (78, 56, [76)-

2.5 The coalescent process

As an introduction to this process, we can say that coalescent theory helps
us to explain and analyze the history of a population and also to study the
models of evolution. It is interesting to think that each gene comes from
another gene and this process continues back in time, from generation to
generation. But what if we randomly select two genes from the population?
How can we determine whether they are related? And if they are not in
the current generation, could they share a common ancestor in the past?
In some cases, it may take many generations to trace back to a common
ancestor, but eventually, the two lineages are expected to converge at a
point in time where they coalesce. This shared ancestor is known as the
Most Recent Common Ancestor (MRCA).

It is important to see that, as we mentioned, we want to look at the time
backward in time this means that we are interested in look at the past, and
not the future. Usually we are used to work with forward time and to look
and predict what would happen in the future. For example, in a standard
forward-time model called the Moran model, in each small interval of time,
we choose an individual at random from the population and we suppose it
has a number of offspring X ~ Poisson(a). These offspring then form part
of the next generation. This can be modeled as a branching process. A
coalescent process can be viewed as a branching process run backward in
time, as in Figure

Consider two individuals sampled at random from a present-day popu-
lation of fixed size N. One of these individuals must have descended from
some parent in the previous generation, labeled 7. The probability that the
second individual also descended from the same parent is 1/N. Therefore,
the probability that the two individuals have different parents in the previous
generation is 1 — 1/N.

The probability that their lineages coalesce not in the previous genera-
tion but in the one before that is given by the product of two events, the
probability that they did not coalesce in the previous generation, and the
probability that they do coalesce in the generation before that. This gives
the expression: (1 —1/N)(1/N).
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Figure 2.3: Coalescent tree showing the process of tracing the ancestry of
alleles backward in time. We start with & = 5 alleles in generation 0 (the
present), and as generations pass, the alleles coalesce into fewer lineages,
ultimately leading to a single ancestral allele.

Extrapolating this logic to the probability of coalescing n generations
ago, we get that this probability is:

p(n) = (L= 1/N)"""- (1/N).

In large populations, this expression can be approximated using the ex-
ponential function:

Thus, in a well-mixed population of constant size IV, the probabilities of
neutral coalescence can be computed explicitly and exhibit a simple expo-
nential form.



2.5. THE COALESCENT PROCESS 95

We presented the easiest case, constant N and neutral coalescence. If
we start to make some more realistic assumptions, the coalescence process
can become complicated pretty quickly. There is a lot more interesting
information to explain and review on the coalescent theory and biological

applications. Here are relevant citations along with papers for further study:
1, {7, B3, 9.
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Chapter 3
Spatial population genetics

In the first chapter, we developed an introduction to the mathematical con-
cepts that we needed for developments in the second chapter and especially
here in this third chapter. The goal of this chapter is to introduce and de-
velop the main idea of this thesis and provide a general understanding of
what we aim to achieve when we state that “effective dimensionality” fa-
cilitates stochastic modeling of structured populations. As we will see, the
very simple coalescence process described above will become not so simple
when we account for spatial distribution.

To begin, our objective is to explore how the genetic distance between
two individuals can be an indicator of physical distance. The quantity that
connects these two distances is téme. The genetic distance evolves over time
due to random mutations and genetic drift. Physical distance evolves over
time through random walks and stochastic processes. We will show how
random walks, modeled by BM, can describe the path in which the genetic
evolution is embedded. Effectively the genetic process is embedded within
the spatial process. Such embedding is made possible by the Skorokhod
embedding theorem [I.6] The behavior of the random walk depends on the
dimensional space as we shall see, and it can either be recurrent or transient.
In dimensions greater than one, we will see that this is a Bessel process
modeling the evolution of genetic distance between two individuals; this
process represents the spatial divergence of genetic lineages over time.

In particular, we will define and explore the concept of “effective dimen-
sionality”. These observations suggest that there may be deep connections
between our modeling approach and fractal structures in nature, which could
have implications for understanding population structure and genetic diver-
gence.

Finally, we will consider how stochastic models, based on the previous
concepts, can be used to simulate and predict the behavior of structured
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populations. These models will allow us to better understand the dynamics
of genetic divergence and the coalescence process over time, contributing to
our overall understanding of population genetics and evolution.

3.1 Preliminaries

3.1.1 Spatial movement of genetic lineages

Most of classical population genetics (Chapter 2) makes an assumption that
populations are well-mixed, meaning that any two randomly chosen individ-
uals have the same probability of encountering each other. Here, we elimi-
nate this “mass action” assumption and make the more realistic assumption
that populations live and interact in physical space, such that relatedness
and interaction probability both increase as the physical distance increases.
The complexity introduced by considering spatial effects can make the study
of population genetics more difficult.

The spatial movement of individuals in a population can look like a
stochastic process such as BM. Over the course of many generations, the
movement of a given genetic lineage in physical space is random. On a
much shorter time scale, pollen grains in water move around randomly, as
described by Scottish botanist Robert Brown (from which the term “Brow-
nian motion” comes). The movement of genetic lineages in space and pollen
grains in water have essentially the same statistical properties; the only dif-
ference is scale, both in time and in space. L. Bachelier and A. Einstein
showed that the probability density governing the position of a pollen grain
was Gaussian, with variance proportional to the time since it occupied its
original position [3], [23].

One particularly important property of BM is its time-reversibility. This
means that the process has the same statistical behavior when observed
backward in time as it does forward. Formally, if 5(¢) is a BM, then the time-
reversed process B(T'—t)—B(T), for 0 < ¢ < T, is also a BM. This symmetry
under time reversal plays a crucial role in many probabilistic constructions
and is especially important for the coalescence analyses considered in this
work.

3.1.2 Modeling evolution in continuous space and why
it is so difficult

These considerations might give the impression that spatial population ge-
netics are just a kind of trivial extension of physics models of things like
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diffusion and drift. But it is a mistake to think of spatial population genet-
ics in this way, because there are several things that make spatial population
genetics different from physics models of spatial phenomena. One example
(maybe the most important example) is that organisms of interest are often
obligately sexual so that an individual cannot reproduce without a mate.
Because of this, potential mates have to be accessible and one way they can
be accessible is by simple physical proximity. The result of this requirement
is that organisms tend to live in groups, and biologists use the word “popu-
lation” for such groups. So the technical meaning of “population” in biology
is different from the popular use of this word. It means a group of organisms
that usually mate among themselves and only rarely mate with “outsiders”.

There are two important points here. The first is that evolution is a
population process. It makes no sense to talk about individuals evolving
on their own. Only populations of individuals evolve. So it is important
to figure out how populations emerge and persist, which is a problem that
is uniquely biological. The second point is about the size of populations.
In really small populations there comes another uniquely biological problem
which is inbreeding (endogamy) and it makes populations weak and suscep-
tible to extinction. So populations have to be large. But not too large,
because then ecological factors like food sources can be not enough for the
large population. In summary, how populations form and persist in physical
space is a problem that is uniquely biological. It is a spatial phenomenon
that does not have an analogous counterpart in physics.

The basic problem can be summarized like this: populations are discrete
entities that spontaneously emerge and live in continuous space. Most of the
old models of populations living in space just assume that there are effec-
tively a number of separate populations, each population lives in an isolated
“compartment” and there is not very much migration between compart-
ments. These are called “stepping stone” models and for a long time they
were the standard model in spatial population genetics. More recently, sci-
entists have understood that there are some important characteristics of real
populations that can’t be captured by stepping-stone models. Some of these
characteristics are related to climate change and human migration, for ex-
ample, which can cause habitat fragmentation. Sometimes this can cause
habitats to have boundaries that are increasingly irregular and have a fractal
(non-integer) dimension. We need to keep this point in mind because it will
be useful in trying to interpret our “effective dimensionality ” concept.
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3.1.3 Spatial evolution in backward time

The basic framework for our modeling here is this: Over time, genetic di-
vergence is embedded in a spatial random walk; it grows as each individual
accumulates neutral mutations. However, if we look at the problem from the
reverse-time perspective, we are asking a different question: When did these
two individuals have a common ancestor? That is, what was their genetic
coalescence time? This “spatial coalescence” process is a much more com-
plex problem than classical (non-spatial) models of coalescence processes,
because now we must consider that, for a coalescence event to happen, two
lineages must be in the same neighborhood in physical space.

In reverse-time evolution, the physical distance between the two individ-
uals forms a Bessel process, because we have to use a Euclidean distance.
This process captures the random, independent evolution of their genetic
compositions as they “move” closer to a common ancestor. The coalescence
time—the moment their genetic histories merge—corresponds to the hitting
time of the Bessel process, which tells us when the physical distance be-
tween them becomes small enough so that a coalescence event could have
happened.

We start with BM (this could be described, as we have seen, as a random
walk with continuous steps) and how it is important for describing random
processes. Also, it is useful to study this kind of process, like random walks
in multidimensional spaces (as in genetic drift in populations), because this
can be modeled by BM.

Then, the Bessel process can be seen as a generalization of BM in more
than one dimension, but with a specific focus on the radial distance—in this
case, between two random walks. We used the Bessel process to describe
the genetic divergence between two individuals over time, modeled as the
distance between their genetic compositions as they evolve due to neutral
mutation and random genetic drift.

3.1.4 The Bradburd “coexisting clusters” model

Some recent work by Gideon Bradburd [9] has developed a new way to model
populations in continuous space. It is based on the observation that coexist-
ing clusters of related individuals can have different patterns of movement
in the same area of continuous space. Their model has a number of different
coexisting “layers”, and each layer represents a cluster of related individuals,
and each layer can have different movement patterns.

As we shall see later, the methods we develop and the concept of “ef-
fective dimensionality” that we introduce can be combined with Bradburd’s
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approach. We have been talking about the effective dimensionality D, as a
parameter with a constant numerical value. But there is no formal reason
to think that D, has to be a constant. If we think of D, instead as a random
variable, the connection to the Bradburd model becomes apparent. So, for
example, we can define D, to be a discrete random variable that can have,
let us say, 3 possible values, D, € {1.8,2.0,2.2}. We can think of each value
of D, as defining a “layer” like in Bradburd’s model. Each layer contributes
to observed patterns with probabilities {p1,ps, p3}. See Figure 3.1] This
definition of a layer is similar but not the same as Bradburd’s definition.
It is similar because, in our scheme, departure from integer dimensions can
be seen as a measure of a departure from passive diffusion processes. This
departure will affect spatial auto-correlations so that each layer will have
a different auto-correlation structure, just like Bradburd’s model. But it
is different because we do not explicitly allow for some rate of admixture
between the layers.

And we can go one step more. There is no reason to suppose that D, has
to be a discrete random variable like in the above example. It could also be a
continuous random variable. This would implicitly assume that the number
of layers is infinite. We are not sure if this approach would be more realistic
or less realistic. But it can reduce the degrees-of-freedom of the problem.
For example, if we assume D, is a normally-distributed random variable,
then there are only two parameters that you have to estimate: the mean
and the variance. In contrast, if you use the discrete approach and assume
there are 8 layers, then you have to estimate 7 parameters (the probability
of each layer).

Applications using this kind of spatial modeling can address many dif-
ferent kinds of practical situations. Figure illustrates an application to
the inference of human migration patterns.

3.2 From Brownian motion to Bessel process

In the previous chapter, we made the assumption that populations are “well-
mixed”, which as we have stated earlier, means that any two individuals
chosen at random have the same probability of interaction (which can include
mating possibility). An example of this in a laboratory setting would be a
chemostat (it is a type of bioreactor used in laboratories to maintain a
continuous culture of microorganisms), where the environment is liquid and
well-mixed, sometimes this is referred to as zero dimensions.

In one-dimensional space, two randomly-chosen individuals will not have
a constant probability of interaction; instead, this probability will depend
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Figure 3.1: This figure is reproduced with permission from G Bradburd
f. In this figure, there are three layers representing three clusters of
related individuals coexisting in the same space. Our methods resemble this
approach, but each layer will represent a different effective dimensionality
D. and there are an infinite number of layers because D, is a continuous
random variable.

