Diseño de un proveedor de servicio de internet inalámbrico (WISP) tecnología Wimax como empresa universitaria.

TESIS

Que para obtener el título de:

Ingeniero en Electrónica y Telecomunicaciones

Presentan:

CAMARGO PEREZ RAUL ISRAEL
ISLAS OLVERA EMMANUEL

Asesor:

M.C. ARTURO AUSTRIA CORNEJO

Pachuca de Soto, Hidalgo 2007
P.L.I.E.T. EMMANUEL ISLAS OLVERA Y RAUL ISRAEL CAMARGO PEREZ

PRESENTES

Por este conducto les comunicó que el Jurado que les fue asignado a su trabajo de titulación denominado: “DISEÑO DE UN PROVEEDOR DE SERVICIO DE INTERNET INALAMBRICO (WISP) TECNOLOGIA WIMAX COMO EMPRESA UNIVERSITARIA”, y que después de revisarlo en reunión de síndicales han decidido autorizar la impresión, hechas las correcciones que fueron acordadas.

A continuación se anotan las firmas de conformidad de los integrantes del Jurado:

PRESIDENTE: M. C. ELIAS VARELA PAZ

PRIMER VOCAL: M. C. ARTURO AUSTRIA CORNEJO

SEGUNDO VOCAL: ING. ALEJANDRO AYALA ESPINOZA DE LOS MONTEROS

TERCER VOCAL: ING. SANDRA LUZ HERNANDEZ MENDOZA

SECRETARIO: LIC. CLARA MERCADO JARILLO

PRIMER SUPLENTE: ING. JOSE SALVADOR AVILA FLORES

SEGUNDO SUPLENTE: ING. MARIANO ARUMIR RIVAS

Sin otro particular, reitero a usted la seguridad de mi atenta consideración.

ATENTAMENTE

“AMOR, ÓRDEN Y PROGRESO”

Pachuca de soto, Hgo., a 16 de Agosto de 2007

[Signature]

Coordinador adjunto de la Lic. en Ingeniería en Electrónica y Telecomunicaciones

C.c.p. Integrantes del jurado.

Universidad Autónoma del Estado de Hidalgo
Instituto de Ciencias Básicas e Ingeniería
Ciudad Universitaria Carretera Pachuca – Tlalcingo Km. 4.5 C.P. 42184
Col. Carboneras Mineral de la Reforma Hidalgo.
Tel. 017771712000 Ext. 6302 Fax ext. 6318
Edificio “D” del ICBI. Extensión de la coordinación: 6320
correo electrónico: evarela@uaeh.reduah.mx
AGRADECIMIENTOS

A quienes nos apoyaron en el desarrollo de este proyecto.
DEDICATORIAS

A nuestro ser querido

con todo respeto y cariño.
ÍNDICE

ÍNDICE DE FIGURAS .. xiv
ÍNDICE DE TABLAS .. xvii
RESUMEN ... 1
CAPÍTULOS .. 4

CAPÍTULO 1. INTRODUCCIÓN
1.1. Introducción ... 5
1.2. Estado del arte .. 6
1.2.1. Breve historia de Internet .. 6
1.2.2. Proveedores de recursos de red e ISP’s ... 14
1.3. Problemática .. 15
1.4. Objetivo general .. 15
1.4.1. Objetivos específicos ... 15
1.5. Justificación .. 15
1.6. Metodología .. 16
1.6.1. Universo de estudio .. 16
1.7. Solución ... 17
1.8. Contribución a la sociedad ... 17
1.9. Organización de la tesis .. 17

CAPÍTULO 2. EL ISP ENTORNO Y COMPONENTES
2.1. Introducción .. 20
2.2. ¿Qué es un ISP? .. 21
2.3. Acerca de las redes proveedoras de IP ... 23
2.4. Acerca de la banda ancha .. 26
2.4.1. Tecnologías de banda ancha .. 29
2.4.2. Provisión de banda ancha .. 32
2.4.3. Aplicaciones sobre la banda ancha ... 34
2.4.4. Aspectos de reglamentación y de política .. 35
2.4.5. Promoción de la banda ancha .. 37
2.4.6. La banda ancha y la sociedad de la información .. 39
2.4.7. El nacimiento de la banda ancha, ¿es el principio de una nueva era? 40
2.5. Tecnología WiMax .. 42
2.5.1. WiMax en Latinoamérica y proyección de México .. 43
2.6. Componentes de un ISP ... 44
2.6.1. Descripción de la infraestructura ... 45
2.6.1.1. Red de acceso .. 48
2.6.1.2. Red de concentración ... 51
2.6.1.3. Red troncal ... 54
2.6.2. Evolución de los routers e implantación de MPLS ... 55
2.7. Consideraciones generales de diseño .. 58
2.7.1. Centro de proceso de datos ... 60

CAPÍTULO 3. INFRAESTRUCTURA DE LA RED DEL WISP

3.1. Introducción ... 63
3.2. Protocolos y normas estándar .. 64
3.2.1. Análisis previo del estándar 802.16 .. 64
3.2.1.1. Fijo ... 65
3.2.1.2. Móvil .. 66
3.2.2. Beneficios de la adopción de una solución fija WiMax .. 66
3.2.3. Comparación de tecnologías WiMax para acceso fijo con licencia y exentas de licencia .. 67
3.2.3.1. Bandas con licencia: 2.5 GHz y 3.5 GHz .. 68
3.2.3.2. Banda exenta de licencia: 5 GHz ... 69
3.3. Fundamentos legales de la implantación del WISP en México 70
3.3.1. Fundamento legal de la Ley Federal de Telecomunicaciones (COFETEL) 70
3.3.2. Fundamento legal de la banda de frecuencia de uso libre para WiMax 71
3.4. Instalación de una solución exenta de licencia .. 71
3.4.1. Soluciones exentas de licencia: ventajas y usos ... 71
3.4.2. Características técnicas de bandas exentas licencia .. 72
3.4.3 Desafíos de la instalación de una solución WiMax exenta de licencia 74
3.4.4 Resolución de los desafíos de la instalación de una solución WiMax exenta de licencia ... 77
3.4.4.1 Tratamiento de los problemas de localización de la infraestructura 78
3.4.4.2 Tratamiento de los problemas de interferencia y calidad de servicio ... 79
3.4.4.3. Coexistencia con otras redes inalámbricas exentas de licencia ... 81
3.4.4.4. Mejora de instalaciones WiMax exentas de licencia usando técnicas de antenas ... 82

CAPÍTULO 4. DISEÑO E INSTALACIÓN DEL WISP WIMAX
4.1. Introducción .. 87
4.2. Generalidades del funcionamiento del WISP .. 88
 4.2.2. Equipo y preparación de emplazamiento del cliente ... 89
 4.2.3. Instalación y configuración de la estación central con la unidad base y la antena de panel de sector ... 89
 4.2.4. Instalación y configuración de los puntos cliente con el router wireless y la antena ... 90
 4.2.5. Configuraciones de red TCP/IP para el sistema WISP ... 90
4.3. Descripción del equipo .. 91
 4.3.1. Estación base (Base station) .. 91
 4.3.1.1. Descripción .. 91
 4.3.1.2. Características .. 94
 4.3.1.3. Aplicaciones ... 94
 4.3.1.4. Especificaciones ... 95
 4.3.1.4.1. Hardware .. 95
 4.3.1.4.2. Software ... 96
 4.3.1.4.3. Módulos RF ... 97
 4.3.2. Antenas de panel sector de 5.8 GHz ... 98
 4.3.2.1. Descripción .. 98
 4.3.2.2. Características ... 99
 4.3.2.3. Aplicaciones ... 99
 4.3.2.4. Especificaciones ... 99
 4.3.3. Estaciones cliente (Suscriber station) .. 100
 4.3.3.1 Fijas ... 100
 4.3.3.1.1 Descripción ... 100
 4.3.3.1.2. Características ... 102
 4.3.3.1.3. Especificaciones .. 102
 4.3.3.1.3.1. Características de la radio .. 102
4.3.3.1.3.2. Características de la antena .. 104
4.3.3.2. Móviles ... 104
4.3.4. Antena Backhaul ... 105
4.3.4.1. Descripción .. 105
4.3.4.2. Características ... 105
4.3.4.3. Aplicaciones .. 106
4.3.3.4. Especificaciones .. 106
4.3.4.4.1. Eléctricas ... 106
4.3.4.4.2. Mecánicas .. 106
4.3.5. Sistemas de energía ininterrumpidas (UPS’s) 107
4.3.5.1. Routers y servidores .. 107
4.3.5.2. Respaldo de la estación base ... 108
4.3.5.2.1. Equipo de respuesta inmediata ... 108
4.3.5.2. Planta de emergencia .. 109
4.3.6. Sistema de aire acondicionado ... 110
4.4. Ubicación e instalaciones .. 111
4.5. Diagramas arquitectónicos y obra civil del WISP 112
4.6. Mástil de antena .. 112
4.7. Rack de telecomunicaciones ... 114
4.8. Routers .. 119
 4.8.1. Router backbone .. 119
 4.8.2. Router de concentración ... 119
4.9. Servidor ... 119
 4.9.1. Procesador ... 120
 4.9.2. Recursos del producto .. 123
 4.9.3. Resumen de hardware ... 123
4.10. Sistema operativo del WISP .. 124
4.11. Seguridad del servidor .. 124
4.12. Sistema de facturación .. 125
4.13. Proveedor del servicio a la nube de Internet de alcance local 134

CAPÍTULO 5. REALIDAD E IMPACTO DEL ISP WIRELESS EN PACHUCA

5.1. Introducción .. 139
5.2. Competidores principales, proveedores de Internet de Banda Ancha en Pachuca ... 140
 5.2.1. Cableados .. 140
 5.2.2. Inalámbricos ... 140
5.3. Situación del mercado .. 140
5.4. Servicio ofrecido .. 141
5.5. Operación y producción .. 141
5.6. Estrategias para comercializar el servicio (ventas) 141
 5.6.1. Introducción al mercado .. 141
 5.6.1.1. Primera etapa ... 141
 5.6.1.1.1. Impactos en las radiodifusoras locales 142
 5.6.1.1.2. Incrustaciones en periódicos locales 142
 5.6.1.1.3. Publicidad visual ... 142
 5.6.1.1.4. Publicidad de boca a boca ... 143
 5.6.1.2. Segunda etapa ... 143
 5.6.1.3. Tercera etapa ... 143
 5.6.2. Plan de presentación del producto 143
 5.6.2.1. Texto del spot de radio .. 143
 5.6.2.2. Esquema del folleto ... 144
 5.6.2.3. Sugerencias de aborde al público 145
5.7. Crédito y cobranza ... 146
5.8. Diagrama de proceso del WISP ... 146
5.9. Personal de operación ... 148
 5.9.1. Asesores externos ... 148

CAPÍTULO 6. RESUMEN EJECUTIVO
6.1. Introducción ... 149
6.2. Perfil del proyecto ... 150
 6.2.1. Ubicación .. 150
 6.2.2. Objeto del proyecto ... 150
 6.2.3. Clasificación del proyecto ... 151
 6.2.4. Naturaleza jurídica legal .. 151
6.3. Estudio de mercado ... 151
 6.3.1. Definición del área geográfica ... 151
 6.3.2. Características del mercado objetivo 151
6.3.3. Análisis de la demanda ... 153
6.4. Perfil económico ... 160
 6.4.1. Servicio ofrecido .. 160
 6.4.2. Servicios secundarios ... 160
6.5. Proyección de ingreso al mercado de acuerdo a las instalaciones 161
6.6. Inversión y financiamiento del proyecto ... 161
 6.6.1. Inversión .. 162
 6.6.1.1. Inversión fija tangible ... 162
 6.6.1.2. Inversión fija intangible .. 164
 6.6.1.3. Capital de trabajo ... 164
 6.6.1.4. Resumen de inversiones ... 165
 6.6.2. Financiamiento ... 165
 6.6.2.1. Aporte interno de socios ... 165
 6.6.2.2. Aporte externo Banco .. 166
 6.6.2.3. Programa de servicio de la deuda con el banco 166
 6.6.2.3.1. Resumen por años del servicio de la deuda 167
 6.6.2.4. Proyecciones financieras ... 167
 6.6.2.4.1. Proyección y presupuesto de ingresos 167
 6.6.2.4.1.1. Proyección de ingresos del 1er año por bimestres 168
 6.6.2.4.1.2. Proyección de ingresos en los años subsecuentes 168
 6.6.2.4.1.3. Suma total de proyección de ingresos en los primeros 5 años 168
 6.6.2.4.2. Presupuesto de egresos del proyecto 168
 6.6.2.4.2.1. Proyección de egresos del primer año 169
 6.6.2.4.2.2. Proyección de egresos de los 4 años subsecuentes 169
 6.6.2.4.2.3. Resumen por año de los egresos durante 5 años 170
 6.6.2.5. Estados financieros ... 171
 6.6.2.5.1. Estado de ganancias y pérdidas 172
 6.6.2.5.2. Flujo de caja proyectado .. 172
 6.6.2.6. Evaluación empresarial ... 172
 6.6.2.6.1. Costo de oportunidad ... 173
 6.6.2.6.2. Valor actual neto económico (VANE) 173
 6.6.2.6.3. Valor actual neto financiero (VANF) 174
 6.6.2.6.4. Relación beneficio costo económico 174
 6.6.2.6.5. Relación beneficio costo financiero 174
 6.6.2.6.6. Resumen de los indicadores de rentabilidad 175
6.6.2.6.7. Resumen inversión, financiamiento, egresos e ingresos 175
6.6.2.6.8. Conclusión de la evaluación empresarial 175
6.7. Análisis FODA ... 175
 6.7.1. Área de distribución y almacenaje .. 176
 6.7.2. Área de marketing ... 176
 6.7.3. Área de producto ... 177
6.8. Unidad estratégica de negocios (UEN) .. 178
 6.8.1. Distribución ... 178
 6.8.1.1. Servicio preventa .. 178
 6.8.1.2. Servicio postventa ... 178
 6.8.2. Publicidad ... 179