-1000

20 years
w00 before
present

-4000

-5000

Figure 3.2: This figure is reproduced with permission from G Bradburd —
. It shows a spatiotemporal analysis of genetic structure and ad-mixture
in a set of human populations from Eurasia over the last 5,000 years.
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on the physical distance between the two individuals. BM is a stochastic
process that describes random movement along a number line. In one di-
mension, the random walk of a particle is simply described by BM, and the
distance from the origin is just the absolute value of the position. There are
some examples of populations that effectively live in one-dimensional space;
a classic example of this is populations living along coastlines. We recall
that one dimension is particularly convenient because we could use the re-
flection principle. However, most biological populations exist in more than
one dimension. When we extend the concept to higher dimensions, the pro-
cess of interest is not simply an independent collection of one-dimensional
BMs. Instead, we measure the Euclidean distance between the two lineages;
over time this distance forms its own stochastic process. This distance pro-
cess is qualitatively different than BM because Euclidean distance is never
negative. We found that this process is equivalent to a Bessel process.

A Bessel process is a type of stochastic process that appears in many
different contexts. It can, for example, be used to model the distance of the
path of a BM from the origin in multi-dimensional Euclidean space. More
specifically, the Bessel process arises from the radial part of the BM in higher
dimensions. In a multi-dimensional setting, while each individual spatial
component of the BM remains independent, the radial distance follows a
distinct process that has different properties than the one-dimensional case.

Thus, while the motion of the particle itself in each dimension still follows
BM, the radial distance is described by a Bessel process. This distinction
is what leads to the observation that, in higher dimensions, the process
governing the particle’s distance from the origin is referred to as the Bessel
process rather than simple BM.

Let us consider two particles moving in a one-dimensional space, i.e.,
along a straight line, over time. This is a simple BM. Let the position of the
first particle at time ¢ be denoted as X;(t), and the position of the second
particle at time ¢ denoted as X5(t). The positions of the particles follow:

Xi(t) = X1(0) + B(t).
Xo(t) = X5(0) + B(¥).

Where B(t) is a standard BM. The position of each particle changes by a
random amount dy in the time interval (¢ + dt). Technically speaking BM is
usually defined in a stochastic calculus context, in which the usual limits of
calculus apply: dy — 0 and dt — 0. In normal calculus, numerical solution
of differential equations is straight-forward and easy to figure out: you just
assume that dt is small but not zero, and then use it to deterministically
compute dy for each time step. To make numerical solutions in stochastic
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calculus, it is not so obvious because dy in this case is like a random variable,
not a deterministic value. To make numerical solutions we rely on the Sko-
rokhod embedding theorem , which shows that, in the case of BM, dy
will be a normally-distributed random variable with mean zero and variance
dt > 0. In fact, Skorokhod proved that dt does not have to be small; it can
be any value you choose. As illustrated in figure |3.3| if we track the position
of the particle over time, we observe the values X;(t) and X,(t) at each time
point, describing the random movement of the particle.

Simulation of BM for two particles in 1D
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Figure 3.3: A simulation of BM of two particles in one-dimension. This figure
shows the random movement of two particles along a straight line (the y-axis)
over time. Both particles follow independent Brownian processes, resulting
in random fluctuations in their positions. The positions X;(t) and X5 (t) of
the two particles are shown as they evolve over time, with particle 1 (blue)
and particle 2 (red) moving randomly in one-dimensional space.

As we mentioned earlier, we are interested in the distance between the
two lineages. In one dimension, this distance is simply AR(t) = | X (t) —
X3 (t)], which is easy to work with because the process X (t) — Xo(¢) is itself
a BM process, allowing us to take advantage of the reflection principle. The
only thing that changes is the variance associated with X (t) — X(t) is twice
the variance associated with X;(¢). So, the variance of dx is now 2dt and
not dt as before.

Now, we imagine two particles moving in a two-dimensional space. The
position of each particle can be described by a vector (Xi(t),Y1(t)) for the
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first particle and (X(t),Y2(t)) for the second particle, where each of these
position components X (t), Y1(t), Xo(t), and Ys(t) are independent BMs. As
illustrated in Figure [3.4] both particles follow independent BM in two di-
mensions, which means that the movement of each particle along the z- and
y-axes is independent of the other.

Simulation of BM for two particles in 2D
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Figure 3.4: BM of two particles in two-dimension. This Figure shows
the random movement of two particles along a plane. The positions
(X1(t),Y1(t)) and (X5(t), Ya(t)) of the two particles are shown as they evolve
over time, with particle 1 (blue) and particle 2 (orange) moving randomly
in two-dimensional space.

In this case, the distance between the two particles at any given time ¢,
denoted by d(t), is given by:

AR(t) = VJAX ()2 + AY (£)2.

where AX(t) = X;1(t) — Xo(t) and AY (t) = Yi(t) — Ya(t). We recall that
AX(t) and AY(¢) are normal random variables with with variance 2dt.
This distance evolves over time as a result of the random movements of
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both particles. As illustrated in figure the observation here is that the
evolution of this distance between the two particles follows a Bessel process
of dimension 2.

Distance between two particles over time
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Figure 3.5: BM distances of two particles (X;(t),Y1(¢)) and (X»(t), Y2(t)) in
two-dimension.

In the Preliminaries section, we stated the following question from a
reverse-time perspective: When did these two individuals share a common
ancestor? However, before determining when, we must first evaluate whether
there is a possibility for the two lineages to converge. In the following section,
we will apply the theorem proved in Section [1.5]

3.3 Recurrence and transience in BM and
Bessel processes

The property of being recurrent or transient in a BM or a Bessel process
is determined by its dimension D, first we are going to look at the theory
with D an integer and then what happens like in our case D, non-integer
dimensionality.

We talk about recurrent and transient processes in Section 1. We saw
that a random process is called recurrent if it eventually returns to a partic-
ular state (or neighborhood of that state) with probability 1. In other words,
after leaving a state, the process is guaranteed to revisit it at some point
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in the future. For instance, BM is recurrent in one dimension. So if two
BMs start in the same place, they will eventually meet again at some time
in the future, in one dimension. In two dimensions, BM is “neighborhood
recurrent”, meaning that the two paths will eventually come to be less that
a distance € from each other, for arbitrarily small €, with probability p = 1.

This recurrence property in one-dimension and two-dimension is tied to
the geometry of the space, where the “smallness” of the space guarantees
that the process will eventually revisit a state. This idea is often connected
to the Poincaré recurrence theorem [59).

On the other hand, a random process is said to be transient if, once
it leaves a state, there is a non-zero probability that it will never return to
that state. Essentially, the process might drift away and never revisit certain
points. For example, in three-dimensional or higher-dimensional processes,
the process is transient, meaning that once the process moves away from its
starting point, there is a non-zero probability that it will never return to it.
This property is a result of the increased dimensionality of space, where the
“escape” routes available to the process become more abundant, reducing
the likelihood of returning to any specific point. More precisely, if two BMs
start at the same position in three-dimensional space, the two paths may
eventually become less than a distance € from each, for arbitrarily small e,
with probability p < 1; in other words, there is no guarantee that they will
ever meet again.

This difference arises because, in lower dimensions, the process is con-
strained enough that it is likely to return to previous states, whereas in
higher dimensions the space becomes large enough that the process may
never return to a particular point once it has moved away from it.

When we move to higher-dimensional spaces, the behavior changes sig-
nificantly. In three-dimensional space or higher, the associated Bessel pro-
cess becomes transient. The probability that the particles will encounter
decreases, and they are more likely to “escape” indefinitely.

In biology, the study of this analysis is important. If a process is re-
current, it guarantees that two lineages will meet at some point in the past,
much like how recurrent events will happen over time in a stochastic process.
This concept is fundamental for studying evolutionary relationships. In fact,
one of the assumptions made in phylogenetic analysis is that if two lineages
meet (at some point in the past), will inevitably cross paths, ensuring a con-
nection at some point. If this meeting occurs as a genomic “meeting”, then
this is called a coalescence. Then if a process is transience, lineage may drift
away from a common point and never return. In evolutionary terms, this
transience suggests that some lineages may diverge and never meet again.

In the context of phylogenetic trees, the idea is that when we observe
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relatedness between two species, it is based on the assumption that at some
point in the past, their evolutionary paths intersected. If two lineages are
found to be related, it is not just a coincidence — they must have shared a
common ancestor at some point. For example, schematic (3.1]) illustrates
two ways in which two sequences can be the same.

(3.1)

4 {1,0,1} = {1,1,1} — [{1,0,1}
) {1,0,1} — {0,0,1} — [{1,0,1}

{1,0,0} —{{1,0,1}
{0,0,1} —{{1,0,1}

B) {0,0,0} — {

where the observed pair of sequences are in a box; A represents a case of
“identity by state” (IBS), and B represents a case of “identity by descent”
(IBD). IBS tells us nothing about why the sequences are the same. In the
illustration A shows a case where the two sequences could come different
lineages and they could be the same because of chance or because natural
selection is favoring that sequence (called “convergent evolution”). In case
B, the two sequences are the same because they come from the same lineage.
We note that IBS can reflect IBD or something else. IBD means that we have
some reason to believe that the two sequences are the same because they are
related by ancestry (by descent). Generally speaking, if the sequence changes
are neutral (or synonymous) — i.e., if they do not change the encoded amino
acids so they are “invisible” to natural selection — then the probability they
are not IBD is very small. In all the data analyses we performed, we counted
only synonymous differences in sequences.

We have seen that different numbers of physical dimensions can cause
evolutionary differences that are quantitative and sometime even qualitative
(like the transition from recurrent to transient between 2 and 3 dimensions,
for example). Now we would like to have a look at these differences. We will
do this by examining the relationship between diffusion processes and the
Laplace operator in Euclidean space. When the number of physical dimen-
sions is an integer, this is an easy exercise in restating some fundamental
identities. But we will extrapolate to cases where the number of physical
dimensions is not an integer; this extrapolation is non-trivial and informa-
tive (although probably not new). In a further extrapolation (which might
be new), we will show how we can use the connection between Bessel pro-
cesses and the radial Laplacian operator to derive the standard Laplacian
operator in Euclidean space in non-integer dimensions. Our findings clearly
partition the Laplacian into the standard integer-dimension Laplacian plus
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an extra term that quantifies the contribution of the non-integer part of the
dimensionality.

3.4 Life in non-integer dimensions

As an introduction to non-integer dimensionality, we aim to explore both the
utility of working with non-integer dimensions in contrast to the integer di-
mensions typically used in existing theory, as well as possible interpretations
of non-integer dimensionality in this context. While our focus is primar-
ily on the utility of non-integer dimensionality for modeling purposes, we
remain curious about its interpretation. To help with both utility and inter-
pretation, we decided to look at how the non-integer dimensionality affects
Bessel processes (the radial Laplacian) in a more familiar setting, namely in
Euclidean space.

As we have seen the Bessel process describes the motion of a particle
(or lineage) in D.-dimensional space, focusing on its Euclidean distance be-
tween two particles (or lineages) that are both moving in space as Brownian
processes. But here there is an obvious problem. When D, = 2, the distance
measure is defined as vVAX? + AY?2. Likewise, when D, = 3, the distance
measure is defined as VAX2 4+ AY?2 + AZ2. But what if D, = 2.5? In this

case, how can we measure Euclidean distance?

To solve this problem, we make the following observation: Maybe a
Bessel process can occur in a non-integer dimensionality, D,. So what does
this mean? We live in integer dimensions. Most land animals, for example
effectively live in two dimensions. Even most marine life effectively lives in
two dimensions. But there are some exceptions, i.e., marine life that effec-
tively lives in three dimensions. We have an intuitive idea about integer
dimensions. But, how do we make sense of a dimensionality of D, = 2.3,
for example? We do not live in 2.3 dimensions, and we cannot make mea-
surements in 2.3 dimensions. What we can do is to consider the projection
of dynamics in 2.3 dimensions onto dynamics in 2 dimensions. Then we are
bringing our modeling back to real dynamics that make sense to us.

3.4.1 Laplace operator

The Laplace operator, also known as Laplacian, denoted as V2, is a second-
order differential operator that measures the rate at which a function’s value
deviates from its average value in the surrounding region due to diffusion.
For a scalar function f, the Laplace operator is expressed as:
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V=V (V).

In the context of diffusion, the quantity in the parentheses is known as
Fick’s law. The Laplace operator appears in many different contexts; maybe
the most famous context is a model describing how heat spreads throughout
a material, and it is written like this:

0

Y _ 2
5 vaf.

This notation is particularly convenient because it is the same notation for
any number of physical dimensions. In general, the operator is simply the
sum of the second partial derivatives of the function with respect to each spa-
tial coordinate in Cartesian space. In Cartesian coordinates (xy,za, ..., x,),
the Laplacian in n-dimensional space is given by the sum of the second
partial derivatives with respect to each spatial variable:

n 32f
2 — —_—
Vf_;axg.

We note that the sum is over an integer n, which is the number of dimensions.
It is not clear, at this point, how such a sum might be extrapolated to a
non-integer number of dimensions.

The Laplacian can also be expressed in other coordinate systems, such as
spherical coordinates and cylindrical coordinates, which are useful in prob-
lems exhibiting spherical or cylindrical symmetry.

In spherical coordinates (r,0,¢), the Laplacian is:

2p_ L0 (500 L 0 (o, _1 &F
vf_ﬂ@r " or +7’281n986’ Smeaﬁ +r28in298¢2'

In cylindrical coordinates, the Laplacian V? for a scalar function ¢(r, 9, 2)
is given by:

2
Vof(r,0,z) = 2o T e

These forms are crucial in solving problems with spherical or cylindrical
symmetry, such as heat conduction in a spherical object or gravitational
fields. However, in problems with circular or radial symmetry, polar coor-
dinates often provide a more convenient framework. In polar coordinates,
the position of a point in the plane is described by the radial distance r and

ror \"or 022

10 < 8f)+ Lo O
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the angle A, making it crucial to transform the Laplacian to accommodate
these new variables. This transformation involves using the chain rule and
applying the geometry of polar coordinates to express the second derivatives
with respect to » and 6. By following a series of steps, we can derive the
Laplacian in polar coordinates.

Deriving the Laplacian in Polar Coordinates
As we have seen, the Laplacian operator in Cartesian coordinates (z,y) is
given by:

0? 0?

We aim to transform this expression into polar coordinates (r, ), where:

r=+z?>+y?, 0=tan "' (%) :

First, we need to express the Cartesian coordinates x and y in terms of
polar coordinates:

VQ

xr=rcosf, y=rsinb.

Now, we calculate the first-order derivatives of r and # with respect to x
and y:

or _z Or_y
oxr r’ Oy 1
o0 y 90 x

g T oy
Using the chain rule, we can express the first derivatives with respect to z
and y in terms of r and 6:

or Or r 00 r?

9_0y, 0 =
oy Or r 00 r?

Next, we compute the second derivatives by applying the product rule and

chain rule:
P _0( (0 x 9y
or2  ox \or r 00 r2)°

& _0(9 y 0 2
oy2 oy \or r 06 r2)’
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After performing the necessary derivatives, the Laplacian in polar coordi-

nates becomes: Lo 5 |

Ve (r=— )+ ==.

ror \  Or r2 062

This is the Laplacian operator in polar coordinates, which consists of two
terms: a radial term and an angular term. In all of our further developments,
we will assume that the quantity of interest, the probability density of a
diffusing particle or lineage, has radial symmetry. This means that the
quantity of interest is independent of the angle, yielding:

2_10 (0
v ror rar '

3.5 Mapping our “effective dimensionality”
onto Cartesian coordinates

As shown in the previous section, the radial Laplace operator looks very
much like the right-hand-side of the partial-differential equation describing
Bessel processes. We now rewrite the spatial component of the Bessel process
as an operator. For comparison, we rewrite the two operators together.
First, we have the symmetric radial Laplace operator:

» D-10

2—_
v_(%"? r  or

where D is the number of physical dimensions and is assumed to be an
integer. By comparison, the Bessel operator is as follows:
V2 = 8_2 D.-10
¢ or? roor

where D, is the effective number of physical dimensions and can be any real
number; it is not limited to integers.
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The only difference is that here, in the context of a Bessel process, the
number of physical dimensions is not formally limited to integers. That
is why we have changed the notation: D in the Laplace operator must be
integer, whereas D, in the Bessel operator is not limited to the integers and
can be any real number.

But maybe the radial Laplace operator can exist in a non-integer dimen-
sion. It makes sense because of the exact correspondence between D in the
Laplace operator and D, in the Bessel equation. In what follows, we assume
that this extrapolation is valid. We note that we are not the first people to
see this similarity and wonder about it. We know of a previous study that
makes the same ansatz, by a physicist, Sidney Redner [46], with whom we
have discussed our work. And there exists some evidence that this extrapo-
lation can be formalized and can be shown to be more than just an ansatz
[15].

The radial Laplacian operator in D-dimensional space, where D is an

integer is:
1 0 0
2 9 (. p19
Vi = rP=19r (T 87’)'

This operator captures how a function changes with respect to the radial
distance from the two particles. To better understand the connection, let us
expand the radial Laplacian operator. First, we apply the product rule to
the term inside the derivative:

O (pad\ _ 0y \p20 | p,0
or <r 8r> = (D=1 or tr or?’

Now, dividing this expression by r?~!, we obtain:

0 0?
D029  p10°
{(D 1)r B +7r 5

Simplifying the two terms. The first term simplifies to (D — 1)1-2 and
the second term simplifies to 53—:2.

Thus, we arrive at the expanded form of the radial Laplacian:

0? D-10

2—_
v 787’24_ r  or

where D € N. We now explore the similarity, mentioned above between this
operator and our proposed Bessel operator:
- * D.—10

e~ o2 r  or
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where now we have D, € R.

Using the Bessel operator (and its analogous radial form of the Lapla-
cian) as our starting point, we would now like to see how we can map the
radial form to Euclidean space. In particular, we are interested to see how
non-integer dimensions would map onto Cartesian coordinates. When di-
mensions have only integer values, then we get the familiar expressions:

0? 0?
2 P — —
V= 0x? * oy?
for D = 2, and:
0? 0? 0?
2 _— —— — —
vi= Ox? * oy? * 022
for D = 3.

3.5.1 Generalized Cartesian Laplacian for non-integer
dimensions

When the number of dimensions is not an integer, we again change notation
a little and let D, denote the effective number of dimensions (or effective
dimensionality). Now, it is no longer straightforward to define the Laplacian
operator in standard Cartesian coordinates. To address this, we derive the
projection of non-integer D, onto integer D-dimensional Euclidean space,
which we will denote with the operator V*(D, — D).

We start with the radial Laplacian, which has the above mentioned sim-
ilarity to our Bessel process of interest (whose dimensionality D, does not
have to be an integer), and we work backwards to derive the Cartesian
Laplacian.

For the two-dimensional case, the generalized operator takes the form:

0? N 0? n D,—2 0 n 0
T a |

ox?2  0y? 22+ y? \  Ox y@y

noting that when D, = 2, we recover the standard two-dimensional Carte-

sian Laplacian. For the following proof, this approach is valid since we are

working with the radial Laplacian, which supports generalization to non-
integer dimensions.

V(D + 2) =

Proof. We prove how to obtain the derivation of the standard two-dimensional
Cartesian Laplacian. We begin with the radial form of the Laplacian oper-
ator in effective dimension D,:
? D.—10
veo &y Demld
or? ror
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where r = /22 + 92, and we assume the function u(z,y) is radially sym-
metric, i.e., u(z,y) = f(r).

By the chain rule:

Ou df or ., |z
or a3y
Pu d /., T y N2 r? — g2
oo~ (07) =10 () 10—
Similarly, for the y-direction:
au_ / Yy aQU_ " Yy 2 / r2—y2
8—y—f(7’);7 a—yQ—f (7“)<;> )5

Adding both second derivatives:

82 62 2 2 2 _ 2 2
T S = () e ()

= F()+ 10,

since 22 + y? = r2. Thus, in standard 2D we have:

0? 0? ? 10

Vie — 4+ — = — 4+ =
Ox? + oy2  Or? + ror
Now we consider the radial Laplacian in non-integer dimension D.:

0 D,—10 D.—20
;72—_ e — = ;72 Ze 7
6_8r2+ r o or * ro or

(3.2)

We note that » = /2?2 + y?, from which we have:

or x x or Yy Yy
= — = —, and — = —]— = = ,

or ety v Oy iy T

from which we use the chain rule to derive:

ou _ z0u  you
or  roz 1oy’
We get:
10u  x0u yOu 1 ou ou
C— = 2=z =ty |.
ror  r20x  r?2dy 2?2+ y?2 \ Ox oy
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Inserting these expressions into Eq (3.2]), we get:

De—20_u_De—2 8u+ ou
ro Or a4 2 Tor y@y

Combining terms, we obtain the expression for the projection of the radial
Laplacian in D, dimensions onto the two-dimensional plane:

0? 0* De—2< 0 8)

2D, 2) =
ViDe = 2) 8x2+8y2+x2+y2 8x+y8y

For the three-dimensional case, we find:

0? 0? 0? D. -3 0 0 0
VD=3 ===ttt — 2= — — .
( ) Ox? +8y2+622+x2+y2+22 <x8x+y6y+zaz>
noting that if D, = 3, we recover the standard three-dimensional Cartesian
Laplacian.

We can generalize this projection onto any integer dimensionality, D. By
induction, we have the general expression:

D
0? D D
V(D — D) =
( ) i:1ax 111’1; 8%

We note that this expression is clearly partitioned into: 1) the integer part
(first term) and 2) the non-integer contribution (second term).

3.5.2 Some examples of numerical solutions

We begin with two points, one at location A and another at location B in
the landscape, and we consider the probability of coalescence as we move
backward in time. What we are effectively doing is tracking the positions
of lineage one and lineage two over time. This corresponds to the product
of two diffusion processes, one starting at point A and the other at point B.
What interests us is the product of the probabilities associated with these
two diffusion processes as time goes backward.

In the following Figure |3.6, we see the initial probability distributions,
which are represented as two delta functions. This is because, based on the
data, we know the exact locations of the two DNA samples. Therefore, the
relevant initial probability distribution is a delta function, since each lineage
starts from a known position.
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Figure 3.6: Dynamics of the probability densities two diffusion processes.
This how we model spatial movement in backwards time.

Figure 3.7: Product of the two densities as illustrated in Fig for D, =
2.3 minus the product of two such densities for D, = 2.0. In essence this
shows the effect of the non-integer part of D, = 2.3 on spatial coalescence
probabilities.
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At the beginning, we have two sharp peaks. As we go backward in time,
the probability that a lineage is at a given position (for example, at position
—1 or —5) spreads out like a diffusion process. So, each lineage follows an
independent diffusion process starting from its respective location.

What we are interested in is the product of these two probabilities. These
two distributions, f and g, diffuse over space. The key quantity is the prob-
ability that both lineages are at the same location at the same time. This
probability is given by the product of f and g, evaluated at the same point.
In essence, we are computing the probability that both lineages overlap at
some location as they diffuse backward in time.

It appears that for every non-integer dimension, there exists a Cartesian
mapping to all integer dimensions. While we have not been able to prove
it mathematically, however we suspect that 1 > D, — n > 0 must hold.
Further exploration of the above expression and what we think should be
the conditions, these and other things will be subjects of future study. This
result is likely found in the literature, but we have not been able to locate a
reference for it.



Chapter 4

Derivation of effective
dimensionality from genetic
distances

This chapter is divided into two sections. In the first section, we introduce
a method for determining the effective number of spatial dimensions based
on pairwise Hamming distances between sequences, typically derived from
DNA or RNA.

In the second section, we describe how to derive probabilities from the
discrete distribution of neutral differences between two sequences using a
pgf. These probabilities will be denoted by G(8).

4.1 Spatial dimensionality and genetic dis-
tances

In this section, we present a method for determining the effective number
of spatial dimensions from pairwise Hamming distances between sequences.
We begin by establishing that if we know the coalescence time ¢, for a pair
of sequences and the neutral mutation rate p, then the number of neutral
mutations separating the two sequences, referred to as the neutral Hamming
distance, follows a Poisson distribution with expectation 2ut..