CONCLUSIONES .. 180
ACRÓNIMOS ... 182
GLOSARIO .. 184
REFERENCIAS BIBLIOGRÁFICAS ... 194
ANEXOS ... 198
ANEXO A .. 199
ANEXO B .. 202
ÍNDICE DE FIGURAS

Figura 2.1 Planos de control ... 26
Figura 2.2 Utilización de la banda ancha e Internet en el mundo, en millones 28
Figura 2.3 Penetración de la banda ancha, abonados por cada 100 habitantes, por tecnología, 2002 ... 29
Figura 2.4 Penetración de la banda ancha, por tecnología, en millones 31
Figura 2.5 Países donde se dispone de banda ancha comercial (en sombreado), 2002 .. 33
Figura 2.6 Abonados a la banda ancha por cada 100 habitantes, por INB (PPA) per cápita, 2002 ... 33
Figura 2.7 Competencia en varios sectores del mercado de las TIC 36
Figura 2.8 Desglose de líneas DSL por tipo de proveedor, UE, marzo de 2003, en porcentaje ... 38
Figura 2.9 Crecimiento de la penetración de banda ancha en Estados Unidos 41
Figura 2.10 Niveles jerárquicos de interconexión .. 47
Figura 2.11 Escenario de un proveedor con un gateway SS7 49
Figura 2.12 Estructura de una red de líneas ADSL 50
Figura 2.13 Estructura y conexiones lógicas de un POP 52
Figura 2.14 Introducción de MPLS en la red de datos del ISP 58
Figura 2.15 Estructura LAN DNS/Radius .. 61
Figura 3.1 Instalación fija de WiMax y modelos de uso 65
Figura 3.2 Solución WiMax exenta de licencia instalada correctamente 75
Figura 3.3. Competencia con las otras redes inalámbricas 82
Figura 3.4 Mejora de la flexibilidad usando tecnología de canalización y de antenas inteligentes ... 82
Figura 4.1 Diagrama generalizado que corresponde a la construcción del WISP .. 90
Figura 4.2 Vista frontal del ISPAIR Tri-Band 2.4/4.9/5GHz Base Station 500 92
Figura 4.3 Vista lateral ISPAIR Tri-Band 2.4/4.9/5GHz Base Station 500 92
Figura 4.4 Vista posterior ISPAIR Tri-Band 2.4/4.9/5GHz Base Station 500 92
Figura 4.5 Aplicaciones del ISPAIR Tri-Band 2.4/4.9/5GHz Base Station 500 para cuatro antenas .. 93
Figura 4.6 Aplicaciones del ISPAIR Tri-Band 2.4/4.9/5GHz Base Station 500 para tres antenas y Backhaul ... 94
Figura 4.7 Antena de panel de sector 5.8 GHz ... 98
Figura 4.8 Vista frontal del ISPAIR 54Mb CPE 500 Series .. 100
Figura 4.9 Vista lateral del ISPAIR 54Mb CPE 500 Series .. 101
Figura 4.10 Vista posterior del ISPAIR 54Mb CPE 500 Series 101
Figura 4.11 Antena Backhaul .. 105
Figura 4.12 UPS para routers y servidores .. 107
Figura 4.13 Equipo de respuesta inmediata modelo ED ... 108
Figura 4.14 Planta de emergencia .. 109
Figura 4.15 Sistema de aire acondicionado .. 110
Figura 4.16 Torre de monopolo .. 112
Figura 4.17 Tubos de tipo industrial para monopolo .. 113
Figura 4.18 Aplicaciones del mástil monopolo ... 113
Figura 4.19 Racks de telecomunicaciones ... 114
Figura 4.20 Acabado del rack .. 115
Figura 4.21 Vista de dos armarios abiertos ... 116
Figura 4.22 Foto de rack de 41U ... 116
Figura 4.23 Vista interior lateral .. 117
Figura 4.24 Armario con bandeja del ratón y teclado .. 117
Figura 4.25 Bandeja para soporte de monitor ... 118
Figura 4.26 Sistema de ventilación .. 118
Figura 4.27 Router de concentración Cisco 3845 .. 119
Figura 4.28 Servidor IBM Procesador Intel® Xeon® ... 120
Figura 4.29 Agentes de ventas ... 125
Figura 4.30 Clientes ... 126
Figura 4.31 Ventas ... 128
Figura 4.32 Cuentas por cobrar .. 129
Figura 4.33 Productos y servicios .. 130
Figura 4.34 Bancos .. 131
Figura 4.35 Consultas y repotes ... 132
Figura 4.36 Análisis de cobertura .. 135
Figura 4.37 Relación entre punto de venta e instalaciones 136
Figura 4.38 Línea de vista del Backhaul ... 137
Figura 4.39 Virtualización de la instalación .. 138
Figura 5.1 Parte frontal .. 145
Figura 5.2 Parte interior izquierda ... 145
ÍNDICE DE TABLAS

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Diversas tecnologías de banda ancha</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>Diferencias entre routers de concentración y backbone</td>
<td>54</td>
</tr>
<tr>
<td>3.1</td>
<td>Beneficios de soluciones con licencia y exentas de licencia</td>
<td>67</td>
</tr>
<tr>
<td>3.2</td>
<td>Asignación mundial de bandas con licencia y exentas de licencia</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>Bandas y frecuencias disponibles para WiMax</td>
<td>70</td>
</tr>
<tr>
<td>3.4</td>
<td>Comparación de TDD y FDD</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Especificaciones del hardware</td>
<td>95</td>
</tr>
<tr>
<td>4.2</td>
<td>Especificaciones del software</td>
<td>95</td>
</tr>
<tr>
<td>4.3</td>
<td>Especificaciones de los módulos RF</td>
<td>97</td>
</tr>
<tr>
<td>4.4</td>
<td>Especificaciones de la antena de panel de sector</td>
<td>99</td>
</tr>
<tr>
<td>4.5</td>
<td>Características de la radio</td>
<td>103</td>
</tr>
<tr>
<td>4.6</td>
<td>Características de la antena</td>
<td>104</td>
</tr>
<tr>
<td>4.7</td>
<td>Especificaciones eléctricas</td>
<td>106</td>
</tr>
<tr>
<td>4.8</td>
<td>Especificaciones mecánicas</td>
<td>106</td>
</tr>
<tr>
<td>4.9</td>
<td>Características de antenas tipo monopolo</td>
<td>113</td>
</tr>
<tr>
<td>4.10</td>
<td>Puntos de referencia</td>
<td>135</td>
</tr>
<tr>
<td>6.1</td>
<td>Mercado objetivo</td>
<td>153</td>
</tr>
<tr>
<td>6.2</td>
<td>Proyección de ingresos</td>
<td>162</td>
</tr>
<tr>
<td>6.3</td>
<td>Inversión</td>
<td>164</td>
</tr>
<tr>
<td>6.4</td>
<td>Inversión fija intangible</td>
<td>165</td>
</tr>
<tr>
<td>6.5</td>
<td>Capital de trabajo</td>
<td>165</td>
</tr>
<tr>
<td>6.6</td>
<td>Resumen de inversiones</td>
<td>166</td>
</tr>
<tr>
<td>6.7</td>
<td>Aporte interno de socios</td>
<td>166</td>
</tr>
<tr>
<td>6.8</td>
<td>Aporte externo Banco</td>
<td>167</td>
</tr>
<tr>
<td>6.9</td>
<td>Servicio de deuda Banco</td>
<td>167</td>
</tr>
<tr>
<td>6.10</td>
<td>Resumen por años de servicio de la deuda</td>
<td>168</td>
</tr>
<tr>
<td>6.11</td>
<td>Proyección de ingresos del 1er año</td>
<td>169</td>
</tr>
<tr>
<td>6.12</td>
<td>Proyección de ingresos en los años subsecuentes</td>
<td>169</td>
</tr>
<tr>
<td>6.13</td>
<td>Suma total de proyección de ingresos en los primeros 5 años</td>
<td>169</td>
</tr>
<tr>
<td>6.14</td>
<td>Proyección de egresos del primer año</td>
<td>170</td>
</tr>
<tr>
<td>6.15</td>
<td>Proyección de egresos de los 4 años subsecuentes</td>
<td>170</td>
</tr>
</tbody>
</table>
Tabla 6.16 Resumen por año de los egresos durante 5 años 171
Tabla 6.17 Comparación de inversiones .. 171
Tabla 6.18 Estado de ganancias y pérdidas .. 172
Tabla 6.19 Detalle de la proyección del impuesto a cobrar 172
Tabla 6.20 Flujo de caja proyectado .. 173
Tabla 6.21 Costo de oportunidad ... 174
Tabla 6.22 Valor actual neto económico ... 174
Tabla 6.23 Valor actual neto financiero ... 175
Tabla 6.24 Resumen de los indicadores de rentabilidad 176
Tabla 6.25 Resumen Inversión, financiamiento, egresos e ingresos 176
RESUMEN

El inicio de la era de acceso a la información ha sido indudablemente constituido por el desarrollo de las Tecnologías de la Información (TI), las cuales son las causantes del gran impacto de la globalización de los mercados mundiales, y fielmente ligadas al desarrollo de los países o bien a su estancamiento.

Las tecnologías de la información, que desde su inicio fueron constituidas por métodos rápidos de acceso a múltiples bancos de información, han sido primordialmente impulsados a partir de la estandarización de los protocolos de control de transferencia electrónica y de la nube de Internet (TCP/IP), los cuales en el marco del año 2007 muestran en futuro inmediato la adopción mundial para el acceso de las TI.

La Internet que en realidad es la interconexión de múltiples redes de dispositivos de comunicación basados en el protocolo TCP/IP; en el esquema red telaraña alrededor del globo terrestre WWW (World Wide Web), conecta a millones de ruteadores e igualmente a los servidores. Dicha red extendida por medio de satélites, fibra óptica, sistemas telefónicos, y la red eléctrica; se ha convertido en el presente de las comunicaciones ya que desde una estación de trabajo virtual, hasta un teléfono móvil son capaces de acceder a esta red, sin mencionar el alcance científico y bursátil, en el que su dependencia es prácticamente imprescindible, y es al día de hoy la única herramienta capaz de vencer fronteras en la educación global.

Los países en vías de desarrollo y los países desarrollados tienen una característica curiosa pero real; los primeros tienen un serio atraso en la adopción de las TI y por racionalidad en los otros más del 85% de su población tiene acceso a estas tecnologías, ahora el reflejo de la adopción en nuestro país se ha mostrado lento de
manera paralela está ligado al crecimiento como país y al ingreso per cápita de cada habitante, es por ello que en los años próximos entrantes existirá un auge más amplio en la adopción de estas tecnologías.

En México el papel de los proveedores del servicio de acceso a la red de Internet han evolucionado conforme a las características que el mercado ha demandado, debemos de tener en cuenta que durante muchos años una empresa a mantenido el dominio en el rubro telefónico y gracias a esta característica el mayor porcentaje de conexiones de Internet se realizan por este medio, en los últimos seis años el detonante anti monopolio en todo el mundo ha permitido la introducción de nuevas tecnologías y esto como consecuencia una competencia más abierta.

Sin embargo no se encontraba un mecanismo, o bien, un estándar que permitiera revertir la tendencia; en Hidalgo y en particular en Pachuca el acceso a la Internet se encuentra sustancialmente acaparado por la telefónica mexicana, es por ello que las condiciones de mercado parecerían demasiado difíciles para la introducción de nuevos competidores.

Ahora es precisamente gracias al relativamente nuevo estándar WiMax basado en la especificación 802.16 del IEEE que consiente una libre competencia, permite abaratar los costos de instalación así como de administración de los proveedores de servicios de Internet por medio de una tecnología completamente inalámbrica en donde basta colocar una estación base en un lugar estratégico y sin necesidad de tener línea de vista se puede tener la conexión en un rango de más de 40 Km. esto gracias a la técnica de modulación OFDM que permite el rebote de las señales.

La COFETEL organismo que regula el uso del espectro en México, ante la presión internacional tuvo que cumplir con las regulaciones mundiales y dejar abierto un amplio rango de espectro de uso libre en las bandas comprendidas entre los 5.725 y 5.850 Mhz., lo cual permite la implantación de esta tecnología en la ciudad de Pachuca, Hgo. El proyecto del Proveedor de Servicios de Internet Inalámbrico (WISP) Tecnología WiMax, esta enfocado en su planeación y desarrollo, describimos de manera detallada todos y cada uno de los componentes que integran la estructura física, también realizamos un estudio donde incluímos importantes análisis financieros que permiten demostrar la factibilidad económica del proyecto.
CAPÍTULO 1.
INTRODUCCIÓN

1.1. Introducción

La tecnología, su avance y su necesidad de adopción, más que eminente, es vital en el año 2007; competir en un mundo globalizado, no sólo requiere de métodos rápidos de acceso a la información, los cuales evolucionan rápidamente por las tecnologías; en donde el reto es aplicarlas a los mercados locales. México en el contexto actual de su economía como país en vías de desarrollo y en plena adopción de las telecomunicaciones por parte de todos sus habitantes, se enfrenta al gran reto de la plusvalía como estado. Competidores internacionales y recientes potencias tecnológicas han aparecido y con ello una brecha digital comúnmente llamada, enfrenta nuestro país.