This result provides a probabilistic relationship between observable ge-
netic differences and the unobserved coalescence time. Because coalescence
time itself is influenced by the spatial structure of the population, this con-
nection allows us to use genetic data to make inferences about spatial di-
mensionality.

Pairwise genetic differences between sequences can provide insight into

79
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the spatial structure of a population. In particular, we are interested in
understanding how the effective number of spatial dimensions can be in-
ferred from pairwise Hamming distances, a measure of genetic divergence
that counts the number of nucleotide differences between sequences of equal
length.

The Hamming distance is calculated by comparing two sequences of equal
length and counting the number of positions where the corresponding nu-
cleotides differ. For example, for each position in the sequences, we check
if the nucleotide in the first sequence differs from the nucleotide in the sec-
ond sequence. If they differ, it contributes one to the total Hamming dis-
tance. This metric provides a simple yet effective way to quantify genetic
differences. For instance, when comparing the sequences ATCG and ATGG,
the Hamming distance is 1 because they differ at the third position. This
method allows us to quantify genetic differences by counting the positions at
which the nucleotides differ. We will also discuss the neutral Hamming dis-
tance, which shares the same definition as the standard Hamming distance
but accounts for only those sequence differences that do not change the en-
coded amino acid and is therefore invisible to selection. We will explain this
concept in further detail.

As referenced in the previous section (2.1, which lists all possible nu-
cleotide combinations, we can use this information to calculate Hamming
distances more easily by comparing all pairs of sequences.

4.1.1 Coalescence time and mutation

In Chapter 2 on classical population genetics, we introduced the concept of
coalescence time. As we have seen, the coalescence time t. between two se-
quences is defined as the time in the past when they last shared a common
ancestor. After this common ancestor is established, the two lineages ac-
cumulate genetic mutations independently over time. Assuming a constant
neutral mutation rate .

If we know the coalescence time t. for a pair of sequences and the neutral
mutation rate p, then the number of neutral mutations separating the two
sequences, referred to as the neutral Hamming distance, follows a Poisson
distribution with expected value 2ut..

For example, consider two sequences with a coalescence time of ¢, = 1000
generations and a neutral mutation rate of g = 1 x 1078 mutations per site
per generation. The expected number of neutral mutations separating the
two sequences would be:

2ut, =2 x 1 x 1078 x 1000 = 2 x 107°.
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This means that, on average, we would expect 2 x 10~° mutations sep-
arating the two sequences. While this number is quite small, it represents
the expected number of neutral mutations that have occurred between the
two sequences over the coalescence time. The actual number of mutations
observed may vary, following a Poisson distribution with this expected value.

We can prove that the neutral Hamming distance follows a Poisson dis-
tribution by considering the mutation process as a Poisson process. First,
we assume that mutations at each nucleotide position occur independently
and at a constant rate y per generation.

Let k represent the number of mutations that occur at a given nucleotide
position over time t.. Since the mutation rate p is small, the probability of
more than one mutation at the same position is nearly zero. Therefore, the
number of mutations at each nucleotide position follows a Poisson distribu-
tion:

(NtC)keiutC
k! '

Now, for a pair of sequences, the total number of neutral mutations
is the sum of independent Poisson random variables across all nucleotide
positions. Since the sum of independent Poisson-distributed variables is
also Poisson-distributed, the total number of neutral mutations (i.e., the
neutral Hamming distance) follows a Poisson distribution with an expected
value of:

P(k) =

E[Neutral Hamming Distance|] = 2ut...

The factor of 2 accounts for the two sequences being compared, and the
result follows from the properties of the Poisson process.

When we calculate the neutral Hamming distance of two sequences, we
obtain a value M. Let M denote number of neutral mutations separating a
pair of sequences. The number of neutral mutations M is assumed to follow
a Poisson distribution with expectation 2ut., based on the assumption that
the mutations occur independently at a constant rate over time. Then,

M ~ Poisson(2ut.). (4.1)
such that:
2\F
P{M =k} = ye*)‘, where A = 2ut. . (4.2)

As seen in papers like [75] and [24], the number of mutations per unit
length follows a Poisson distribution. This could be seen because the muta-
tions are rare and independent events.
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4.1.2 Extracting probabilities of the discrete distribu-
tion of numbers of neutral differences

Given what we previously discussed about how we obtain the value of M, it
is now time to look at the way to determine the effective number of spatial
dimensions.

We want to calculate the pgf of M, because we want to store all the
probabilities associated with the values that mutations can take. The pgf
associated with random variable M is therefore:

g() = e 2mtell=0), (4.3)

Proof. To see this, we could recall that the pgf is defined as:

g(0) = E[0M] =Y P(M = k)6". (4.4)
k=0
For a Poisson distribution with parameter A = 2ut., the pmf is:

)\k
P(M =k) = ye_)‘, where k=0,1,2,... (4.5)

Substituting the pmfinto the pgf we have that:

3 (AH!)’“. (4.6)

A e
g(0) = e 0" =e kZ:% ’

k=0

We see that this is the Taylor series expansion of e*’, so we could simplify
this:
g(0) = e e = 170, (4.7)

Substituting A = 2ut., we obtain:
g<9) — 672,utc(179). (48)
O

We now encounter a problem, as the value of ¢, is not known beforehand.
Rather than assuming ¢. to be a fixed value, we assume it follows a known
probability density function, denoted by h(t.). The pgf associated with the
random variable M then becomes:

90) = [0 On(e) dr.
0
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This expression can further be rewritten in terms of the random variable
T, which also represents the coalescence time, where 7" is the random version
of t,.

We can rewrite this expression in terms of the random variable 7', which
also represents also the coalescence time, were 7' is the random version of t..:

g(e) — E[efZMT(lfe)]'

For a,b > 0, we denote by T the first hitting time to of the Bessel process
with index v, starting at distance a and stopping at distance b < a.

At this first mention of distance parameters a and b, there are
three important points to make: 1) that what really counts is
the ratio of of these parameters a/b (this will become apparent
later), 2) so without loss of generality in what follows we can let
b = 1, and 3) distance a will be some function of EPS: a = a(N\,).
Where needed for emphasis, we will write a(N.); otherwise, we
will just write a.

We have some approximations for the probability density of T'. For the
following results, we need to define the modified Bessel function of the second
kind, denoted by K,. For more properties, refer to [31] and [36]. Now, we
would like to evaluate the Laplace transform. We can evaluate the Laplace
transform of the distribution of T' by solving an eigenvalue problem. If we
defined F the expectation, we have that the function:

z i Ele™T].
is increasing (decreasing) on [0,b) (resp. (b, 00)) and satisfies
G(v)u = Au, u(b) =1.

The expressions for Ele=¢T] is study and see in [31] [43]. If 0 < b < a and
v € R, we have the exact Laplace transform of the probability density of T"

_ VK, (a\/20)

= E [e79T] = a,,—' 4.9
Where K, denote the modified Bessel functions of the second kinds of order
v. The modified Bessel functions K, are the solutions of the differential

equation:
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If we substitute the dummy variable ¢ with 2u(1 — 6), we get:

a VK, (2a 1-46
G(O) = E [e7T(-0] = ( " )). (4.10)

K, (2b\/m)

which is the exact gf associated with number of mutations, M.

We will now look at some observations about the number of neutral
mutations M. Let us remember that M is a random variable that counts
the number of neutral mutations between the two sequences.

4.1.3 Observations about the number of neutral mu-
tations M

1. M is a discrete random variable, and can only take non-negative inte-
ger values in the set {0,1,2,3,...}.

2. The total probability mass of M is:

(Q)QV, v > 0.

4.11
1, v < 0. ( )

0—1—

ZP{M—k}— lim G(6) = {

This indicates that M has a proper pgf only when v < 0; for v > 0,
M has a gf but not a proper pgf.

Proof. We aim to compute the limit

lim G(6), where G(6) = v (QGV”(I_
O—1- b—vK, 2b\/ 1—

and show that

b 2v
lim G(0) = (5) , ifv >0,

=1 1 if v <0.

)

Let us define z := 2a/pu(1 —0) and y := 2b\/pu(1 —0). As 0 — 17,

both z — 0% and y — 0%. The behavior of the modified Bessel
function K, (z) for small positive arguments depends on the value of
v, and we consider three cases.

Case 1: v > 0.
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We aim to prove that:

lim G(6) = (9>2y, (4.12)

0—1—

or in other words,

a 'K, (2(1 pu(l—0)
lim

-1 v, <2b (1 —0)

SN—"
I
/N
Q|
N——

<

Which is equivalent to:

lim
0—1—

v K, (2ay/p(1—6) 2
) iy ()

Therefore, we aim to prove this equation:

K, (20y/u(T=0)) ) <b)”'

a a

lim

K (o)

As recalled from [43] and |1, Eq. 9.6.9], several properties of the mod-
ified Bessel functions I,(x) and K,(z) are useful. One particularly
interesting observation concerns their behavior as z — 0 for v > 0.
For small z > 0, the modified Bessel function of the second kind sat-
isfies the following asymptotic expansion:

K, (z) ~ F(;) (§>v

Applying this to both the numerator and the denominator, we obtain
T(v) (2" T 1 ’
Kooy~ 1 (2) 1 |

v
2 (b\/u(l - 9)) |

With this in mind, we can simplify our expression:

a
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and therefore

Case 2: v = 0.

In this case, we use the asymptotic expansion of the modified Bessel
function of the second kind of order zero. We recall from |1, Eq. 9.6.13],
that the modified Bessel function of the second kind of order zero has
the expansion:

z

Ko(z) ~ —log (2

> In(z) + R(z), asz— 0",
where Iy(2) = 1+0(2?) as z — 07, and the remainder R(z) approaches

zero as z — 0T. Therefore, the logarithmic term dominates, and we
obtain the asymptotic behavior:

Ko(z) ~ —log (%) , asz— 07",

Applying this to x = 2a+/u(1 — 6) and y = 2b,/pu(1 — @), we obtain:
Ko(w) ~ —log (ay/u(1=8)),  Koly) ~ —log (b/u(1 - 0)).

Therefore,
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Now observe that each logarithm can be expanded as:

log <a p(l— 0)) = log(a) + %log(u) + %log(l —0),

and similarly for b. As 6 — 17, the term log(1 — ) — —oo dominates
both the numerator and denominator, while the other terms remain
constant. Thus,

GO —1, asf—1".
Therefore, the ratio tends to 1:

lim G(f) = 1.

0—1—
This completes the case v = 0.

Case 3: v < 0.

The modified Bessel function of the second kind, K,(z), satisfies the
symmetry

K _,(z) = K,(2),

which allows us to reduce the case v < 0 to the previously studied case
/

V' = —v > 0. This symmetry, studied in [43] and [1], permits us to
reuse the known asymptotic behavior for v > 0.

Let us recall the expression for the generating function:

K, (gam)
K, (26v/u(T=0))

For small arguments z — 07, the asymptotic behavior of the Bessel
function for v > 0 is given by [43| pag. 762] [1, Eq. 9.6.9], where:

ot~ 257 (5)"

Apply this to both numerator and denominator:

K, (20/iT=0) ~ 252 (VT D))
K, (/i) ~ 57 (/=)
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Substitute into G(0):

o (/T 7)°

O i)

We simplify the asymptotic expression:

a-v - (a pu(l — 9))V e (p(l - 0))"/

b (b/aT=0) " b (u(1—0)"

Canceling the terms we get:

G(0) ~

GO~ =gy "
Thus,
i 90 =1

Combining all this three cases, we obtain that:

b 2v
lim G(0) — (a) , ifv >0,

o=r 1 ifr<0.

Y

O

3. The distribution of M has no defined moments. This can be seen, for
example, by trying to compute its expectation

Proof. To show that E[M] = limy_,;- G'(#) = oo, we can see that if
we differentiate the (pgf ) with respect to 6 that is given by:

a VK, (2a\/p(1 —6))

bV K, (2b\/u(1—6))

G0) =
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we get:

oo d a VK, (2a/p(1 = 0))
G(0) = - (buK,,(% p(1 —9>>> |

Using the chain rule, we have that

Ny — Ny

q(6) =R

where:

Ny = K, (2by/p(1 — 6)) - % <KV(2a\/u(1 - 9))) .
Ny = —K,(2ay/u(1 — 0)) - d% <K,,(2b\/u(1 - 9))) .
N3 = K, (2by/u(1 — 0))>.

89

We need to examine what happens as ¢ — 17, i.e., when 1 — 6 — 0.

Then, we analyze the behavior of K, (z) as x — 0.
As we seen before that for v > 0 it is known that:

K, (z) ~ L) (2>V as x — 0.

X

Thus for small 1 — 0, we substitute the value of K, (x):

K, (20/u(1— ) ~ T <2a h) .

and

(201~ 0)) ~ - (2b ﬁ) |

We can substitute and simplify As § — 17:

K,(2ap(1 —0)) and K,(20p(1—0)).
both approach infinity.
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Then taking the derivative G'(6), we have G'(6) ~ == - (1 — 6)7.

—v

G'(0) ~ ~

= -(terms involving small (1 — #)) — (behavior dominated by (1 —6)™")

And as a conclusion because (1 — )~ diverges to infinity as § — 1~
for v > 0, we conclude that:

lim G'(0) = co.

0—1—

Thus, we have:

E[M] = occ.

4. We can also show that the variance is undefined:

Var[M] = E[M? — (E[M])* = oo.

Proof. We start with the definition of variance and use the pgf to
derive the necessary limits.

The variance of the discrete random variable M is defined as:

Var[M] = E[M?] — (E[M])*.

Then as we know the first moment or expected value is:

E[M] = lim G'(6).

0—1—

And the second moment E[M?] is defined as:

E[M? = lim G"(0) + lim G'(9).

0—1— 0—1—

And substituting this values into the variance formula gives:

Var[M] = lim G"(9) —|—91im g'0) — (lim Q’(9)> :

- 0—1— —1- 0—1—
From the previous result, we established that:

lim G'(f) = co.

6—1—
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Therefore, (limg_,;- G'(A))* = co.

Now we analyze limy_,;- G”(0). We need to show that it is also co as
we know that G'(0) diverges:

If G”(0) does not converge to a finite limit, then it will approach either
oo or remain undefined.

And last, we have:

Var[M] = lim G"(6) 4+ oo — cc.

0—1—
Since both limy_,;- G”(0) and oo are divergent, we can conclude that:

Var[M] = co.

Therefore, the variance Var[M] is indeed undefined as it diverges to
infinity. [

. More generally, we can show that higher moments are also undefined:

E[M" = lim ¢™(f) = oc.

0—1—

and the (mgf) does not exist.

Proof. To show that higher moments of M are undefined,we will con-
sider the n-th moment E[M™"| and prove it diverges.

The M(0) for a random variable M is defined as:
E[M?
M(0) = E[e?M] =1+ E[M]0 + %02 +...

and the n-th moment E[M™] can be derived from the mgf:

dn
0=0

From previous proof, we established that the first moment diverges:

E[M] = lim G'(#) = co.

0—1—

Since E[M] = oo, the series for the mgf contains an infinite term:

2
M(e):1+oo-9+%92+...
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so the the mgf is not defined and since the mgf is not defined due
to the presence of infinite coefficients, we conclude that the higher
moments E[M"] must also diverge for n > 1:

E[M"] =00 foralln>1.

Thus, we conclude that all higher moments of M are undefined because
they diverge to infinity.

]

6. While M exhibits a complex distribution with undefined moments, its

characteristic function does exist:

E[e”] = G(e").

We need to proof that the characteristic function exists despite the
undefined moments, we begin with the definition of the characteristic
function ¢y (t) = E[e"] and see that this can be expressed in terms
of the pgf G(0) as follows:

o (0) = G(e”).

Next, we analyze the behavior of G(e??) as # varies. We substitute
0 = e

oy K20y /E )
N = K @/ o)

As 0 — 0, we have ¢ — 1. The functions K,(2a+/u(1 — e#)) and
K, (2by/u(1 — €)) remain bounded. Therefore, G(e?) is well-defined
for all 6.

In conclusion, even though the moments of M are undefined, the char-
acteristic function ,,(6) remains valid since G(e%) converges for all

6.

. We could use a Fourier method to compute the probabilities p, =

P{M = k}. In section [4.2.1, we will explain how these values are
obtained.
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4.2 Obtaining probabilities for neutral differ-
ences between sequences from the pgf,

G(9)

Before discussing the method we will use to compute the probabilities, we
must first highlight an important issue related to G(6).

9)21/ v>0
li = (“ ’ ' 4.13
Jm 6(6) {1, v <0 1)
We recall that a pgf is defined as:

G(0) = po + 16 + pab* + - - (4.14)

where p; is the probability that the two sequences have ¢ neutral differences.
The total probability mass is therefore given by G(1), which represents the
sum of all probabilities.

From this we can conclude that the two lineages will meet with proba-
bility one in two dimensions or less (v < 0). However, in more than two
dimensions (v > 0), they will encounter each other with the following prob-

ability:
b 2v
<—> , a>b (4.15)

a

where a and b represent the initial and final Euclidean distances, respec-
tively. This implies that the two lineages do not meet in physical space with

probability
b 2v
1— (=2 4.16
(%) (4.16)

which can be significant, in particular in more than two dimensions.
The associated cf is given by:

C(0) = po + pre” + pae™ + -+ (4.17)
Thus, the characteristic function is related to the pgf as follows:
C(0) = G(e"). (4.18)

The above observation presents us with a practical problem: How can
we determine if the observed neutral differences between two sequences are
representative of the evolutionary time between two lineages that did meet
in the past, or if they are erroneous differences between two lineages that
did not meet in the past?
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In more than two dimensions, there may be a significant probability that
the lineages never met in the past. This raises the question of whether there
exists a numerical “signature” that can identify lineages that have never
met.

In an infinite genome, one might hypothesize that lineages that never met
would have an infinite number of neutral differences, as they are separated
by infinite time. However, this is not possible in reality. We can consider
two potential solutions to this problem:

1. We could compare sequences with a very distantly related variant or
subspecies (called an “outgroup” in phylogenetics) and declare that
distances similar to those from the outgroup can be considered to be
“effectively infinite”.

2. We could assume that the sequences must have met some time in the
past, within the subgroup or subspecies in question. In this case, we
would condition on the sequences meeting, and our first guess is that
the resulting pgf is simply:

. G0), v <0.
g0 = {(a/m?vg(e), V0. (4.19)

such that G*(1) = 1 is always true. Strictly speaking, this is a condition
that must hold if we are to call it a pgf, so G(0) is, technically speaking,

not a pgf.

Why can we assure that G(0) is not a pgf? We can prove by contradic-
tion that G(#) does not satisfy the properties to be a pgf by observing
that it does not meet one of the three necessary conditions. Recall
that the three conditions for a function to be a valid pgf are: The
first is non-negativity, meaning it is non-negative for 6§ € [0,1]. The
second is normalization, that is, it satisfies G(1) = 1. Last, power
series representation, which means it is a power series in 6, which can
be expressed in the form:

G(0) =Y mb",
k=0

where pp = P(M = k) and py > 0. Let us check that the condition
G(1) =1 is not satisfied.

Recalling that the function G(0) is defined as:
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a”" K, (2a+/p(1 - 0))

b=V I,(2by/u(1 — 6))

Thus, substituting # = 1 into G(6):

o1y - 20y T)

bV K, (2by/p(1— 1))

We need to evaluate K,(0), and it is also known that the behavior of
the Bessel function K, (x) as x — 0 is as follows:

Ko () ~ 2 (2) for 1> 0.

Go) =

2 T

Therefore, Ky(0) = oo, which is undefined. Hence, if v > 0, G(1)
diverges, indicating that G(f) does not satisfy the required condition
for a valid pgf.

4.2.1 Fourier method for deriving pgf

To compute the probabilities p, = P{M = k}, we employ a Fourier method
for back-transforming the pgfs. In this section, we will explore how Fourier
transforms can be used to derive the probability distributions, denoted as
Pk, and present a computational analysis to demonstrate that these values
indeed represent the probabilities of the random variable M. In the following
subsection, we will see that, after obtaining the values of the pgfs using
this formula, this approach allows us to utilize Bayesian methods, including
maximum log-likelihood estimation, to estimate the parameter v. From this
estimation, we can derive the “effective dimensionality” D, = 2v + 2.

Fourier method for back-transforming (pgf ’s)

Suppose X is an integer-valued random variable with support in the set
{0,1,..., N — 1}. The characteristic function of X is given by

=

Cx(w) =) e py, (4.20)
0

B
Il

where p, = P(X = k) is the pmf.
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Using Euler’s formula e? = cos #+i sin 6, we can easily verify that Cx (w)
has period 2, that is, it satisfies C(w) = C(w + 27) for all w, since
e(i(w+27r)k) — eiwkeik%r

= ™" (cos(k2r) + isin(k27))
= e“H(1+0)

— eiwk‘

Also, the characteristic function is real-valued if and only if the corre-
sponding distribution function is symmetric around the origin. An example
with a real-valued characteristic function is a random variable that has a
standard normal distribution.

To see the connection with the discrete-Fourier transform, we evaluate
the characteristic function at N equally spaced values in the interval [0, 27]

N-1
2 )
cm = Cx (%) = g e 2™ m/N gy —0,1,...,N — 1.
k=0

Here, C and P form a Fourier transform pair. The above equation de-
fines the dft of the sequence of probabilities pg,...,py_1. As mentioned
earlier, the ¢,,’s are in general complex numbers. Also note that extension
of the range of m outside the range {0, 1,..., N —1} will result in a periodic
sequence consisting of a repetition of the sequence cg,...,cy_1.

Our interest is in recovering the sequence of probabilities from the cor-
responding sequence of characteristic function values. In other words, we
seek to obtain the sequence of p,’s from the sequence of ¢,,’s. This can be
accomplished by using the inverse dft operation which is defined by:

N-1

1 )
Pr = E eme 2N e —0,1,...,N — 1.
m=0

Calculating probability distribution py

In this section, now we are going to describe the process of calculating the
probability distribution p; of M, the discrete random variable that rep-
resents the number of neutral differences between two sequences. Em-
ploying the Fourier method for back-transforming pgf, the probabilities
pr = P{M = k} quantify the occurrence of k neutral differences, where
k can take integer values from 0 to N — 1.
We can determine the p; using the following formula:
1 — —i2rkm/N
pk:NZcme k=0,1,...,N — 1. (4.21)

m=0
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where:
2mm i2rm/N — i2rkm/N
em=C(=) =0 )= me ;m=0,1,...,N—1. (4.22)
k=0
Thus, we can express p, as:
1 N—-1
Pe= 5 > G(ermmNy emmhmN = 0,1, N — 1. (4.23)
m=0

where G(0) is derived above.

Computational analysis

To verify that the calculated values p, form a valid probability distribu-
tion for the discrete random variable M, we must ensure that the following
properties hold.

First, the non-negativity condition requires that each probability satisfies
pr > 0 forall k =0,1,..., N — 1. Second, the total probability must sum

to one, that is,
N-1
St
k=0

To demonstrate these properties, we performed a computational analysis
using the code provided in the Appendix [A.0.1] The results are shown for
three specific values of v, corresponding to different spatial dimensions:

1. v= —%: corresponds to one spatial dimension.
2. v = 0: corresponds to two spatial dimensions.

3. v = 5: corresponds to three spatial dimensions.