Gran especulación se ha creado acerca del perfil de los ingenieros, en base a los resultados internacionales de competencia, los cuales cierran posibilidades de creación de nuevas tecnologías que puedan ser añadidas al uso diario, a ello la adopción de la enseñanza de ingenieros hacia la convergencia de tecnologías que sean aplicables a nuestro país es una de las alternativas a la cual apuestan las universidades actuales.

Iniciar y emprender un negocio propio en Hidalgo más que un reto es una clara necesidad para el desarrollo como estado, el crear fuentes de trabajo y enfrentarse al retraso ocasionado por políticas monopólicas, de acuerdos que favorecieron a unos cuantos en el sector de las telecomunicaciones y en especial respecto al uso del
espectro radioeléctrico. En la actualidad, la COFETEL decidió seguir los lineamientos internacionales y con ello abren una puerta para poder iniciar un proyecto como el que nosotros planteamos en este trabajo, al dejar como de uso libre una parte del espectro para la reciente aparecida tecnología WiMax.

La brecha digital, el converger tecnologías, y el aprovechar los recursos legales para implantar soluciones digitales denotan una oportunidad de negocio la cual nosotros plasmamos en las siguientes páginas.

1.2. Estado del arte

1.2.1. Breve historia de Internet

En 1958 se organizó en los EE.UU. la agencia gubernamental de investigación, ARPA (Advanced Research Projects Agency) creada en respuesta a los desafíos tecnológicos y militares de la U.R.S.S. de la cual surgirán una década mas tarde los fundamentos de la futura red Internet. La agencia, bajo control del Departamento de Defensa se organizó en forma independiente de la comunidad de investigación y desarrollo militar.

Su misión durante las próximas décadas la llevará a desarrollar y proveer aplicaciones tecnológicas no convencionales para la defensa de EE.UU. ampliando la frontera tecnológica a favor de una organización reducida en número, pero flexible, libre de condicionamientos y dotada de científicos de elite. ARPA será la responsable de una gran parte de la investigación en ordenadores y comunicaciones de carácter innovador en EE.UU. durante los próximos años.

Como se ha visto, hacia la década de 1960, los ordenadores eran máquinas grandes e inmóviles, no podían comunicarse entre ellas y la transmisión entre usuarios tampoco era posible. Para usar un ordenador diferente del propio, el usuario debía trasladarse físicamente al otro o usar soportes de almacenamiento con los programas y datos a utilizar. Científicos de diferentes universidades estaban frustrados, compartir información con sus colegas era una labor muy ardua y compleja. Los investigadores más afortunados eran capaces de comunicarse mediante terminales que usaban modems. Pero el uso de teléfono era costoso, y los científicos trataron de encontrar
mecanismos más eficientes de usar las líneas telefónicas para transmitir datos. Un sistema, llamado multiplexor permitía a cada uno tener una fracción de tiempo en la línea telefónica.

Hacia finales de la década de 1960, durante la guerra fría, Paul Baran y sus colaboradores en Rand Corporation mantenían sus mentes fijas en un problema: si las redes de ordenadores fueran dañados por una guerra nuclear, ¿cómo podría el ejército estadounidense continuar comunicándose?

Una de las respuestas fue mediante una nueva forma de multiplexor que debería descomponer cada comunicación en pequeños segmentos llamados "mensajes". Una red - consistente en ordenadores conectados por líneas telefónicas - debería enviar esos mensajes rápidamente. Cada mensaje debería contener información de la ruta a seguir, de modo que cada máquina del sistema debería saber a donde enviar cada mensaje. Esta combinación de mensajes titulados más componentes de red pequeños permitiría que la información siempre estaría disponible y que la red siempre se mantendría funcionando.

El Sistema de Baran no fue del todo intuitivo, ingeniosamente descartó la noción de que el camino más corto entre dos puntos es la línea recta, en cambio, estuvo diseñado para el mejor servicio, lo más duradero, para el mayor número de usuarios posibles y bajo las peores condiciones imaginables.

Esta técnica se denominó "conmutación de paquetes". Los primeros nodos de conmutación fueron creados bajo la dirección de Donald Davies en el Laboratorio Nacional de Física, Inglaterra.

Los laboratorios de red en 1960 eran locales, operaban solamente en un edificio. Grandes aplicaciones empezaron a aparecer con el nuevo invento.

JCR Licklider, pionero de la computación, tuvo por primera vez una visión de algo parecido a un sistema Internet. El líder de la Oficina de tecnología de procesamiento de Información de la Agencia Americana de Proyectos de Investigación Avanzados (ARPA) envió un memorando premonitorio a los "Miembros y afiliados de la Red Intergaláctica de Computadoras"
En esta comunicación Licklider sostenía que los ordenadores podrían ayudar a los investigadores a compartir información. También predijo un día en el que comunidades de personas con intereses comunes podrían comunicarse con otros - Presentaba una visión nueva.

En el laboratorio de Lincoln en Massachussets el experto en ordenadores Larry Roberts tuvo una visión similar. Roberts vislumbró los beneficios potenciales de las redes de ordenadores trabajando juntos; como Licklider, él creía que el trabajo de red debería constituir una comunidad de uso de sistemas informáticos.

Trabajando con Thomas Marill, Roberts usó una línea telefónica dedicada para conectar su computador TX-2 al ordenador de Systems Development Corporation en Santa Mónica. Este enlace rudimentario permitió a su ordenador ingresar en el otro y ejecutar programas en este, se logró con un gran pero: costos elevados; importante, este era sólo el inicio.

En 1966 la oficina de tecnología de procesamiento de Información de ARPA proporcionó facilidades a 17 centros en todo EEUU. Para una afortunada minoría ARPA cubría los costos de líneas telefónicas a larga distancia para que los investigadores clave puedan usar recursos de ordenadores directamente desde sus oficinas. Bob Taylor uno de aquellos pocos afortunados.

Un psicólogo que trabajaba con J.C.R. Licklider en IPTO, de apellido Taylor, tenía tres terminales en su oficina. Cada con una línea telefónica separada, que conectaba a un ordenador distante. Las tres terminales de Taylor lo conectaban con: MIT, Berkeley y la Corporación de Desarrollo de Sistemas en Santa Mónica, respectivamente.

Pero Taylor no estaba conforme. Un día, sentado frente a sus tres ordenadores, se preguntó ¿Por qué necesitaba él todo aquello? Por qué no se hacía que una terminal pudiera conectar a todos los ordenadores a través del país o una red que conecte a ellos. ¿Porqué una terminal no podría hacer todo esto?

ARPA dio la respuesta a las preguntas clave de Bob Taylor, encargó la construcción de una red de ordenadores experimental. Basados en la tecnología de intercambio de
paquetes de Paul Baran, esta Red de la Agencia de Proyectos de Investigación Avanzada (Advanced Research Projects Agency Network) o ARPANET, ayudaría a los investigadores a trabajar más eficazmente y explorar rumbos para las redes de computadoras.

Una compañía de Cambridge, Mass., llamada Bolt, Beranek and Newman ganó el contrato para construir los conmutadores de paquetes, o Interface Message Processors (IMPs), que serían usados como nodos de ordenadores para esta nueva RED.

En Setiembre de 1969, el primer IMP llegó a la UCLA, un centro de investigación fundado por ARPA. Los científicos de Computadoras Len Kleinrock y los estudiantes graduados Vinton Cerf llamaron a la matriz de UCLA; su curiosidad sobre la arquitectura de la red los llevó a la creación del Centro de Medición de Red de ARPA. El equipo haría el seguimiento de todo lo que podría hacer la comunidad ARPA.

Pocas semanas después los IMPs fueron cambiados al Instituto de Investigación Stanford en Menlo Park, California. El cual proveía el nuevo Centro de Información de Red; la Universidad de California en Santa Bárbara la cual alojó el sistema interactivo en línea UCSB; y la Universidad de Utah en Salt Lake City, donde ordenadores para gráficos estaban en su inicio. Una vez que ellas se conectaron por medio de líneas telefónicas, los IMPs en estos cuatro sitio empezaron a intercambiar paquetes a larga distancia y nació ARPANET.

La Red ARPANET inicialmente brindó tres servicios: Acceso a ordenadoras remotos y otros dispositivos como un terminal de usuario remoto (actualmente denominado Telnet), compartir información a través de la transferencia de archivos, e impresión remota o salida a impresoras en otras ubicaciones.

Sorprendentemente, el e-mail entre ordenadores conectados no estuvo entre la oferta inicial. "No sabíamos que e-mail era importante" confesó después Vint Cerf de UCLA "No estábamos seguros de qué es lo que ocurriría con el tiempo", no fue sino hasta años después que el primer mensaje de e-mail://www.exitoexportador.com/stats2.htm de ARPANET fue enviado.
A medida que ARPANET crecía, hacia 1971, fue expandida hasta 15 nodos y en 1972 incluía 37, los miembros no estaban satisfechos.

ARPANET tuvo su presentación en octubre del año siguiente, cuando ARPANET IMP y una terminal multiplexor fueron configurados en la Conferencia Internacional en Comunicaciones de Computadora. En Washington DC. Esta fue la primera demostración en público de lo que podía hacer la conmutación de paquetes, y esto hizo que la gente tomara esta tecnología seriamente, dijo Bolt, Beranek and Newman's Alex McKenzie.

El evento fue un éxito, los expertos dijeron que el potencial de la Red estaba en crecimiento. En la década siguiente en un ordenador se conectaba a la red cada 20 días con la posibilidad de que cientos o miles de personas compartieran una de cualquiera de esos equipos.

Las dos redes más importantes formadas para centros de educación y enseñanza fueron CSNET (Computer Science Network; posteriormente the Computer Science Network), and BITNET ("Because It's Time" or "Because It's There" Network). Muchas otras redes para propósitos especiales se desarrollaron en todo el mundo como la red de paquetes por satélite, paquetes para la comunicación de la voz y los paquetes de radio.

Por enlazar usuarios con intereses comunes, ARPANET y sus redes compañeras tuvieron un importante impacto técnico y social. Quienes compartían entusiasmos extracurriculares formaron la "comunidad virtual de interés", usuarios con una curiosidad común dentro de Internet misma que formaron los "net communities" para explorar todo desde algoritmos de rutas hasta la demografía de la red.

Los científicos empezaron a comunicarse colectivamente por medio de las listas de correo electrónico rápidamente desarrolladas. Miles de discusiones florecieron sobre todos los tópicos inimaginables. A nadie sorprendió que uno de los primeros y mejor enterados grupos de discusión fue los "sf-lovers" conformado por los admiradores de la red de ciencia ficción.
El desarrollo de redes fuera de ARPANET creó nuevos competidores. Tenían dificultades en interconectarse, debido no precisamente al hardware (diferentes ordenadores podían utilizar ARPANET) sino más bien a la incompatibilidad en los protocolos de comunicación. Aun el satélite del propio ARPA y las redes de paquetes de radio no podían conectarse a ARPANET

Ante esto ARPA auspició el desarrollo de un nuevo estándar de comunicación llamado Transmission Control Protocol/ Protocol Internetwork (TCP/IP), que fue un conjunto de protocolos que permitían la conexión de las redes, ordenadores de diferentes redes podrían ahora comunicarse una con otra. Cada red utilizó IP para comunicarse con las otras. Debido a que los científicos se referían a la "red de redes" como "Internet " este nuevo grupo de redes que utilizaban TCP/IP empezó a ser conocido como Internet.

A finales de la década de 1970 muchas redes de investigación, del gobierno y educativas utilizaban TCP/IP. Pero el ARPANET y la red de información de defensa no realizaron el cambio oficialmente sino hasta el uno de enero de 1983. Fecha del nacimiento oficial de Internet.

Tanto ARPANET como Internet continuaron su desarrollo en tamaño e importancia. Proporcionaron medios para la comunicación y cierta forma de convivencia entre los científicos de todo el mundo, permitiéndoles trabajar juntos, compartir información y la utilización de fuentes distantes.

A pesar de su gran crecimiento, Internet permaneció siendo desconocida para el público hasta Octubre de 1988 cuando un programa intruso o "worm" origino algo devastador.

Internet worm empezó su vida como un simple programa lanzado por el estudiante Robert Morris Jr. Más destructivo que un virus de computadora el "worm" activaba el envío de copias de si mismo por Internet a otros ordenadores donde a su vez cada copia se multiplicaba. Antes que el "worm" fuera exterminado miles de ordenadores habían sido sobrecargadas o fueron deliberadamente desactivadas por cuestiones de seguridad.
Desde ese entonces programadores y expertos en seguridad crean nuevas herramientas para combatir cualquier escalada de guerra tecnológica y en búsqueda de informes y problemas de abuso de la red.

Como es de suponer el crecimiento del número de usuarios y el volumen de información disponible había originado una especie de jungla de información, en la que no existía mapa o referencia alguna. A finales de los 80 y principios de los 90 desconcertados usuarios idearon herramientas para localizar y ordenar la información.

Estos lineamientos ayudaron a su vez a otros usuarios a encontrar el camino y transformaron a Internet en un mundo amigable para el usuario.

Archie fue el primero de estos programas que permitía a los usuarios obtener una lista de direcciones de Internet "FPT holdings" con una simple consulta.

El uno de junio de 1990 ARPANET fue desinstalado. Los lugares donde ARPANET había sido originalmente conectado fueron reemplazados por otras redes nuevas en Internet.

Los usuarios podían entonces ver, desplazarse y hacer selecciones desde ese menú. El éxito de Gopher fue tremendo, en dos años miles de servidores Gopher se unieron a la red en todo el mundo, cada uno con su colección de directorios, archivos y punteros a información en otros Gophers.