N[ =

Figures .1} [4.2] and show the results for different values of
the parameters. These figures help us visualize how the probabilities py

behave under various conditions. Each one corresponds to a specific spatial
dimension, represented by the Bessel order v. We can observe how changing
the parameters affects the overall shape of the distribution, particularly how
the values of py vary in response.
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Figure 4.1: Values of p; showing real and imaginary parts. With the fol-
lowing parameters: value for a = 5.0, value for b = 1.0, order of the Bessel
v = —0.5, value for m = 0.1, number of values for N = 150.
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Figure 4.2: Values of p; showing real and imaginary parts. With the fol-
lowing parameters: value for a = 4.0, value for b = 1.0, order of the Bessel
v = 0.5, value for m = 0.7, number of values for N = 200.
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Values of px
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Figure 4.3: Values of p; showing real and imaginary parts. With the fol-
lowing parameters: value for a = 5.0, value for b = 1.0, order of the Bessel
v = 0, value for m = 0.1, number of values for N = 500.
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Figure 4.4: Values of py showing real and imaginary parts. With the fol-
lowing parameters: value for a = 1.6, value for b = 1.0, order of the Bessel
v = 0.5, value for m = 0.8, number of values for N = 500.
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Chapter 5

Estimation of physical effective
dimensionality from sequence
data

In this chapter, we explore the concept of effective dimensionality applied
to real sequence data. Using data from the study by Nguyen et al. (2024)
[55], we demonstrate the utility of this method. Specifically, we analyze
sequences obtained from simulations based on datasets of avian influenza
A(H5N1).

This chapter provides both the theoretical foundations and the computa-
tional framework necessary for applying the effective dimensionality method,
together with the corresponding code in Appendix[A.0.1 We focus on three
important genes: HA, NA and MP. For each of these genes, we analyze the
pairwise synonymous differences, plot the resulting graph on a log-log scale,
and estimate the effective dimensionality using the maximum log-likelihood
method. These estimates will be performed for each gene of the HPAI-H5N1
virus, which has been evolving in birds, cattle, and potentially humans in
recent months.

5.1 Highly pathogenic avian influenza A (H5N1)
in dairy cattle in 2024

The term HPAI A(H5N1) refers to a specific strain of the Highly Pathogenic
Avian Influenza (HPAI) virus. HPAI is a type of virus that causes severe
illness and high mortality. The letter “A” denotes the type of influenza
virus. There are different types of influenza viruses (A, B, C, or D), with
Type A being the most common and often causing extensive outbreaks in

101
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animals and humans. The designation (H5N1) refers to the subtype of the
influenza virus. For more information on Avian influenza A (H5N1), see
[58].

In the paper by Nguyen et al. (2024) [55], the authors studied the trans-
mission of the virus from wild birds to cattle across species barriers. This
type of cross-species transmission, called zoonosis, is of great concern to
public health.

The emergence of HPAT A(H5N1) in dairy cattle across North America in
2024 has raised significant concerns regarding animal health, public safety,
and the dairy industry.

Recent genomic analyzes have identified the H5N1 virus clade 2.3.4.4b as
the primary strain that infects dairy cattle. This strain has been detected in
multiple herds in North America, with reports indicating that more than 230
dairy farms have been affected since its initial identification in March 2024
[17], [80]. The virus was found to have undergone a re-assortment event,
the process in which genetic material is exchanged or recombined between
two or more viruses [71], resulting in the emergence of genotype B3.13. This
genotype is related to both wild birds and domestic livestock [37], [38]. The
Texas Panhandle, located along migratory bird routes, has been highlighted
as a likely source of the outbreak, and migratory birds serve as natural
reservoirs for avian influenza viruses [14], [57].

The detection of H5N1 in dairy cattle marks a significant shift in the
understanding of influenza virus host range, as cattle were previously con-
sidered resistant to such infections [13], [47]. Studies have shown that the
virus can bind to sialic acid receptors present in the bovine mammary gland,
facilitating infection [47]. This binding capability is critical, as it suggests
that H5N1 can replicate in bovine tissues, leading to potential viral shed-
ding through milk. Indeed, high levels of the virus have been detected in raw
milk, raising concerns about food safety and the risk of zoonotic transmission
from animals to humans [68], [70].

The implications of H5N1 in dairy cattle extend beyond animal health,
as the virus also poses a risk to human health through direct contact with
infected animals and contaminated dairy products. Reports indicate that
human infections have been confirmed in connection with the outbreak, high-
lighting the zoonotic potential of this virus. Furthermore, the persistence
of H5N1 in unpasteurized milk and on milking equipment surfaces presents
additional challenges for dairy workers, who may be at increased risk of
exposure [65].

Environmental monitoring has also revealed the presence of HS N1 RNA
in wastewater from various cities, suggesting that the virus is circulating
more widely than previously understood [72]. This environmental persis-
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tence underscores the need for comprehensive surveillance and control mea-
sures to mitigate the spread of HPAI among livestock and prevent potential
spillover events into human populations .

A signature of zoonotic potential can be found in discordant evolution
across different genes, as divergence in receptors between different animal
hosts can place evolutionary constraints that differ across gene segments.

5.2 Gene segments of influenza A virus

Influenza viruses are characterized by segmented genomes. Influenza Type
A has eight segments, each encoding proteins essential for the virus’s repli-
cation, assembly, and interaction with host cells. For more information on
the names of each segment, see [8]. The location of each of these segments
is shown in Figure [5.1}

?;‘Bﬁ?sggggﬂ\s‘ * ” I _——Hemagglutinin (HA)
Non-structural * s Y g
protein 1 (NS1)
.— ! &
0
NSZ/NEP?—/ § y
IR ) ~.
,//Malrix protein (M1) \\
Nucleoprotein (NP) / ‘ ‘.‘ \} \

Figure 5.1: Influenza A virus genome structure. We will focus on the two
segments that are expose to immune surveillance namely Hemagglutinin
(HA), Neuraminidase (NA), and one segment that is not exposed to im-
mune surveillance, Matriz Protein (MP). Figure source: [41]

— Neuraminidase (NA)

M2

(

Lipid bilayer

The gene segments of the influenza A virus genome that we studied
are hemagglutinin (HA) and neurominidase (NA). These two genes are
crucial because they determine the ability of the virus to infect host cells
and facilitate its spread. HA plays a critical role in the initial attachment
of the virus to the host cell by binding to sialic acid receptors on the cell
surface. This binding facilitates the fusion of the viral envelope with the
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host cell membrane, allowing the virus to enter the host cell and initiate
infection [45]. NA, on the other hand, is involved in the release of new viral
particles from infected cells. It cleaves sialic acid residues on the surface of
the host cell, preventing the newly formed virions from being trapped on the
host cell membrane, allowing them to spread to new cells and tissues [45].

The third gene is the matriz protein (MP), which encodes the M1 protein.
M1 is essential for the assembly, stability, and morphogenesis of the influenza
virus. It forms a structural component of the virus particle, surrounds the
RNA genome, and interacts with other viral proteins to ensure the correct
assembly of new virions. M1 also plays a role in the regulation of the viral
replication cycle, including its transport and initiation from the host cell [8].
Given its essential role in the structural integrity of the virus, we do not
expect M1 to change significantly, as alterations in this gene would likely
alter the ability of the virus to replicate and spread [77].

These three genes, HA, NA and M1, are not only critical to the ability
of the virus to infect and replicate, but are also targets for the development
of vaccines and antiviral drugs. Vaccines often aim to generate an immune
response against the surface proteins HA and NA, since these are the proteins
that the immune system can recognize and attack [45]. Mutations in these
genes, particularly HA, can lead to the emergence of new viral strains that
can evade immunity, as seen with seasonal flu strains and pandemics [54].

The segmented nature of the influenza genome allows for a high degree of
genetic diversity, particularly when different strains of the virus co-infect the
same host. This can lead to re-assortment events, in which gene segments
of different viral strains are exchanged, creating new strains with altered
characteristics. This ability to undergo re-assortment is a major driver of
influenza’s rapid evolution and is a factor in its potential to cause pandemics
[71]. Understanding the genetic variation within these gene segments is es-
sential for predicting the virus’s behavior and preparing for future outbreaks.

5.3 Results

In our study, we focus on the genetic diversity within the HA, NA, and
MP genes of the HPAI-H5N1 virus. Changes in these genes can provide
important information about the evolution of the virus, its ability to cross
species barriers, and its potential for adaptation to new hosts.

In the first graphs, we develop an analysis of pairwise synonymous differ-
ences in each of HA, NA, and MP genes. A pairwise synonymous difference
refers to the comparison of two genetic sequences obtained from [48] to iden-
tify synonymous mutations. This means that we want to look at changes
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in the RNA sequence that do not change the encoded protein. These mu-
tations occur in the coding regions of a gene but do not alter the amino
acid sequence because multiple codons can code for the same amino acid
this could be seen in the table explain in For further information, this
source has an excellent explanation [60].

For example, in the sequence of H5N1, a change from GGU to GGC in
the codon for glycine would be a synonymous mutations, as both codons
code for the same amino acid. Then, we compare the sequences of two dif-
ferent strains, this means that they could be taken from samples in different
geographic locations. Before the comparison, both of the sequences need
to be align so they have the same length. We then count the differences
between the sequences and plot a histogram of this results. This process
was implemented in a program, as detailed [A.0.2]

We will now explain the results we obtained for three important genes:
HA, NA, and MP. These genes play crucial roles in the evolution and func-
tionality of the HPAI-H5N1 virus, and understanding their mutations can
provide insights into viral behavior, transmission, and potential impacts on
different host species. In the following sections, we will present our findings
for each gene, focusing on synonymous mutations, evolutionary patterns,
and their inferred effective dimensionality.

5.3.1 Results for HA gene

The purpose of this analysis is to study the evolutionary dynamics of the
influenza virus by examining the mutations and how the virus evolves over
time in different host environments—first in birds, then in cattle (and poten-
tially humans) during recent months, as shown in Figure . Understanding
these mutations is crucial, as they can influence the virus’s ability to adapt
to different species, evade immune responses, or develop resistance to treat-
ments.

The script for this figure begins by reading the sequences from the FASTA
file and then using a codon-to-amino acid mapping to translate the se-
quences. It compares pairs of sequences by dividing them into codons and
checking for synonymous mutations, where the codons differ but still code
for the same amino acid.

This process is repeated 10,000 times, with random pairs of sequences
selected for comparison in each iteration. The results, which represent the
number of synonymous mutations detected in each comparison, are stored in
a list and displayed as a histogram to visualize their distribution, as shown in
Figure |5.2] The histogram helps identify patterns in mutation rates, which
can reveal insights into how the virus adapts over time in different host
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environments.
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Figure 5.2: Rescaled pairwise synonymous differences (distance) in the HA
gene of the Highly Pathogenic Avian Influenza (HPAI-H5N1) virus that
has been evolving in birds, cattle (and potentially humans) during recent
months.

Once we have the results and the histogram plot, as shown in Figure[5.2
we then plot the histogram on a log-log scale. This transformation helps us
analyze the tail of the distribution more effectively, as shown in Figure

By focusing on the tail, we can better understand the behavior of rare
mutations, which are often of particular interest in evolutionary studies.
This is helpful because we can observe that the tail of the distribution ap-
pears to approximate a straight line, reflecting a power-law tail, which is in
agreement with theoretical predictions. A power-law distribution suggests
that rare mutations occur more frequently than would be expected under
a normal distribution, and this characteristic has been observed in various
biological and evolutionary systems.

This observation is significant because it suggests that the influenza virus
follows a scale-invariant process in terms of mutation patterns, where the
frequency of mutations follows a predictable, nonlinear relationship as the
virus adapts to different environments. Such insights can provide important
information on how the virus evolves in response to immune pressure or en-
vironmental changes, which may have implications for vaccine development
or understanding viral transmission dynamics.

For the following results, we will use the code provided in Appendix[A.0.1]
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HPAI-H5N1, segment HA
10

0 ‘ ‘ | I I l
10 1.00 1.25 175 2,00

1.50
log distance
Figure 5.3: Rescaled pairwise synonymous differences in the Hemagglutinin
(HA) gene. Same as Fig[5.2|but on log-log scale. We note that the tail of the
distribution appears to approximate a straight line, reflecting a power-law
tail which is in agreement with theoretical predictions.
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This code calculates the probability distribution of the values of pg, as dis-
cussed in Section [.2.1] This section outlines how the values of p;, are con-
structed, and we have computed these values.