Pero su éxito creaba un problema obvio: ¿Cómo encontrar algo en el "gopherespacio" ya que el plan original no contemplaba un índice?. La solución fue una solución similar al Archie, llamado Verónica (Very Easy Rodent Oriented Net-wide Index to Computarized Archieves) desarrollado por dos estudiantes, la base de datos Verónica tenía hacia 1993 más de un millón de entradas desde el menú Gopher.

Para conectar piezas individuales de información, Berners-Lee usó hipertextos, que contienen punteros y direcciones a otros temas.

Señalando un hipertexto el usuario le dice a su ordenador "toma la dirección asociada y vamos para allá") Las direcciones en un documento Web, llamados URL (Universal Resource Locator) apuntan a enlaces en cualquier lugar de Internet.

Berners-Lee diseñó la Web para investigadores en alta energía. El WWW también empezó a ser usado para navegar y ver su propia información en Línea.

1993. Marc Andersen, del National Center for Supercomputing Applications (NCSA) diseñó MOSAIC, un navegador por el Web que hizo más accesible y amigable.

MOSAIC permite a los usuarios recuperar elementos multimedia con una simple pulsación de ratón y no necesitan elaborar documentos complicados para publicar gráficos, imágenes, etc.

La combinación de Web y Mosaic y programas similares como Netscape Internet Navigator y Opera han transformado la apariencia de la red, formando una red mundial de texto y recursos, la red empezó a incorporar multimedia e información a color.

1997. A lo largo de su historia, Internet se ha transformado a sí mismo no sólo para las necesidades y deseos de sus usuarios, sino la visión de sus pioneros como Paul baran, J.C.R. Licklider y (más recientemente) Tim Berners-Lee y Marc Andersen. Su trabajo ha permitido a la gente a través del mundo formar parte de esta comunidad Global.
1.2.2. Proveedores de recursos de red e ISP's

Dentro del mundo de los proveedores de acceso a Internet se pueden distinguir los ISP's (Provedores de Servicios de Internet) que ofrecen acceso a Internet a clientes finales. Para proveer acceso a Internet se conecta mediante enlaces fijos a un NSP (Network Service Provider) o Proveedores de Recursos de Red. Estos últimos ofrecen acceso a Internet a clientes finales y a ISP’s, ya que disponen de una red propia.

En México existen RED UNO y actualmente Axtel que adquirió a Avantel, que son las corporaciones que disponen de acceso al núcleo de Internet en EEUU.

En México el papel de los proveedores del servicio de acceso a la red de Internet han evolucionado conforme a las características que el mercado ha demandado, debemos de tener en cuenta que durante muchos años una empresa a mantenido el dominio en el rubro telefónico y gracias a esta característica el mayor porcentaje de conexiones de Internet se realizan por este medio, en los últimos seis años el detonante anti monopolio en todo el mundo ha permitido la introducción de nuevas tecnologías y esto como consecuencia una competencia más abierta.

Sin embargo no se encontraba un mecanismo, o bien, un estándar que permitiera revertir la tendencia; en Hidalgo y en particular en Pachuca el acceso a la Internet se encuentra sustancialmente acaparado por la telefónica mexicana, es por ello que las condiciones de mercado parecerían demasiado difíciles para la introducción de nuevos competidores.

Ahora es precisamente gracias al relativamente nuevo estándar WiMax basado en la especificación 802.16 del IEEE que consiente una libre competencia, permite abaratar los costos de instalación así como de administración de los proveedores de servicios de Internet por medio de una tecnología completamente inalámbrica en donde basta colocar una estación base en un lugar estratégico y sin necesidad de tener línea de vista se puede tener la conexión en un rango de más de 40 Km. esto gracias a la técnica de modulación OFDM que permite el rebote de las señales.

La COFETEL organismo que regula el uso del espectro en México, ante la presión internacional tuvo que cumplir con las regulaciones mundiales y dejar abierto un
amplio rango de espectro de uso libre en las bandas comprendidas entre los 5.725 y 5.850 MHz., lo cual permite la implantación de esta tecnología en la ciudad de Pachuca, Hgo.

Se ah descrito una visión global del mundo Internet, de sus tecnologías y servicios; haciendo una labor de síntesis, quizás superficial, pero creemos puede servir al lector para hacerse una idea general sobre el estado de estas tecnologías.

1.3. Problemática

Acceder a la información electrónica, consultar bases de datos en línea, correos electrónicos, acceso en tiempo real a videoconferencias y aplicaciones multimedia, en la ciudad de Pachuca de Soto y sus alrededores, es una necesidad que es rebasada por los proveedores del servicio de Internet existentes; debido a los costos inaccesibles para que la población pueda acceder a este servicio.

1.4. Objetivo general

Planear y diseñar un proveedor de servicios de Internet inalámbrico (WISP) utilizando la tecnología WiMax conectando a la ciudad de Pachuca de Soto Hgo., México.

1.4.1. Objetivos específicos

- Ofrecer un costo accesible del servicio de acceso a Internet respecto a los proveedores de servicio de internet existentes en el mercado local.
- Mantener la funcionalidad de la conexión.
- Garantizar el acceso seguro a Internet.

1.5. Justificación

En las redes inalámbricas es común que los usuarios finales, entusiasmados por el éxito que han alcanzado, compren e instalen equipo sin una previa planeación y diseño, lo que trae como resultado un deficiente desempeño y un costo inaccesible para la población; como desarrolladores del presente proyecto, vemos en la tecnología
inalámbrica una oportunidad para atraer clientes, al ofrecer Internet en los hogares y negocios a un costo muy accesible y una conexión de alta velocidad.

En la actualidad, prácticamente todos los negocios, escuelas e incluso hogares necesitan de una red de comunicación, por lo tanto comprender que si esta comunicación se realiza sin una conexión física, facilitará acceder a los servicios de Internet y además de permitir una mayor movilidad de los equipos. En este sentido un Proveedor de Servicios de Internet Inalámbrico proporciona las facilidades no disponibles en los sistemas cableados y forma una red total donde coexistan los dos tipos de sistemas.

Consolidar un proyecto de esta magnitud en la ciudad de Pachuca de Soto es una gran oportunidad de negocios ya que la necesidad del servicio de Internet de banda ancha es inminente a corto y mediano plazo.

1.6. Metodología

El estudio realizado planea y diseña el Proveedor de Servicios de Internet Inalámbrico con Tecnología WiMax (WISP) - Winet - como lo autonombamos, esta elaborado de acuerdo con la metodología de reporte tecnologico y elaboración de un plan de negocios; considerando de vital importancia el análisis, factor determinante de la factibilidad – riesgo, que representa la inversión de WISP tecnología WIMAX, ofreciendo un resultado garantizado y confiable.

1.6.1. Universo de estudio

El universo al cual se enfoca el presente: es el público al cual dirigimos el servicio de Internet inalámbrico; dichos, constituyen esencialmente la ciudad de Pachuca, Hgo.; particularmente las PyMEs (Pequeñas y medianas empresas) locales, los establecimientos que ofrecen servicios de acceso a Internet, los hogares y público en general.
1.7. Solución

Puesto que el estándar 802.16 ha sido aprobado por el IEEE el cual fue publicado en el WiMax forum en el año 2004, y en lo que respecta a México la COFETEL aprobó como bandas de frecuencia de uso libre las comprendidas entre 5.725 a 5.850 MHz. en 2006, podemos diseñar y planear un proveedor de servicios de Internet basado en esta tecnología bajo las regulaciones legales vigentes nacionales e internacionales.

1.8. Contribución a la sociedad

Al momento de generar una empresa constituida legalmente ante las autoridades correspondientes y en cumplimiento a lo establecido en las leyes de recaudación fiscal de la Secretaría de Hacienda y Crédito Público, cualquier persona moral contribuye a la construcción de nuestro país con la contribución de sus impuestos, localmente contribuimos a la creación de empleos directos y en especial los consumidores pagarán una cantidad razonable por el servicio de Internet de banda ancha.

1.9. Organización de la tesis

El presente documento está realizado en base a los lineamientos de tesis para obtener un grado, elaborando un análisis estratégico sobre la cual abordamos los temas, que son de interés para el desarrollo del presente. Cada capítulo cuenta con una breve introducción, de tal manera, que se familiarizará e identificará de manera rápida los temas que se abordarán en el capítulo que esté por de leer.

Para facilitar el uso de la tesis y enriquecer el aprovechamiento al lector, en el primer capítulo “INTRODUCCIÓN”, se exponen los cimientos del proyecto; en el estado del arte, se realiza un acerca de la situación actual de parámetros importantes, sobre los que se fundamenta la investigación; inmediatamente se aborda la problemática que se plantea; justificando la investigación; se definen los objetivos del proyecto; se plantea la metodología aplicada a los diversos estudios, definiendo el universo de estudio; hablamos de la solución propuesta y la contribución a la sociedad. Es de vital importancia el contenido y lectura de este capítulo antes de pasar a los posteriores, ello le permitirá conocer los fundamentos y sustentos de este proyecto.
El segundo capítulo EL ISP ENTORNO Y COMPONENTES, de manera consecuente, aporta la definiciones de: ISP y las redes que proveen Internet, temas en los cuales se aborda las tecnologías, provisiones, aplicaciones, aspectos políticos reglamentarios, importancia de la promoción, la sociedad de la información, y una reflexión sobre las mismas redes. En la segunda sección dentro del mismo capítulo se introduce de manera general el conocimiento acerca de la tecnología WiMax, su proyección en latinoamérica y nuestro país. En la tercera sección se detalla la infraestructura teórica que constituye un ISP.

El tercer capítulo INFRAESTRUCTURA DE LA RED DEL WISP, se habla sobre protocolos y normas estándar, para ello se elaboró un análisis previo del estándar 802.16, en sus dos apartados: fijo y móvil, dedicando un tema de los beneficios de adopción de una solución fija; de manera similar se compara la tecnología WiMax para acceso fijo con y exentas de licencia; se exponen los fundamentos legales en nuestro país, adentrando más al tema se aborda la instalación teórica de la tecnología, sus ventajas, desventajas, características técnicas, desafíos de instalación, la resolución teórica de los mismos; su coexistencia, trabajo, tratamiento y mejora; concluyendo el tema propiamente.

En el capítulo DISEÑO E INSTALACIÓN DEL WISP WiMAX, se abordan temas respecto a la construcción física del proyecto; como tema inicial: Las generalidades del funcionamiento del WISP, en el cual se especifican recomendaciones sobre el equipo, la preparación, la instalación y la configuración, de la estación base y de los clientes. El segundo tema se enfoca a la descripción del equipo que se utilizará: la estación base, las antenas de panel sectoriales, las estaciones clientes fijas, las antenas de backhaul, los sistemas de energía ininterrumpidas de: routers, servidores y estación base, así como la descripción de la planta de emergencia. El tercer tema engloba la ubicación e instalaciones, los diagramas arquitectónicos, la estructura metálica de la estación base. Cada uno define el contenido de cada elemento vital para el funcionamiento del WISP, el rack de comunicaciones, los routers tanto backbone como el de concentración, el servidor recomendado, el sistema operativo, la seguridad de acceso al servidor, el sistema de facturación y el proveedor que nos enlaza a la troncal de fibra óptica. Cada uno de los elementos que constituyen físicamente el WISP se describe detalladamente en este capítulo.
En el capítulo 5, REALIDAD E IMPACTO DEL WISP EN PACHUCA, se realiza el análisis de los competidores, la situación del mercado, la descripción del producto ofrecido y un tema en particular: Estrategias de comercialización, en el cual se incluye la propuesta de campaña publicitaria dividida en etapas, así como el plan de presentación del producto con contenido de folleto, texto para spot en radiodifusoras, eslogan y sugerencias para que los promotores aborden al público. Se propone el diagrama de operación, el personal necesario y los asesores externos que se necesitan.

El capítulo 6 presenta el RESUMEN EJECUTIVO, donde de manera precisa se describe el perfil, ubicación, objeto, clasificación y naturaleza jurídica legal como primer apartado. Se realizó un estudio de mercado donde se a definido el área geográfica, características del mercado y análisis de la demanda. Se realizó el perfil económico, que incluye: el servicio, la proyección de ingresos durante cinco años, el programa de inversión y financiamiento el mismo describe la inversión fija tangible e intangible, el capital de trabajo y el resumen de inversiones, se realizó la propuesta de financiamiento con la proyección de servicio de deuda con el banco por el 80% de la inversión, visualizando la proyección por bimestres de ingresos y egresos, estados financieros de ganancias y pérdidas, la evaluación empresarial con el resumen de indicadores de rentabilidad y en una última etapa realizamos el análisis FODA y la unidad estratégica de negocios.

Un proyecto de estas características requirió de la investigación, análisis y trabajo de un año, los parámetros y demás puntos que se han estudiado son de vital importancia; cada uno de los capítulos se encuentra enlazado con el siguiente, por ello aquel que se interese por leer el último sin consultar el primero se enfrentará ante la necesidad de seguir el orden.
CAPÍTULO 2.
EL ISP ENTORNO Y COMPONENTES

2.1. Introducción

Este capítulo aborda seis temas específicos, los cuales tienen por objeto, denotar a manera de marco teórico definir y mostrar los elementos que componen un ISP. De manera consecuente presentamos formalmente la definición de ISP y las redes que proveen Internet. En los temas principales, se abordan las tecnologías, provisiones, aplicaciones, aspectos políticos, reglamentarios, la importancia de su promoción, la sociedad de la información, y una reflexión sobre las mismas redes; otra sección dentro del mismo capítulo introduce de manera general el conocimiento acerca de la tecnología WiMax, su proyección en Latinoamérica y nuestro país; en la última sección se define detalladamente la infraestructura teórica que constituye y conforman un ISP.
2.2. ¿Qué es un ISP?