First, we will examine the code used to calculate the probability distri-
bution py (see Appendix . The parameters a, b, v, and p are defined
at the beginning of the code, as they are necessary to calculate the Bessel
function of the second kind, K,. The code initializes an array py to store
the computed values and then iterates over the indices £ and m, both of 0
to N — 1. For each pair of k£ and m, it calculates # and uses it to compute
the associated terms involving K,. If m = 0, a simplified formula for Gy is
applied; otherwise, the Bessel function values for both a and b are computed,
ensuring their validity. The computed values are accumulated in a sum and
normalized to obtain p,. Finally, the values of p, are plotted, providing a
visual representation of the probability distribution. The resulting plot is
shown in Figures and [4.4]

Next, we plot the code for the maximum log-likelihood, as detailed in the
appendix We note that maximum likelihood is inherently Bayesian
(with a flat prior); this observation suggests possibilities for future work in
which the prior is not flat.

The code calculates the maximum log-likelihood of the probability
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Figure 5.4: Log-likelihood surface as a function of effective physical dimen-

sions (D.) and average initial distance (a(N;)); the red dot signals the max-
imum which occurs at D, ~ 1.8. Here we examine the HA gene.

distribution py. First, the parameters a, b, v, and p are defined. An array py
is initialized to store the values. The code iterates over k and m (both from
0 to N — 1) and computes 6 = ¢?™/N_ For each pair (k,m), it calculates
Gy. The values of Gy are accumulated in sumg and normalized by dividing
by N to obtain p,. Next, the code computes the logarithms of the absolute
values of the normalized py,, ensuring that any invalid values (NaN or infinite)
are set to 0. The sum of the logarithms is calculated, and the maximum
log-likelihood value is found. Finally, we plot the log-likelihood for the n
pairwise distances, and for each set of parameters {v,a} was computed as:

LL = Zlogpk, (5.1)
k=1

where the py are calculated by inverse Fourier transform of the pgf, as out-
lined in Section[4.2.1] In Figure[5.4] we examine the results for the HA gene,
where the red dot signals the maximum, which occurs at D, &~ 1.8. This is
the effective dimensionality for the HA gene.

5.3.2 Results for NA gene

We then repeat the same analysis for the pairwise synonymous differences
in the NA gene. As previously mentioned, a synonymous mutation occurs
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when a change in the RNA sequence does not alter the amino acid encoded
by that sequence.

The code begins by reading the sequences from the FASTA file and then
uses a codon-to-amino acid mapping to translate the sequences. It identifies
synonymous mutations by comparing codons that differ but encode the same
amino acid, after dividing the pairs of sequences into codons.

This process is repeated 10,000 times, with random pairs of sequences
selected for comparison in each iteration. The output of the 10,000 iterations
is a distribution of the number of synonymous mutations observed in pairwise
comparisons. The results are stored in a list and displayed as a histogram
to visualize their distribution, as shown in Figure [5.5]
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Figure 5.5: Rescaled pairwise synonymous differences in the NA gene of the
HPAI-H5N1 virus that has been evolving in birds, cattle, and potentially
humans during recent months.

Figure [5.6]shows the pairwise synonymous differences in the NA gene of
the influenza virus, similar to Figure [5.5], but presented on a log-log scale.
By transforming the data to a log-log scale, we can better visualize the
tail of the distribution, which appears to approximate a straight line. This
straight-line pattern in the tail suggests a power-law distribution.

The same statistical analysis used for the HA gene was repeated for the
NA gene to calculate the probability distribution py, which represents the
probability of observing k synonymous differences. As before, the param-
eters a, b, v, and pu, defined at the beginning of the code, are essential for
computing the modified Bessel function of the second kind, K,,.
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Figure 5.6: Rescaled pairwise synonymous differences NA gene. Similar to
Fig but displayed on a log-log scale. It is observed that the tail of
the distribution appears to approximate a straight line, reflecting a power-
law tail, which is in agreement with theoretical predictions from population
genetics models.

After initializing an array to store the computed p, values, the code
iterates over indices k and m, which represent specific pairwise comparisons.
For each pair, 6 is calculated, and subsequently used to compute terms
involving K,. The calculated values are then accumulated and normalized
to obtain py, and the resulting probability distribution is plotted, as shown
in Figure [5.6]

The maximum log-likelihood calculation, following the procedure de-
scribed for the HA gene, was repeated for the NA gene. The code, detailed
in Appendix computes the log-likelihood surface for the NA gene.
The resulting surface and its maximum, indicated by the red dot, are shown
in Figure The effective dimensionality for the NA gene was estimated
to be D, =~ 1.1.

5.3.3 Results for MP gene

For the MP gene, synonymous mutations were also analyzed to understand
the evolutionary mutation patterns that do not affect the encoded protein,
since synonymous mutations do not alter the encoded amino acids.

The distribution of these synonymous mutations was represented in a
histogram, shown in Figure [5.8] This histogram captures the frequency
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Figure 5.7: Log-likelihood surface as a function of effective physical dimen-
sions (D,), representing the dimensionality of the evolutionary space, and
average initial distance (a(N.)), reflecting the initial genetic divergence; the
red dot indicates the maximum which occurs at 756 ~ 1.1. Here we examine
the NA gene of the HPAI-H5N1 virus.

distribution of synonymous mutations between pairs of sequences from the
MP gene.

The log-log scale transformation of this histogram, as shown in Fig-
ure [5.9] highlights the tail of the distribution and reveals a power-law rela-
tionship, consistent with theoretical predictions. The low estimated dimen-
sionality, indicative of a limited evolutionary space, is consistent with the
long-term evolutionary stability of the MP gene, which is expected due to
its critical role in viral replication.

Lastly, the log-likelihood surface for the MP gene, presented in Fig-
ure [5.10] provides insight into how the gene evolves under different genetic
conditions. The contour plot visualizes the log-likelihood values across var-
ious parameter sets, specifically effective dimensionality and average initial
distance, with the red dot marking the optimal fit at D, ~ 1.8. The log-
likelihood values were computed by summing the logarithms of probabilities,
where the pp values were derived through the inverse Fourier transform of
the pgf, as detailed in Section [4.2.1
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Figure 5.8: Rescaled pairwise synonymous differences in the MP gene of the
HPAI-H5N1 virus that has been evolving in birds, cattle, and potentially
humans during recent months.

5.4 Interpreting effective dimensions

We estimated the effective dimensionality for the HA, NA, and MP genes.
The HA and NA genes, which encode surface proteins, are subject to strong
immune surveillance, resulting in rapid evolutionary rates. In contrast, the
MP gene, which encodes internal matrix proteins, is highly conserved due
to purifying selection, leading to slower evolutionary rates. The estimated
effective dimensionalities were D, &~ 1.8 for the MP gene, D, ~ 1.1 for the
NA gene, and D, ~ 1.8 for the HA gene.

Our maximum likelihood estimates revealed distinct effective dimension-
alities for each gene. Notably, the NA gene’s dimensionality differed signifi-
cantly from both HA and MP, potentially reflecting divergent evolutionary
pressures associated with zoonotic transmission. While we expected the HA
gene’s dimensionality to resemble that of NA due to their shared exposure to
immune surveillance, we found it to be more similar to that of the MP gene.
The biological mechanisms underlying this unexpected similarity remain un-
clear; however, a recent study reported a similar discrepancy, although not
in the context of spatial structure. While this thesis focuses on estimating
the effective spatial dimensionality D, from genetic data, several intriguing
questions remain regarding its broader interpretation.

An example illustrating how effective dimensionality can be interpreted
to provide insight into spatial spread is as follows. In a two-dimensional
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Figure 5.9: Rescaled pairwise synonymous differences in the MP gene. Sim-
ilar to Fig[5.8] but displayed on a log-log scale. It is observed that the tail of
the distribution appears to approximate a straight line, reflecting a power-
law tail, which is in agreement with theoretical predictions from population
genetics models.

context, an estimated dimensionality greater than 2—for example, 2.3—may
suggest the presence of convection, meaning that gene lineages are spreading
faster than expected under classical diffusion. In contrast, if the estimated
dimensionality is less than 2 — for example, 1.8 or 1.1 — this indicates
slower than diffusive behavior.

In the analysis of the HHN1 data presented in this study, the HA and MP
gene segments both provide effective dimensionality estimates of D, ~ 1.8,
consistent with near-diffusive behavior but with some spatial constraint. The
NA segment, however, showed a much lower estimate of D, = 1.1, indicating
highly restricted spatial movement. This suggests that the transmission
dynamics of the NA segment may be influenced by stronger ecological or
structural constraints than the other segments.

This interpretation becomes especially relevant in the context of epi-
demiological modeling. Slower than diffusive spread implies that the virus
or pathogen takes longer to reach new hosts, reducing the likelihood of trans-
mission and potentially slowing the overall progression of the epidemic.
Therefore, estimating effective dimensionality offers not only insights into
spatial population structure, but also practical information for anticipating
or controlling the dynamics of infectious disease.
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Figure 5.10: Log-likelihood surface as a function of effective physical dimen-
sions (D,), representing the dimensionality of the evolutionary space, and
average initial distance (a(N.)), reflecting the initial genetic divergence; the
red dot indicates the maximum which occurs at 756 ~ 1.8.

Our estimate of f)e ~ 1.8 lies close to the fractal dimension of well-
known structures such as the Sierpinski triangle (D; ~ 1.6) and critical
percolation clusters in two dimensions (Dy ~ 1.89). While these parallels
are purely heuristic, they raise interesting possibilities. In particular, spatial
structures near criticality often exhibit constrained connectivity and limited
dispersal paths, features that may be mirrored in our estimates of effective
dimensionality.

Moreover, in the context of diffusion theory , the quantity D, governs
how the “mass” (or number of individuals) within a ball of radius r scales
for small 7. A value of D, < 2 implies that the rate at which individuals
encounter one another is lower than would be expected under classical two-
dimensional diffusion. This may provide insight into the epidemiological
vulnerability of structured populations.

Interpreting effective dimensionality in non-diffusion terms remains a
challenging task, and future research is needed to clarify how this concept
relates to non-diffusive processes. Such work could provide a deeper under-
standing of population structure and how evolutionary forces shape genetic
diversity across different spatial scales.



Conclusion

In this thesis, we studied an extension of coalescent theory to incorporate
population structure, specifically spatial structure, and how this structure
affects the evolution of genetic distance between two lineages as we trace
their ancestral paths backward in time. By doing so, we could examine the
shared history of these lineages. We can also see that the spatial coalescent
process is equivalent to a Bessel process.

In particular, the times when lineages merge, known as coalescence times,
can be understood as “hitting times” of a Bessel process. This approach is
useful because it allows us to work with non-integer dimensions, which is
essential for the analysis and simulations presented throughout this the-
sis. Since the distribution of spatial coalescence times does not have finite
moments, moment-based fitting methods cannot be applied. Although the
distribution itself does not have a simple expression, we can represent it
using its Laplace transform, given by:

G() = Efe-2r0-0) — K20/~ 6))
b~V K, (2b/p(1 = 0))

Using Fourier methods, we constructed an algorithm that computes the
probability density of coalescence times from the Laplace transform. In
addition, we developed a formula to describe the spatial distribution of co-
alescence events occurring at a specific time and location. This is denoted
by p(k;x,t), where k represents the number of coalescent events among the
lineages at position x and time ¢.

After testing our methods with simulations, we then applied them to real
data from the recent outbreak of Highly Pathogenic Avian Influenza (HPAT)
in dairy cattle. We estimated the effective spatial dimensionality using the
theoretical framework. We were able to determine that the genes exposed to
immunity, Hemagglutinin (HA), Neuraminidase (NA), and Matrix Protein
(MP), appear to have evolved in different effective spatial dimensions. The
interpretation of this observation is intriguing and may have implications for
public health decisions. However, these types of extrapolation are beyond
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the scope of this thesis.

In this work, we have taken a practical view of “effective dimensional-
ity,” treating it analogously to EPS, which can absorb modeling complexities
such as fluctuations in population size, variations in the sex ratio, inbreeding
effects, and more. Similarly, effective dimensionality can absorb the com-
plexities introduced by the spatial structure of a population. While these
two effective parameters can both be viewed as stochastic equivalences, ef-
fective dimensionality can do more than just absorb complexities; it can also
introduce new properties of the model itself. We list some of these.