Un proveedor de servicios de Internet (o ISP por el acrónimo inglés de Internet Service Provider) es una empresa dedicada a conectar a Internet a los usuarios o las distintas redes que tengan, y dar el mantenimiento necesario para que el acceso funcione correctamente. También ofrecen servicios relacionados, como alojamiento Web o registro de dominios entre otros [1].

Inicialmente, este acceso se realizaba mayoritariamente a través de ordenadores personales dotados de módems y utilizando como medio de transmisión las líneas de cobre usadas por la telefonía. Esto permite aprovechar la estructura de comunicaciones ya implantada por las compañías telefónicas.

Sin embargo, el desarrollo de la tecnología ha permitido que el acceso a Internet pueda realizarse desde una amplia gama de dispositivos. Los teléfonos móviles, PDAs y PC comunes y portátiles; el uso de tecnologías inalámbricas de transmisión de datos (GSM, WAP, GPRS, 3G, Wi-Fi, y WiMax).

Los ISP han tenido, por tanto, que adaptarse a las necesidades móviles de la vida actual y asumir el reto tecnológico que lo anterior plantea. Pero además de las conexiones telefónicas e inalámbricas, también ofertan acceso a Internet a través de las líneas de televisión por cable y de las transmisiones de la nueva televisión digital terrestre (TDT). Incluso se ofrecen servicios que dan acceso a Internet mediante la red eléctrica; se conocen por las siglas PLC.

Las redes Wireless proliferan rápidamente en lugares donde la gente trabaja (negocios, mercados, escuelas, bibliotecas, etc.) donde la gente vive (residencias, dormitorios estudiantiles, edificios de departamentos, etc.) y en la mayoría de lugares intermedios (plazas centrales, cafés, terminales de autobuses, gasolineras). Cada vez que se instala una red Wireless en un café o una institución escolar, se crea un Hot Spot y se proporciona conectividad inalámbrica al Internet. Un número en aumento de segmentos de la población depende cada vez más de la comunicación eficiente y del acceso a fuentes de información, el uso de Internet se está convirtiendo en una necesidad primordial dado a que aumenta la productividad en el trabajo y mejora la calidad de vida personal. El correo electrónico, el acceso a páginas Web y hasta
comunicaciones telefónicas (como una posible alternativa menos costosa que el teléfono tradicional o celular) se están convirtiendo en la forma más efectiva de tener acceso a comunicaciones globales multimedia instantáneas [2].

La tecnología de redes Wireless aumentan el valor del acceso al Internet dado a que permite la conexión sin cables. Computadoras inalámbricas (laptops), PDAs, teléfonos IP se liberan de la necesidad de un cable. Además las redes de Wireless proporcionan un bajo costo de instalación y operación por los siguientes motivos:

- No requiere licencias para operar el equipo de radio (salvo las que la COFETEL ha denominado como frecuencias licenciadas) [3].
- No requiere cables para su conexión a los dispositivos del usuario.

Son estándares internacionales aceptados por la mayoría de los países que proporciona grandes mercados que a su vez aumentan el volumen de fabricación y la reducción de precios. Por otra parte como con cualquier otro equipo electrónico, la ley Moore establece la constante reducción de precios y/o la complejidad de los circuitos integrados, favoreciendo al mismo tiempo los volúmenes de producción y acelerando más aún la reducción de precios de los bloques claves (chips de silicio) requeridos para construir las redes Wireless.

Las redes Wireless pueden ser accedidas por el usuario con un alcance que varía desde varios a unos centenares de metros (dependiendo de las características de propagación y del estándar utilizado) dictadas por el espacio que rodea el punto de acceso. Sin embargo el valor percibido de la conectividad de banda ancha y su acceso de bajo costo (algunas veces gratis en los llamados Hot Spots Públicos) al Internet están aminorando esta limitación. Hasta que la instalación de los Hot Spots sea capilar se requerirá una adaptación de comportamiento en nuestras vidas ambulantes, que incluya una breve visita a aquellos lugares donde la conectividad inalámbrica está disponible.

En los países donde ha habido una adopción temprana de Wireless (por ejemplo en los Estados Unidos y Corea del Sur) han surgido miles de Hot Spots enfocados a ejecutivos que viajan por motivo de negocios, en las áreas donde ellos pasan la mayoría del tiempo (aeropuertos, hoteles, cafés, etc.) permitiéndoles descargar su
correo electrónico y/o mensajes mientras esperan por sus conexiones, descansan, o conducen negocios fuera de la oficina.

La disponibilidad de información en el momento oportuno se ha hecho esencial en nuestra vida diaria. Esta información ahorra tiempo y esfuerzo y proporciona la oportunidad de llevar el producto al mercado cuando los precios sean más atractivos o regular otras actividades de acuerdo a las condiciones metereológicas u otros factores. Para obtener este beneficio, se requiere acceso a información y conocimiento a través del Internet. El Wireless brinda la ventaja de acceder a la información, alcanzando el “último kilómetro”, sin cables. Este acceso, que se hace posible mediante un punto de acceso, requiere la creación de una capacidad de red local en áreas públicas medidas en cientos de metros cuadrados [2].

2.3. Acerca de las redes proveedoras de IP

A comienzos de los 90, las redes de ISP se componían de routers interconectados por líneas alquiladas enlaces E1 (2 Mb/s) y E3 (34 Mb/s). A medida que Internet comenzó su crecimiento exponencial, los ISP respondieron a este reto provisionando más enlaces para proporcionar ancho de banda adicional. En este contexto, la ingeniería de tráfico adquirió cada vez más importancia para los ISP, a fin de poder usar eficientemente el ancho de banda agregado cuando se disponía de varios caminos paralelos o alternativos.

En las redes troncales basadas en routers, la ingeniería de tráfico se efectuaba simplemente manipulando las métricas de enrutamiento. El control de tráfico basado en métricas supuso una solución adecuada para la ingeniería de tráfico hasta 1994 ó 1995, momento en el que las redes adquirieron una dimensión tal, que hacía cada vez más difícil asegurar que un ajuste de métrica en una parte de una red extensa, no creaba un problema en otra parte de la red. Los routers de backbone no ofrecían los enlaces de alta velocidad ni el rendimiento determinista que los ISP requerían para el crecimiento planificado para sus redes troncales.

Además, el cálculo de rutas IGP estaba basado en la topología y en una métrica aditiva simple, como el número de saltos o un valor administrativo. IGP no distribuía información como la disponibilidad de ancho de banda o las características del tráfico.
Por consecuencia de esto, el tráfico no se distribuía equitativamente entre los enlaces de la red, causando un uso ineficiente de recursos costosos. Unos enlaces podían estar congestionados mientras otros seguían infrautilizados. En definitiva, la política más común entre los ISP para solventar estos problemas era sobredimensionar la capacidad de sus redes troncales, lo que no siempre era posible debido a las limitaciones de capacidad de los routers.

En 1995 el volumen del tráfico de Internet alcanzó un punto en el que los ISP necesitaban migrar sus redes para soportar enlaces troncales superiores a E3 (34 Mb/s). Afortunadamente, en ese momento aparecieron los interfaces ATM STM-1 (155 Mb/s) en conmutadores y routers. Los ISP se vieron forzados a rediseñar sus redes para poder usar las mayores velocidades soportadas por una red troncal ATM. Después de un período de un año, los enlaces entre conmutadores ATM se tuvieron que actualizar a STM-4 (622 Mb/s).

Los ISPs que migraron a redes troncales ATM comprobaron que los PVC (circuitos virtuales permanentes) de ATM proporcionaban una herramienta que permitía efectuar un control preciso del tráfico que fluía por sus redes. Los ISP confiaban en los interfaces de alta velocidad, el rendimiento determinista, y la funcionalidad de PVC de los conmutadores ATM para gestionar con éxito la operación de sus redes.

Una red troncal basada en ATM soportaba la ingeniería del tráfico, porque permitía enrutar explícitamente PVCs. Esto se efectuaba provisionando una topología virtual arbitraria por encima de una topología física de red dada, en la que los PVC se definían con el fin de distribuir precisamente el tráfico entre todos los enlaces de modo que estuvieran igualmente cargados [4].

Actualmente, sin embargo, las características que eran exclusivas de ATM (interfaces de alta velocidad, rendimiento determinista, ingeniería del tráfico mediante definición de PVC) se pueden encontrar también en los routers de backbone.

Estos avances han hecho que los ISP se replanteen continuar con un modelo de red superpuesta IP/ATM, cuya principal limitación es que requiere gestionar dos redes diferentes, una infraestructura ATM y un overlay lógico IP. Asimismo, el enrutamiento y la ingeniería de tráfico se producen en dos tipos de sistemas diferentes; enrutamiento
en los routers e ingeniería del tráfico en los conmutadores ATM, por lo que resulta muy difícil integrar completamente el enrutamiento y la ingeniería de tráfico.

Además, ATM tiene limitaciones debido a la función SAR (ensamblado y reensamblado de segmentos), que hace que la velocidad máxima de los interfaces ATM disponibles en los routers sea inferior a la disponible en las jerarquías más elevadas de SDH. Los fabricantes raramente ofrecen interfaces ATM superiores a STM-16 (2.5 GB/s).

Por lo demás, una red superpuesta IP/ATM con una malla completa de PVC tiene importantes problemas de escalabilidad, porque las conexiones varían con el cuadrado de los nodos, y por la sobrecarga resultante sobre IGP.

La alternativa de MPLS supone un mecanismo flexible y prometedor para soportar ingeniería de tráfico, calidad de servicio extremo y enrutamiento basado en políticas sobre las redes de ISP. MPLS provee una clara separación entre el enrutamiento y la conmutación, y permite el despliegue de un único plano de control MPLS que puede utilizarse para múltiples servicios y tipos de tráfico, y sobre distintas redes incluyendo SDH, DWDM, ATM e IP. En el futuro, a medida que los ISP necesiten desarrollar nuevos servicios, la infraestructura MPLS podrá mantenerse cambiando simplemente el modo de asignar paquetes a un LSP.

MPLS todavía no se ha desplegado masivamente en las redes de los ISP porque los routers concentradores desplegados anteriormente carecen del rendimiento, escalabilidad y capacidad de proceso por flujo necesario para implementarlo eficazmente. En paralelo a los avances en el hardware, la próxima generación de routers concentradores inteligentes con soporte de MPLS podrán actuar como PE y examinar flujos de tráfico individuales, proporcionando las funciones de calidad de servicio y forwarding a la velocidad del cable que requieren los ISP para poder implantar sus servicios.

Las principales incertidumbres en torno a MPLS son la escalabilidad de las redes privadas virtuales, debido a la dimensión que adquirirían las tablas de enrutamiento en los PE con cientos o miles de clientes conectados, y la interoperabilidad entre distintos fabricantes, que es un requisito necesario para la interconexión de redes.
Por otro lado, las redes IP/MPLS no están preparadas todavía para soportar toda la gama de servicios de ATM, y aunque el tipo de tráfico que crece más rápidamente en la actualidad es IP, los servicios de ATM y Frame Relay siguen creciendo. Para aquellos proveedores que disponen de una plataforma ATM, y quieren desarrollar nuevos servicios IP manteniendo el soporte de sus servicios ATM y Frame Relay, se ha creado la funcionalidad "Ships In The Night" en los conmutadores ATM.

"Ships In The Night" permite la coexistencia de un plano de control ATM y un plano de control MPLS en el mismo equipo. Los dos planos de control son corresponentes en el mismo equipo, pero operan independientemente y simultáneamente sobre cada puerto (véase la figura 2.1). Esto permite a los ISP introducir MPLS gradualmente en la red, dividiendo una red física ATM en dos topologías disjuntas - una mantenida por el plano de control ATM tradicional y otra por el plano de control MPLS [4].

![Figura 2.1 Planos de control [4].](image)

2.4. Acerca de la banda ancha

Como casi todas las industrias basadas en la tecnología, el sector de las telecomunicaciones se ha caracterizado tradicionalmente por un crecimiento constante puntuado por grandes avances ocasionales, generalmente en el momento de la introducción de nuevas tecnologías. En la última parte del siglo XX, la llegada casi simultánea de dos grandes innovaciones, telefonía móvil e Internet, transformó el panorama de las comunicaciones y dio un nuevo impetu al crecimiento económico. No obstante, a medida que estas innovaciones alcanzan
su punto de saturación, al menos en el mundo desarrollado, se buscan detonantes para una nueva ola de innovación y crecimiento.

En la edición de 2002 de los Informes Internet de la UIT, *"Internet for a Mobile Generation"*, se examinó la probabilidad de que la conjunción de Internet y las comunicaciones móviles se convirtiese en un importante factor de crecimiento. Esta convergencia de las tecnologías móviles e Internet sigue presentando buenas expectativas, aunque se prevé que alcanzarlas lleve más tiempo de lo esperado. Mientras tanto, está surgiendo una nueva tecnología que promete servir de plataforma unificadora para tres sectores industriales convergentes: la informática, las comunicaciones y la radiodifusión. Esta tecnología es la banda ancha, tema del citado informe.

Por la naturaleza misma de la banda ancha el despegue del mercado requiere una determinada masa crítica de usuarios. Actualmente, cerca de uno de cada diez abonados a Internet en todo el mundo dispone de una conexión de banda ancha (véase la figura 2.2) aunque muchos más comparten los beneficios del acceso a Internet de alta velocidad, por ejemplo, a través de una red de área local (LAN) en el trabajo o la escuela. El líder mundial de la banda ancha es la República de Corea (véase la figura 2.3), que tiene unos tres años de adelanto con respecto a la media mundial en términos de adopción de la banda ancha por parte de los usuarios de Internet. En dicho país se alcanzó la masa crítica a principios de 2000, momento en que los precios descendieron por debajo de los 25 USD al mes y que marcó el principio de un rápido despegue (véase la figura 2.3). Más del 93% de los abonados a Internet en Corea utiliza la banda ancha.

Hasta el momento, la utilización de la banda ancha en los hogares ha representado la mayor proporción del mercado, pero en el futuro, las aplicaciones empresariales o estatales pueden llegar a ser igualmente importantes. Además de llevar el acceso a Internet de alta velocidad a los hogares en todo el mundo, la nueva generación de tecnologías de banda ancha compite muy eficazmente con los servicios de línea arrendada o RDSI que utiliza generalmente el sector empresarial. La banda ancha puede resultar hasta 800 veces más barata, por megabyte por segundo, que las actuales alternativas de red privadas, lo que supone para las empresas y los usuarios
estatales un gran incentivo para adoptar las nuevas tecnologías de banda ancha. Los proyectos desarrollados durante el momento álgido de las *punto.com*, abandonados entonces por resultar onerosos o necesitar demasiado ancho de banda, pueden recuperarse y volver a lanzarse con la banda ancha, en los países en desarrollo, a medida que desciende su precio, y evolucionan las tecnologías inalámbricas, la banda ancha puede ayudar a saltarse la etapa de las tecnologías de telefonía tradicional, como ya ilustran varias iniciativas [4].

Figura 2.2 Utilización de la banda ancha e Internet en el mundo, en millones [4].
2.4.1. Tecnologías de banda ancha

Aunque la mayoría de las personas han oído hablar de la banda ancha, pocos sabrían exactamente cómo definirla. A menudo se asocia la banda ancha con una velocidad o conjunto de servicios concretos, pero en realidad, la expresión "banda ancha" es como un blanco móvil. Las velocidades de acceso a Internet crecen sin cesar. Por consiguiente, tan sólo se puede hablar realmente del estado actual de la banda ancha y hacer extrapolaciones hipotéticas basándose en la evolución planificada o incipiente, que puede o no dar frutos en el futuro.

Generalmente la banda ancha se utiliza para describir conexiones recientes a Internet, que son significativamente más rápidas que las de las tecnologías de conexión telefónica actuales, pero no se trata de una velocidad o un servicio específicos. En la Recomendación I.113 del Sector de Normalización de la UIT se define la banda ancha como la transmisión capaz de soportar velocidades
superiores a la velocidad primaria RDSI, a 1.5 ó 2.0 Mb/s. En general, se considera que la banda ancha corresponde a una velocidad de transmisión igual o superior a 256 Kb/s, e incluso algunos operadores denominan la velocidad básica RDSI (144 Kb/s) como un "tipo de banda ancha". En este Informe, aunque no se define específicamente la banda ancha, se considera que en general 256 Kb/s es la velocidad mínima.

La ventaja real de la banda ancha es que proporciona más posibilidades de desarrollar aplicaciones y servicios, mejorando los existentes o permitiendo la implantación de los nuevos. La disponibilidad de la banda ancha depende principalmente de las redes existentes, que varían de acuerdo con la infraestructura ya instalada. En los países desarrollados y en las zonas urbanas, por ejemplo, ya se dispone de tecnologías de cable, basadas en pares trenzados o pares coaxiales. En los países en desarrollo y en las zonas rurales pueden resultar más prácticas y rentables otras tecnologías más modernas, inalámbricas o por satélite. La fibra óptica ofrece las mejores posibilidades a largo plazo. También desempeñan un papel fundamental factores culturales, políticos, geográficos, económicos o de otro tipo, así como el marco reglamentario y los acuerdos de apoyo institucional [4].

Las conexiones por cable representan la gran mayoría (más del 98%) de las actuales conexiones, aunque las tecnologías inalámbricas están creciendo rápidamente. Dentro de las conexiones de línea fija, la línea digital de abonado (DSL) y el módem de cable son las tecnologías más populares (véase la figura 2.4). Hasta el 2000, la mayoría de los usuarios de banda ancha utilizaban módems de cable, y éste seguía siendo el método más común de acceso en América del Norte. Pero a nivel mundial, la ADSL representa en la actualidad más de la mitad de las conexiones, siendo muy utilizada en Asia y Europa Occidental. Allí donde las conexiones de línea fija no están disponibles o no se pueden instalar fácilmente, están ganando popularidad varias tecnologías inalámbricas como el Wi-Fi y el reciente aparecido WiMax. En el Informe Birth of Broadband (Nacimiento de la Banda Ancha) se describen detalladamente cada una de estas tecnologías cableadas e inalámbricas y se resumen las distintas características de las principales tecnologías en la tabla 2.1.
Figura 2.4 Penetración de la banda ancha, por tecnología, en millones [4].

<table>
<thead>
<tr>
<th>Tecnología</th>
<th>Velocidad Mb/s</th>
<th>Alcance</th>
<th>Notas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADSL(G.dmt)</td>
<td>8</td>
<td>medio</td>
<td>Ancho de banda garantizado, utiliza un divisor</td>
</tr>
<tr>
<td>ADSL(G.lite)</td>
<td>1,5</td>
<td>medio</td>
<td>Distancias más largas, mejor velocidad</td>
</tr>
<tr>
<td>SHDSL</td>
<td>4,6</td>
<td>medio</td>
<td>Simétrica, rápida</td>
</tr>
<tr>
<td>ADSL2</td>
<td>8</td>
<td>medio</td>
<td>Sin divisor, ADSL mejorada</td>
</tr>
<tr>
<td>ADSL2plus</td>
<td>16</td>
<td>medio</td>
<td>ADSL2 con mayor ancho de banda</td>
</tr>
<tr>
<td>VDSL</td>
<td>52</td>
<td>corto</td>
<td>Alta velocidad, distancias cortas</td>
</tr>
<tr>
<td>Cable</td>
<td>30</td>
<td>grande</td>
<td>Rápido, compartición de capacidad entre los usuarios</td>
</tr>
<tr>
<td>Fibra óptica</td>
<td>10000</td>
<td>grande</td>
<td>Muy alta velocidad, óptica</td>
</tr>
<tr>
<td>Inalámbrica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>802.11b (Wi-Fi)</td>
<td>11</td>
<td>100 m</td>
<td>La más popular y generalizada</td>
</tr>
<tr>
<td>802.11a</td>
<td>54</td>
<td>50 m</td>
<td>Más moderna, más rápida, mayor frecuencia</td>
</tr>
<tr>
<td>802.11g</td>
<td>54</td>
<td>100 m</td>
<td>Rápida, compatible con Wi-Fi de la generación anterior</td>
</tr>
<tr>
<td>802.11e</td>
<td>54</td>
<td>ND</td>
<td>Añade QoS, no disponible en a, b, o g.</td>
</tr>
<tr>
<td>802.16 (WiMax)</td>
<td>70</td>
<td>50 Km.</td>
<td>QoS, muy larga distancia, red metropolitana</td>
</tr>
<tr>
<td>RadioLAN</td>
<td>10</td>
<td>35 m</td>
<td>Especializada en puentes inalámbricos</td>
</tr>
<tr>
<td>HomeRF</td>
<td>1</td>
<td>50 m</td>
<td>Sustituido por HomeRF2</td>
</tr>
<tr>
<td>HomeRF2</td>
<td>10</td>
<td>100 m</td>
<td>QoS, mejor encriptación, no muy generalizada</td>
</tr>
<tr>
<td>HiperLAN2</td>
<td>54</td>
<td>150 m</td>
<td>Norma europea, QoS, para voz/video</td>
</tr>
<tr>
<td>HiperMAN</td>
<td>ND</td>
<td>50 Km.</td>
<td>Europea, compatible con 802.16a</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>1</td>
<td>10 m</td>
<td>Red de área personal [no WLAN]</td>
</tr>
<tr>
<td>Infrared LAN</td>
<td>4</td>
<td>20 m</td>
<td>Únicamente en el mismo recinto</td>
</tr>
</tbody>
</table>

Tabla 2.1 Diversas tecnologías de banda ancha.
2.4.2. Provisión de banda ancha

La banda ancha se considera cada vez más como un catalizador para el éxito económico en el marco de la economía de la información. Cada vez más países se centran en poner a disposición de sus poblaciones acceso asequible a la banda ancha. En muchas economías desarrolladas, el acceso a la banda ancha ha sido proporcionado principalmente por el sector privado, sobre todo allí donde el mercado goza de una competencia eficaz, contando con el apoyo del gobierno únicamente cuando es necesario corregir algún fracaso del mercado. Pero otros gobiernos, principalmente en Asia, han elaborado estrategias nacionales para la promoción de la banda ancha y para llevar esta tecnología a las regiones o comunidades que no serían las primeras en obtenerla si dependiese de las fuerzas del mercado.

Muchas empresas participan en el mercado de la banda ancha, pero en la mayoría de los Estados Miembros de la UIT el operador de línea fija resulta ser el proveedor dominante, a pesar de no haber sido siempre el primero en abrir el mercado. Los países donde más éxito se ha obtenido son aquellos donde existe un segundo proveedor solvente que opone una real competencia al proveedor principal, como ha sido el caso con Hanaro Telecom en Corea o Yahoo BB! en Japón. Los países que no disponen de red de televisión por cable, o donde el proveedor establecido posee las redes telefónicas y de televisión por cable, se han quedado atrás con respecto a sus homólogos en el desarrollo de la banda ancha.

A finales de 2002, 82 de más de 200 economías de todo el mundo (véase la figura 2.5) disponían de servicios de banda ancha comerciales. Desde 2000, las cifras de la banda ancha a nivel mundial se han quintuplicado, y se estima que hay más de 60 millones de usuarios. Como era de esperar, las tasas de penetración están muy estrechamente relacionadas con el producto interno bruto (PIB) per cápita (véase la figura 2.6), aunque Corea se sitúa muy por encima de los demás.
A medida que la banda ancha se implanta en el mercado, en un momento de convergencia y cambios tecnológicos, los modelos de los proveedores pueden variar considerablemente. Algunos usuarios finales incluso fabrican sus propias conexiones de fibra al proveedor de servicios Internet. Generalmente, estas iniciativas, que suelen contar con la participación de grandes empresas o instituciones públicas como escuelas y hospitales, pretenden evitar los altos costos asociados con los servicios de alta velocidad y calidad que ofrecen los proveedores de banda ancha establecidos.

Figura 2.6 Abonados a la banda ancha por cada 100 habitantes, por INB (PPA) per cápita, 2002 [4].
De este modo, puede crearse un tipo de consorcio consistente en un grupo de clientes que disponen cada uno, de un número determinado de cables de fibra oscura (coaxial) dentro de un cable de fibra óptica. Depende de cada cliente instalar los dispositivos electrónicos para activar la fibra, creando efectivamente redes privadas independientes que pueden conectarse a la red central. En la práctica se puede encomendar a profesionales la instalación y el mantenimiento. Este modelo también se está haciendo muy popular entre otros clientes que desean evitar los altos costos que entrañan las soluciones comerciales, pero la oferta debe adaptarse a la demanda real, lo que significa que el mercado debe adaptarse a las necesidades reales de los usuarios [4].

2.4.3. Aplicaciones sobre la banda ancha

Una vez examinado el desarrollo de la infraestructura y las tecnologías de banda ancha, y las dificultades que plantea la prestación de este servicio a un precio razonable, la primera pregunta que se nos ocurre es ¿qué hacer con ello? En pocas palabras, ¿cómo se utiliza la banda ancha hoy en día, cuáles son las repercusiones para la utilización en el futuro, para el desarrollo del mercado y para los usuarios?

Internet ha propiciado la creación de una multitud de nuevas aplicaciones, tales como la navegación en la Web, los mensajes instantáneos, el compartir ficheros, el comercio electrónico y el correo electrónico. Con la llegada de la banda ancha y sus conexiones más rápidas y permanentes, las posibilidades de desarrollo de estos servicios están incrementándose drásticamente, abriendo camino a las aplicaciones interactivas, principalmente los juegos en línea, la realidad virtual y otros servicios digitales de alta calidad.

La banda ancha llega en un momento en que el revolucionario potencial de Internet aún está por descubrir y está acelerando la integración de las tecnologías de Internet en la vida diaria. Este crecimiento en sí mismo tiene numerosas repercusiones en asuntos como los derechos de propiedad intelectual (DPI) y la seguridad, dado que cada vez más material está disponible en formato digital. También llega en un momento de convergencia tecnológica, cuando las aplicaciones informáticas están trasladándose a otros dispositivos (teléfonos móviles, televisores, etc.), y viceversa.
(por ejemplo, aplicaciones de ocio en computadoras). Se presenta un panorama de las aplicaciones actuales y previstas de las tecnologías de banda ancha, con inclusión de servicios para los consumidores como buscadores de Internet, servicios de voz (por ejemplo, voz sobre banda ancha o protocolo Internet), esparcimiento e información. También se examinan servicios de dominio público específicos tales como la ciberadministración, la teleenseñanza y la telemedicina, así como el comercio electrónico y aplicaciones empresariales.

Evidentemente, la utilización de la banda ancha está relacionada con el contenido y la evolución de modelos para la elaboración y distribución de contenido en línea lo que suscita cuestiones de carácter reglamentario y ético y con los posibles atascos en la comercialización y distribución de servicios de banda ancha [4].