Non-integer dimensionality automatically introduces memory (both tem-
poral and spatial). A process that has the Markov memoryless property in
integer dimension becomes a non-Markovian process with memory in a non-
integer dimension. This means that non-integer dimensionality could be
more applicable to migrating populations and inferring past migration pat-
terns. This point requires some mention of a potential area of future work
that could build on ideas and results presented in this thesis; namely, ex-
ploring mappings between our inferred non-integer effective dimensionality
and non-integer order in fractional calculus.

A useful way to understand non-integer dimensions is through scaling.
In one dimension, the only measurable quantity is length. Suppose that an
object has length r; if the length is doubled, it becomes 2r. This corresponds
to a scaling factor of 2 in the one-dimensional Lebesgue measure.

In two dimensions, consider a square with side length r, which has area
r2. Doubling the side length results in an area of (2r)* = 472, leading to
a scaling factor of 22 = 4. Similarly, in three dimensions, a cube with side
length 7 has volume 73, and doubling the side we get a volume of (2r)% = 83,
corresponding to a scaling factor of 23 = 8.

This naturally raises the question: must the exponents always be inte-
gers? What happens if they are not? For example, if the Lebesgue measure
is given by r'8, it can be interpreted as a measure that lies between length
and area, suggesting a shape that cannot easily be visualized or drawn on
paper.

While visualizing a measure in non-integer dimensions may be difficult,
the utility of doing so is easy to understand. One can imagine a square
pasture of side length r containing 50 cows. If another square pasture has
side length 2r and contains 350 cows, then although the area increased by
a factor of 4 = 22, the number of cows increased by a factor of 7, which is
approximately 2%%. This suggests a scaling dimensionality of 2.8.

Another possible interpretation of non-integer effective dimensionality
is that it indicates self-similarity across scales, as happens with fractal di-
mensions. A recent study [79] presents a coherent and well-supported argu-
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ment that self-similarity in phylogenies can occur as a consequence of the
inevitable interaction between ecological and evolutionary dynamics. Al-
though their analysis does not explicitly incorporate spatial structure, it is
possible that spatial structure also contributes to self-similarity across scales
in phylogenetic trees.

In particular, considering spatial branching processes (such as branch-
ing BM) in forward time, it is reasonable to expect that certain regions
of space may become “hot spots” for communities of organisms. It is well
established, for instance, that the size distribution of human communities
decays according to a power law. How such spatial patterns may extend to
organisms or pathogens such as influenza virus, as analyzed in this thesis,
remains an open question.

It is well established that the organization of certain phenomena exhibits
self-similarity when they are close to a phase transition, or criticality. Under
near-critical conditions, power-law behavior often emerges, for instance, in
physics, where the quantity of interest (the “order parameter”) decreases
according to a power law with respect to a measurable parameter as the
system approaches a critical point. In the context of this thesis, inferring a
non-integer effective dimensionality may suggest that the population under
study is near criticality. Many researchers now believe that nature, especially
biological systems, tends to operate near criticality, including evolution itself,
as proposed in [73].

The proximity to criticality can have implications for conservation bi-
ology. Some people say that proximity to criticality can indicate that a
population is vulnerable to collapse, while other people say that proxim-
ity to criticality is a sign that a population is healthy and not in danger.
Being close to criticality can be important for fields such as ecology and
conservation biology.

There remains considerable work to be done. This thesis, together with
the peer-reviewed articles that have emerged from it, represents a first step
in what we believe is a promising direction. This thesis offers a promising
starting point for interpreting effective dimensionality in evolutionary data,
with several questions left open for future exploration. It is well known that
non-integer dimensions carry deep and meaningful interpretations across a
wide range of scientific disciplines, including fractal theory, quantum me-
chanics, and computer science.
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Appendix A

Coding programs

The following codes we are going to provide are in pseudo-code.

A.0.1 Code 1: Calculating probability distribution p;

a = 4.0 # Value for a

b =1.0 # Value for b

nu = -0.5 # Order of Bessel function
smu = 0.7 # Value for mu

N = 200

# Initialize p_k array for storing complex values
p_k = array of size N with zeros

# Loop over k values from 0 to N-1
for k from 0 to N-1:
sum_G = 0 # Initialize the sum for each k

# Loop over m values from O to N-1

for m from 0 to N-1:
# Calculate theta as e~ (i * 2 * pi * m / N)
theta = exp(lj * 2 * pi * m / N)

if m == O0:
if nu > O:
G_theta = (b/a) " (2*nu)
else:
G_theta = 1
else:

# Calculate square root term
sqrt_term = 2 * sqrt(mu * (1 - theta))

# Calculate K_nu for both a and b

119



120 APPENDIX A. CODING PROGRAMS

K_a = BesselK(nu, a * sqrt_term)
K_b = BesselK(nu, b * sqrt_term)
if K_a and K_b are valid and K_b != O0:
G_theta = (a”(-nu) * K_a) / (b~ (-nu) * K_b)
else:

print warning: Invalid value for m and k

sum_G = sum_G + G_theta * exp(-1j * 2 % pi * k * m /
N)

p_k[k] = sum_G / N

plot(real(p_k), label="Real Part")
plot (imag(p_k), label="Imaginary Part")

add title and labels to plot
show plot

A.0.2 Code 2: Synonymous mutations differences

# Define the function to read sequences from a FASTA file
def read_fasta(file_path):
# Initialize an empty dictionary to store sequences
sequences = {}

# Read the FASTA file and store sequences in the

dictionary

for record in SeqIO.parse(file_path, "fasta"):
sequences [record.id] = str(record.seq)

return sequences

# Define the function to provide codon to amino acid mapping
def codontoaminoacid ():
# Return the codon-to-amino-acid dictionary
return {
>ATA’: °I°, °’ATC’: ’I’, ’ATT’: °’I’, ’ATG’: ’M’,
# (Full codon to amino acid mapping here)

# Define the function to find synonymous mutations
def find_synonymous_mutations (original_dna, mutated_dna):
# Divide original and mutated DNA sequences into codons
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original_codons = [original_dnal[i:i+3] for i in range (O,
len(original_dna) - 2, 3)]
mutated_codons = [mutated_dna[i:i+3] for i in range (0,

len(mutated_dna) - 2, 3)]

# Get the codon-to-amino-acid mapping
codon_to_amino_acid = codontoaminoacid() # Call the
renamed function

# Function to convert codons to their respective proteins
(amino acids)
def codon_to_protein(codons):

return [codon_to_amino_acid.get(codon, ’?’) for codon
in codons]

# Convert both sequences to proteins
original_protein = codon_to_protein(original_codons)
mutated_protein = codon_to_protein(mutated_codons)

# Initialize an empty list to store synonymous mutations
synonymous_mutations = []

# Loop over the codons and compare them
for i, (orig_codon, mut_codon) in enumerate (zip(
original_codons, mutated_codons)):

# Check if the codons are different but correspond to
the same amino acid

if orig_codon != mut_codon and codon_to_amino_acid.
get (orig_codon) == codon_to_amino_acid.get(mut_codon):

synonymous_mutations.append ((i + 1, orig_codon,

mut_codon))

# Return the count of synonymous mutations
return len(synonymous_mutations)

o # Define the main function to process the FASTA file
def main(fasta_file):

# Read sequences from the FASTA file
sequences = read_fasta(fasta_file)

# Check if there are at least two sequences in the file
if len(sequences) < 2:

print ("The FASTA file must contain at least two
sequences.")

return

# Initialize number of repeats for simulations
num_repeats = 10000
results = []
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# Repeat the process of comparing sequences

for

in range (num_repeats) :
# Randomly select two sequences from the file
ids = list(sequences.keys())
original_id, mutated_id = random.sample(ids, 2)
original_dna = sequences[original_id]
mutated_dna = sequences[mutated_id]

# Find the number of synonymous mutations
num_synonymous_mutations = find_synonymous_mutations(

original_dna, mutated_dna)

results.append (num_synonymous_mutations)

# (Optional) Print results to the console for each repeat
# for i, result in enumerate(results, 1):

#

print (£"Run {i}: Number of synonymous mutations: {

resultl}")

# Plot a histogram of the results

plt.

2),

plt.
plt.
plt.
plt.

hist(results, bins=range(min(results), max(results) +
edgecolor="black’)

xlabel (’ Number of Synonymous Mutations’)

ylabel (’Frequency ’)

title(’Histogram of Synonymous Mutations’)

show ()

# Write the results to a text file

with open(’synonymous_mutations_results3.txt’, ’w’) as f:
f.write(’, ’.join(map(str, results)))
# Entry point for the program
> if __name__ == "__main__":
fasta_file = ’MP.aln.fasta’ # Specify the FASTA file

main(fasta_file)

A.0.3

Code 3: Code for Hamming distances

# Function to read sequences from a FASTA file
Function read_fasta(file_path):
Initialize sequences as an empty dictionary

For

each record in FASTA file:
sequences [record.id] = record.seq

Return sequences

# Function to calculate Hamming distance
Function Hamming_distance(seql, seq2):
If length of seql != length of seq2:



Raise ValueError ("Sequences must be of the same

length")

Initialize Hamming_distance = 0

For each base pair (a, b) in zip(seql, seq2):
If a !'= b:

Increment Hamming_distance by 1
Return Hamming_distance

# Main function
Function main(fasta_file):
sequences = read_fasta(fasta_file)

If length of sequences < 2:

Print "The FASTA file must contain at least two
sequences ."

Return

Initialize num_repeats = 10000
Initialize results as an empty list

For i from 1 to num_repeats:
Randomly select two sequence IDs (original_id,
mutated_id) from sequences

original_dna = sequences[original_id]
mutated_dna = sequences [mutated_id]
Try:

distance = Hamming_distance (original_dna,

mutated_dna)
Append distance to results
Catch ValueError:
Print "Skipping pair due to length mismatch."

Plot histogram of results
Save results to ’Hamming_distances_results.txt’

# Main entry point
If __name__ == "__main__":

Call main with ’MP.aln.fasta’ file path
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A.0.4 Code4: Calculating the maximum log-likelihood

# Import necessary libraries
Import numpy as np

3 Import scipy.special as ss

!

6

Import matplotlib.pyplot as plt

# Define parameters
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Set
Set
Set
Set
Set

APPENDIX A. CODING PROGRAMS
a = 1.6 # Parameter a
b =1.0 # Parameter b
nu -0.5 # Bessel function order
mu = 0.8 # Parameter mu
N = 100 # Number of values for m and k

» # Initialize an array to store p_k values

Create p_k array with N complex zeros

# Calculate p_k values
For k from O to N-1: # Loop over k

Set sum_G = 0.0 # Initialize sum_G

For m from O to N-1: # Loop over m
Set theta = exp(lj * 2 *x pi * m / N) # Calculate the
complex angle

# Check for m == 0
If m == O0:
If nu > O:
Set G_theta = (b / a)~(2 * nu) # Special
case for m == 0
Else

Set G_theta =1
Else:

Set sqrt_term = 2 * sqrt(mu * (1 - theta)) #
Compute square root term

Set K_a = besselk(nu, a * sqrt_term) # Bessel
function of the first kind

Set K_b = besselk(nu, b * sqrt_term) # Bessel
function of the first kind

If K_a is finite and K_b is finite and K_b != O0:
Set G_theta = (a“(-nu) * K_a) / (b~ (-nu) *
K_b) # Calculate G_theta
Else:
Set G_theta = 0 # If invalid, set G_theta to

Add G_theta * exp(-1j * 2 *x pi * k * m / N) to sum_G

# Store the result of sum_G divided by N in p_k[k]
Set p_k[k] = sum_G / N

# Normalize p_k values

5 Normalize p_k by dividing by sum(p_k)

7 # Calculate logarithms of normalized p_k values

For each value in p_k:



Set log_p_k = log(abs(value))

# Handle NaN and infinite values in log_p_k
For each value in log_p_k:
If value is NaN or infinite:
Set value to O

# Sum all the logarithms of probabilities

7 Set log_product_sum = sum(log_p_k)

# Find the maximum of the log_p_k values
Set max_log_prob = max(log_p_k)

# Plot the logarithms of p_k

Create a plot with x-axis labeled ’k’ and y-axis labeled
(p_k) (Normalized)’

Plot log_p_k values against k

5 Add a horizontal line at y=0 for reference

Show gridlines on the plot

# Display the plot
Show plot
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