En lo que respecta al contenido de Internet, por ejemplo, los DPI son muy importantes. Ante el contenido en Internet, el sistema de DPI tradicional tuvo que adaptarse a nuevos sistemas de difusión. Este marco reglamentario se está adaptando, pero aún es necesario mucho más trabajo y negociación. Con la banda ancha, se prevé que el tipo y la cantidad de contenidos intercambiados a nivel mundial aumenten drásticamente, complicando aún más la situación. La industria del entretenimiento comercial ve una amenaza en las tecnologías entre pares (P2P).

El problema se hace más evidente al saber que los servicios de banda ancha permiten un intercambio más rápido de ficheros voluminosos, permitiendo la descarga de álbumes completos, o incluso películas. Sólo la industria de la música pretende haber sufrido pérdidas cercanas al 7% en 2002 debido al intercambio de música digital y esto mismo temen las industrias cinematográfica e informática.

2.4.4. Aspectos de reglamentación y de política

Como otras tecnologías de las telecomunicaciones, la banda ancha suscita una serie de cuestiones de reglamentación y política. Por ejemplo. Las investigaciones parecen indicar que cuando los sectores público y privado interactúan para crear el marco adecuado, el crecimiento de la banda ancha es más rápido. Limitados por reglamentos y directrices gubernamentales dirigidos a promover un nivel saludable de
competencia, los operadores de banda ancha aún pueden aumentar sus servicios y redes obteniendo beneficios. Del mismo modo, eliminar o modificar determinadas prácticas reglamentarias restrictivas puede hacer que los gobiernos relancen considerablemente el ciclo de oferta y demanda. A partir de ahí puede surgir un círculo virtuoso de ganancia social y crecimiento económico.

Además de las tendencias y políticas de la competencia, entre otras cosas, de qué manera la reglamentación puede facilitar la entrada en el mercado de nuevos proveedores de banda ancha, garantizar una competición leal en el mercado y promover la prestación prácticamente universal de servicios de banda ancha.

A pesar de la tendencia hacia la liberalización del mercado, especialmente en los servicios de banda ancha, todavía quedan grandes dudas acerca del auténtico nivel de la competencia en los mercados de las comunicaciones en el mundo. En la figura 2.7 se muestran los niveles de competencia en varios sectores en el mundo.

![Figura 2.7 Competencia en varios sectores del mercado de las TIC [4].](image)

En lo que respecta a la banda ancha, se observa una marcada tendencia a que los proveedores establecidos sigan dominando los mercados donde se les ha permitido competir junto con nuevos proveedores. Esto es igualmente cierto para mercados históricamente competitivos como el de los servicios móviles y de Internet. En 2002, los operadores establecidos en países miembros de la Organización para la Cooperación y el Desarrollo Económico (OCDE) controlaban más del 80% del mercado de acceso en banda ancha, mientras que en los de la Unión Europea (UE) controlaban más del 90% del mercado de banda ancha (véase la figura 2.8).
Figura 2.8 Desglose de líneas DSL por tipo de proveedor, UE, marzo de 2003, en porcentaje [4].

Estas cifras corroboran que, incluso en los países donde se han liberalizado los mercados de las telecomunicaciones, la apertura del mercado en sí misma no ha sido suficiente para desarrollar una competencia significativa. Evidentemente, esto refleja hasta cierto punto las realidades comerciales como el tamaño limitado del mercado, la falta de estabilidad económica, el bajo rendimiento de las inversiones y el reciente colapso de la confianza de los inversores, todo lo cual afecta a la capacidad de los nuevos actores a competir eficazmente con un operador establecido. También refleja los actuales procesos estatales para implantar una política de competencia. En este contexto, para los países es cada vez más importante disponer de las instituciones y políticas necesarias para manejar eficazmente el volumen y la complejidad crecientes de las cuestiones relativas a la competencia, que retrasan el desarrollo de una competencia significativa. Una vez establecido el adecuado entorno de política, puede dejarse a la dinámica entre empresas y consumidores la tarea de determinar el ritmo y la orientación del desarrollo del mercado de banda ancha [4].

2.4.5. Promoción de la banda ancha

En realidad, hay más de una respuesta a la pregunta de por qué vale la pena promover la banda ancha. En general, los análisis muestran fehacientemente que las economías que promueven activamente las nuevas tecnologías a menudo obtienen
mejores resultados en términos de acceso, ganancias económicas y repercusión tecnológica. La banda ancha no es una excepción. Los análisis muestran asimismo que los consumidores generalmente desconocen los beneficios que pueden obtener de pasar a la banda ancha, y es necesario explicárselos para convencerlos.

Para los gobiernos, la banda ancha es una manera de promover el desarrollo económico y obtener determinados beneficios sociales. Por ejemplo, en la República de Corea y Hong Kong (China) que actualmente son las economías líderes en banda ancha, el gasto en telecomunicaciones, como porcentaje del PIB, creció tres veces más deprisa en los 10 últimos años que la media. Como ya han experimentado muchos países, la banda ancha puede asimismo facilitar la prestación de servicios públicos, como el ciberaprendizaje, la cibersalud y la ciberadministración [5].

Para las empresas de telecomunicaciones, la banda ancha representa el camino para compensar la actual ralentización de la industria. La banda ancha ofrece a los consumidores una gama mucho más amplia y rica de aplicaciones, especialmente cuando se dispone de servicios de alta velocidad.

En lo que respecta a las empresas, especialmente las pequeñas y medianas, la banda ancha aporta ventajas de acceso a las comunicaciones de alta velocidad y las capacita para alcanzar una audiencia mundial a la que anteriormente sólo podían acceder las grandes empresas. Asimismo, la banda ancha aporta flexibilidad en el lugar de trabajo gracias al teletrabajo y al acceso remoto a la red a grandes velocidades.

Los precios desempeñan quizá el papel más importante en la promoción de la demanda de la banda ancha. Aquellas economías donde se ha implantado con éxito se caracterizan por sus reducidos precios, generalmente como resultado de una competencia floreciente y de innovadores esquemas de fijación de precios que atraen a una amplia variedad de clientes. Visto que el precio desempeña un papel tan importante a la hora de que los usuarios tomen las decisiones, es fundamental entender de qué manera las políticas de reducción de precios incrementan la penetración de la banda ancha.

Una cosa es percibir la urgente necesidad de promover la banda ancha, pero
promoverla activamente y con éxito es otra cuestión. Es aquí donde las experiencias de las economías que lo han logrado aportan pistas valiosas sobre las estrategias válidas y fallidas. Los factores clave del crecimiento y el desarrollo de la banda ancha pueden variar de un país a otro, aunque una cosa está clara; los países que han tenido en cuenta la oferta y la demanda son los que más éxito han tenido a la hora de promover la banda ancha y de aumentar la calidad y la variedad de servicios. A partir de la experiencia de las economías que más éxito han tenido con la banda ancha, se deduce que un enfoque proactivo de la promoción de la banda ancha es ciertamente una de las claves del éxito.

2.4.6. La banda ancha y la sociedad de la información

La fusión de las redes digitales y la información con las redes sociales del siglo XXI tiene consecuencias para todo el mundo. Cualquiera que sea la definición que se le dé a "sociedad de la información", sigue habiendo muchas preguntas sin responder sobre cómo y por qué deben privilegiarse las acciones que dan protagonismo a la utilización de las tecnologías de la información y la comunicación (TIC) en nuestras vidas.

En los países industrializados y, especialmente, en los países en desarrollo, se ha de eliminar lo antes posible, en determinadas zonas geográficas y diversos grupos sociales, la constante exclusión de personas que se ven marginadas ante el acceso a las TIC y a los conocimientos y aptitudes necesarios para utilizarlas (es decir, la "brecha digital"). La innovación tecnológica por sí misma no basta para lograr una sociedad de la información sostenible orientada al crecimiento. Es necesaria la cooperación de todos los interesados.

La banda ancha es sólo una de las muchas tecnologías presentes en este momento, pero lo más prometedor, desde el punto de vista de la sociedad de la información, reside en dos aspectos. En primer lugar, la capacidad de la banda ancha para multiplicar las aplicaciones (comunicaciones de voz por banda ancha, por ejemplo, aplicaciones Internet, aplicaciones de televisión/vídeo y audio) en una sola red. En segundo lugar, las ganancias económicas que ello conlleva, que se traducen a su vez en menores costos para los consumidores. Al aumentar las velocidades de transferencia de datos y la competencia entre los proveedores de servicio, los precios
suelen descender rápidamente, acercando el acceso a la información a cada vez más personas en el mundo. Al igual que estas características concretas de la banda ancha, se aborda la seguridad de las redes y cuestiones éticas, así como ejemplos concretos del modo en que la banda ancha puede ayudar a las sociedades desarrolladas y en desarrollo en la transición hacia la sociedad de la información mundial, o ponerlas en peligro [6].

En determinados contextos, la banda ancha inalámbrica puede ser especialmente prometedora. Los "Hotspots" (lugares muy concurridos, por ejemplo en aeropuertos, hoteles, cafés) se están expandiendo a zonas urbanas completas hasta alcanzar una plena cobertura inalámbrica. Aunque estas iniciativas se encuentran en su fase inicial, organizaciones como las Naciones Unidas han empezado a aprehender el potencial que las tecnologías inalámbricas, como las LAN inalámbricas, pueden tener para los países en desarrollo, que suelen carecer de las infraestructuras de línea básicas.

Como señaló el Secretario General de las Naciones Unidas Kofi Annan, "es precisamente en los lugares donde no hay infraestructura donde la Wi-Fi puede ser particularmente eficaz, contribuyendo a que los países salten varias generaciones de tecnologías e infraestructuras de telecomunicaciones, y puedan dar oportunidades a sus habitantes".

Tanto como las iniciativas individuales, son fundamentales los esfuerzos de normalización para armonizar las interfaces y los protocolos entre redes y garantizar su seguridad. Los gobiernos y la industria ya están participando activamente en estas actividades de normalización, incluso a través de la UIT. La coordinación del espectro de radiofrecuencias también requiere una firme cooperación internacional, del mismo modo que la investigación y el desarrollo, que es la piedra angular del futuro desarrollo tecnológico. En esta y en otras esferas, la cooperación internacional es un requisito fundamental para hacer realidad cualquier visión mundial de la sociedad de la información [4].

2.4.7. El nacimiento de la banda ancha, ¿es el principio de una nueva era?

A mediados de 2002, con más de 60 millones de hogares y empresas abonados a la banda ancha, y más personas accediendo a ella a través de cibercafés o conexiones
en el trabajo o en la escuela, se estimaba que las redes de banda ancha habían alcanzado a más de 300 millones de personas en todo el mundo. En determinados mercados, se predice que la banda ancha es uno de los servicios de consumidores de comunicaciones que crece más rápido. En Estados Unidos se prevé que la banda ancha alcance el 25 por ciento de penetración más rápido de lo que lo hicieron los PC o los teléfonos móviles (véase la figura 2.9).

A pesar del crecimiento global de la penetración de la banda ancha, determinadas economías han tenido más éxito que otras. Muchas de ellas aún se están esforzando por dar acceso a lo largo y ancho del país, principalmente porque el despliegue de la red de banda ancha entraña unos costos fijos elevados. Aunque ya existe la mayor parte de la tecnología para dar acceso a la banda ancha en una escala semejante a la de la telefonía móvil, la banda ancha no está disponible tan fácilmente, principalmente en las economías en desarrollo.

Los estudios de casos, así como información obtenida de los Estados Miembros de la UIT, proveedores de servicios y reguladores en todo el mundo, muestran que, si se tiene la voluntad suficiente y se tienen en cuenta las necesidades de los usuarios y los contextos culturales y económicos, los gobiernos y la industria pueden colaborar para promover y difundir la banda ancha en beneficio de todos. Signos prometedores de ello son que, gracias a la innovación y adaptabilidad de las tecnologías a las circunstancias locales, la banda ancha puede utilizarse para ampliar el acceso al conocimiento y la información [5].

Figura 2.9 Crecimiento de la penetración de banda ancha en Estados Unidos [5].
2.5. Tecnología WiMax

WiMax (del inglés World Wide Interoperability for Microwave Access, Interoperabilidad Mundial para Acceso por Microondas) es un estándar de transmisión inalámbrica de datos (802.MAN) proporcionando accesos concurrentes en áreas de hasta 48 kilómetros de radio y a velocidades de hasta 70 Mbps, utilizando tecnología que no requiere visión directa NLOS [7].

Integra la familia de estándares IEEE 802.16 y el estándar HyperMAN del organismo de estandarización europeo ETSI. El estándar inicial 802.16 se encontraba en la banda de frecuencias de 10-66 GHz y requería torres LOS. La nueva versión 802.16a, ratificada en marzo de 2003, utiliza una banda del espectro más estrecha y baja, de 2-11 GHz, facilitando su regulación. Además, como ventaja añadida, no requiere de torres LOS sino únicamente del despliegue de estaciones base (BS) formadas por antenas emisoras/receptoras con capacidad de dar servicio a unas 200 estaciones suscriptoras (SS) que pueden dar cobertura y servicio a edificios completos. Su instalación es muy sencilla y rápida. Su precio competitivo en comparación con otras tecnologías de acceso inalámbrico como Wi-Fi.

Esta tecnología de acceso transforma las señales de voz y datos en ondas de radio dentro de la citada banda de frecuencias. Está basada en OFDM, y con 256 subportadoras puede cubrir un área de 48 kilómetros permitiendo la conexión sin línea vista, es decir, con obstáculos interpuestos, con capacidad para transmitir datos a una tasa de hasta 75 Mbps con una eficiencia espectral de 5.0 bps/Hz y da soporte para miles de usuarios con una escalabilidad de canales de 1.5 MHz a 20 MHz. Este estándar soporta niveles de servicio (SLAs) y calidad de servicio (QoS).

WiMax se sitúa en un rango intermedio de cobertura entre las demás tecnologías de acceso de corto alcance y ofrece velocidades de banda ancha para un área metropolitana.

El WiMax Forum es un consorcio de empresas (inicialmente 67 y hoy en día más de 100) dedicadas a diseñar los parámetros y estándares de esta tecnología, y a estudiar, analizar y probar los desarrollos implementados. En principio se podría deducir que
esta tecnología supone una grave amenaza para el negocio de tecnologías inalámbricas de acceso de corto alcance en que se basan muchas empresas, pero hay entidades muy importantes detrás del proyecto. Las principales firmas de telefonía móvil también están desarrollando terminales capaces de conectarse a estas nuevas redes. Después de la fase de pruebas, se espera comenzar a ofrecer servicios de conexión a Internet a 4 Mbps a partir de 2007, incorporando WiMax a los ordenadores portátiles y PDA (En los países desarrollados).

El pasado 7 de diciembre de 2005, el IEEE aprobó el estándar del WiMax Móvil, el 802.16e, que permite utilizar este sistema de comunicaciones inalámbricas con terminales en movimiento. Muchos fabricantes de hardware y operadores estaban esperando a esta decisión para empezar a desplegar redes de WiMax. Ahora ya pueden hacerlo.

Lo que ocurría en la práctica es que pocos se atrevían a invertir en WiMax bajo el único estándar aprobado hasta ahora, el 802.16d, que sólo sirve para aquellos terminales que están en un punto fijo. Ahora ya sabemos qué especificaciones técnicas debe tener el hardware del WiMax móvil, que es mucho más atractivo económicamente, con lo que es posible diseñar infraestructuras mixtas fijo-móviles. En Corea se ha materializado las ventajas de un WiMax móvil trabajando en 2.3Ghz y se le ha acuñado el nombre de WiBRO (Wireless Broadband), esta iniciativa empezó sus despliegues comerciales en el 2006 [8].

2.5.1. WiMax en Latinoamérica y proyección de México

En América Latina ya se ha implementado, tanto experimental como comercialmente WiMax en varios países.

La primera red WiMax fue en Argentina, donde Alvarion implementó su red desde 2005. En Colombia, Orbitel en las ciudades de Cali y Barranquilla ofrece comercialmente el servicio, además Telecom provee una red mixta de WiMax-J.C.-Fi en la ciudad de Bucaramanga, la primera ciudad totalmente inalámbrica de cobertura total en Latinoamérica, en Bogotá Superview ofrece también planes comerciales desde el 2006.
En Venezuela, Omnivisión desplegó la red WiMax en Caracas junto a Siemens en la banda de 2.5 GHz., sin embargo, recientemente CONATEL (ente regulador de las telecomunicaciones en ese país) asignó las bandas de 3.5 y 3.7 GHz para el uso de esta tecnología, lo que ha retrasado un poco el lanzamiento comercial.

En México, AXTEL pertenece WiMax Forum y esta en vías de implementación. Intel ha firmado un acuerdo con la Estación Científica Charles Darwin en Galápagos, Ecuador, para implementar un proyecto piloto de interconexión WiMax entre las diferentes islas que conforman el archipiélago.

En Chile, WiMax se aproxima ya que en el segundo trimestre de este año podrán llegar los primeros Access Point (antenas) WiMax, permitiendo conexiones de alta velocidad sin cables.

En El Salvador, le han adjudicado a una empresa de telefonía móvil (TELEMOVIL), las frecuencias para que puedan implementar WiMax, se desconoce cuando la implementarán o si están trabajando en el desarrollo de este nuevo reto que proporcionan las TIC's (Tecnologías de la Información y Comunicaciones).

En Colombia, la empresa Orbitel, inicio sus operaciones en Septiembre de 2006 haciendo pruebas técnicas y de servicio en Cali, Barranquilla y Bogota. A mediados de noviembre comenzó a operar el servicio WiMax en una parte de Medellín [5].

2.6. Componentes de un ISP

La necesidad creciente de conectividad con Internet está imponiendo fuertes exigencias a los proveedores de servicios Internet, tanto en el número de conexiones de acceso de los usuarios como en los servicios que los usuarios requieren en cada conexión. La tasa de crecimiento del tráfico de Internet está en torno al 100% anual, y hay una demanda creciente de aplicaciones que necesitan capacidades superiores a las de los servicios "best effort", exigiendo una mayor predecibilidad en la red. Entre estas aplicaciones podemos citar: Redes Privadas Virtuales de Nivel 3, Intranets, Extranets, Voz sobre IP, alquiler de aplicaciones, etc.
La calidad de servicio, incluyendo una rápida conectividad, es esencial en la prestación de servicios IP, de ahí que el diseño de las infraestructuras de los proveedores de Internet se caracterice actualmente por una elevada redundancia en todos los elementos de alta escalabilidad y fiabilidad, y por la presencia de múltiples enlaces de alta capacidad [14].

En el presente proyecto consideraremos el escenario más completo, es decir, el caso de un proveedor que disponga de infraestructura propia en los diferentes niveles de la red.

Describimos los componentes de la infraestructura y los principios típicos de diseño, así como algunas posibles evoluciones a medida que crezca la red, si bien es necesario indicar que en la práctica existen tantos diseños diferentes como ISP.

La estructura de red que exponemos sigue un modelo de red jerárquico que permite diseñar las redes por capas. La utilización de modelos jerárquicos presenta la ventaja de que la modularidad en el diseño permite crear elementos de diseño que se pueden replicar a medida que la red crece.

La estructura modular de la red también facilita el aislamiento de fallos y en consecuencia la operación de la red [9].

2.6.1. Descripción de la infraestructura

Físicamente, Internet está compuesto por routers interconectados por enlaces de comunicación. Las redes IP más simples están formadas por unos pocos routers de propósito general interconectados por enlaces propios o alquilados.

A medida que las redes se vuelven más complejas, con un número mayor de elementos, se requiere más estructura. Los elementos se especializan en sus aplicaciones, la gestión y la seguridad adquieren mayor importancia, la localización física es un factor a tener en cuenta, y la capacidad de manejar altas densidades de clientes es crítica.
Como los routers trabajan con direcciones de nivel 3, que tienen una estructura, al imponer una estructura jerárquica a una red los routers pueden usar caminos redundantes y determinar rutas óptimas incluso en una red que cambia dinámicamente. Las estructuras de red jerárquicas también facilitan la separación de dominios de difusión.

Por otro lado, el mecanismo de enrutamiento del protocolo IP es el enrutamiento salto-a-salto (hop-by-hop) sin estado basado en el destino, que tiende intrínsecamente a agregar tráfico en las principales rutas troncales, lo que justifica la implantación de una estructura jerárquica.

Un modo de imponer una estructura a una red compleja consiste en asignar tareas específicas a routers particulares. Una solución muy frecuente en las redes de ISP es realizar la siguiente división de routers:

- **Routers de concentración**: que proporcionan acceso a la red a los clientes individuales. Estos equipos tienden a centrarse en soportar números elevados de puertos de relativa baja velocidad conectados a los clientes.
- **Routers de backbone**: que proporcionan transporte óptimo entre nodos de la red, enviando paquetes a gran velocidad de un dominio a otro o de un proveedor de servicios a otro. El énfasis se pone en alcanzar las mayores tasas de transmisión o forwarding rates sobre los interfaces más rápidos disponibles [9].

Así pues, la infraestructura de red necesaria para proveer los servicios IP se puede descomponer a alto nivel en 4 partes:

- Red de acceso.
- Red de concentración.
- Backbone o red troncal, que incluye la interconexión con otros proveedores y salida a Internet.
- Red de gestión, DNS, Radius/Autenticación. Estas aplicaciones críticas para un ISP se centralizan en un CPD o Centro de Proceso de Datos.
La mayor parte de los ISP también imponen una estructura física a sus redes organizándolas en Puntos de Presencia (POP). Un POP es una ubicación física donde se dispone, como exponemos en los apartados siguientes, de una serie de equipos:

- Nodos de acceso o RAS.
- Routers concentradores de RAS.
- Routers concentradores de clientes con líneas dedicadas.
- Routers de backbone.

La interconexión de los usuarios con la red de datos del proveedor se realiza en estos POP. Actualmente, de acuerdo con esta estructura de red, en la mayor parte de las redes de los ISP se perfilan tres niveles jerárquicos de interconexión, como se muestra en la figura 2.10 [22].

A medida que se incrementen la capacidad de procesamiento y las funcionalidades de los routers, se tenderán a equiparar las funcionalidades de los routers de concentración y backbone. No obstante, se considera que se mantendrá en el futuro la diferenciación entre los niveles de concentración y backbone, porque la eliminación de los routers troncales implicaría que los routers restantes tuvieran que comunicarse en una red mallada, sobrecargando el plano de control IP y limitando el crecimiento de la red [10].
2.6.1.1. Red de acceso

Los clientes pueden acceder por:

- **Lineas conmutadas o dial-up**: que representan actualmente más del 90 % de los clientes. Este tráfico (sobre enlaces portadores + enlace señalización número 7) llega al Punto de Interconexión del operador de acceso, que está conectado con una central de conmutación. La central toma como argumento el número de destino y saca en interfaces primarios (ISDN PRI) el tráfico de Internet. Estos primarios se suministran a los equipos RAS (Remote Access Server) situados en los POP de la Red de Datos.

El usuario final dispone de un equipo de cliente (módem o router) que establece una sesión PPP con el RAS. El RAS es un dispositivo de acceso remoto que dispone de un pool de módems y que realiza funciones de cliente RADIUS, autenticando al usuario y terminando la sesión PPP. RADIUS es un estándar de Internet adoptado de manera generalizada en las situaciones en las que un dispositivo de acceso remoto necesita autenticar a un usuario de acceso conmutado frente a un servicio de directorio.

La salida del RAS se enlaza con un router concentrador de acceso mediante VLAN. Para incrementar el nivel de servicio se realiza un diseño redundante (véase la figura 2.13), en el que cada RAS tiene dos salidas; una Fast Ethernet y otra Ethernet. Y se conecta a dos VLAN. Cada una de las VLAN tiene conexión con dos routers concentradores de acceso diferentes.

Los RAS tendrán dos rutas por defecto. La ruta por defecto a través de la interfaz Ethernet tendrá una métrica superior a la ruta a través de la interfaz Fast Ethernet. [13]

En los últimos años han surgido los gateways SS7. Estos equipos realizan las funciones de un RAS pero se pueden conectar directamente con señalización SS7 al punto de Interconexión, eliminando la necesidad de puertos de conmutación y de interfaces primarios. Además estos equipos permiten reducir
la congestión de red y aumentar las tasas de conexión. La figura 2.11 representa el escenario de un proveedor con un Gateway SS7.

![Diagrama de un proveedor con un Gateway SS7](image)

Figura 2.11 Escenario de un proveedor con un gateway SS7 [13].

Para incrementar el nivel de servicio es conveniente considerar una doble conexión física entre el Gateway SS7 y el router [13].

- **Líneas dedicadas**: uno de los componentes de más rápido crecimiento del acceso a Internet es la conectividad entre negocios mediante líneas alquiladas. El tráfico de líneas alquiladas se define como DSO, N64, E1, E3 ó STM-1(denominaciones de acceso de enlaces dedicados).

En este caso los clientes disponen de un router que se enlaza directamente mediante una línea dedicada con un router concentrador de acceso, por el que entra a la red de datos del proveedor. El router concentrador de acceso realiza la agregación del tráfico procedente de líneas alquiladas.

El enlace entre el router de cliente y el router concentrador se soporta actualmente sobre anillos de fibra óptica de área metropolitana. Los POPs (Puntos de Presencia) diseñados antes de la generalización de los interfaces SDH en los routers requerían una multitud de bastidores de DSU (data service units) para terminar E1 sobre pares de cobre tradicionales. Los routers concentradores de acceso actuales proporcionan una alta densidad de terminaciones para conexiones DS1 y DS3, de modo que una sola tarjeta de
línea puede terminar cientos de circuitos DS1 transportados sobre una sola fibra.

- **Líneas ADSL**: que permiten a los clientes disponer de acceso permanente de banda ancha sobre una línea telefónica convencional. El usuario es provisto de un equipo de cliente que incluye un módem ADSL. Este equipo se conecta al punto de terminación telefónica en el domicilio del usuario. En el otro extremo del par de cobre se localiza el DSLAM (Digital Subscriber Line Access Multiplexer), encargado de terminar las conexiones ADSL de nivel físico de múltiples usuarios y de conmutar las celdas ATM transportándolas hacia la red de acceso. El ISP de Internet se conecta mediante un enlace ATM al Punto de Acceso Indirecto (PAI) del operador de acceso, que establece un PVC (circuito virtual permanente) de ATM entre el usuario y el PAI.

Para soportar el acceso por líneas ADSL es necesario introducir en la red de datos un nuevo elemento denominado BAS o Broadband Access Server (véase la figura 2.12). Este equipo concentra el tráfico y actúa como frontera entre los niveles 2 y 3, teniendo funcionalidades de enrutamiento, autenticación y control de tráfico.

![Figura 2.12 Estructura de una red de líneas ADSL](image)

En las redes de ISP se tiende actualmente a desplegar ATM únicamente en el borde de la red, con la misión de agregar tráfico ADSL de los DSLAM, así como servicios de Frame Relay, en switches ATM. La mayor parte de los ISP ya no despliegan ATM en la red troncal, que está basada íntegramente en IP.

La demanda de servicios de ADSL exige que los conmutadores ATM tengan capacidad para soportar un número elevado de VC (circuitos virtuales). Los
conmutadores ATM no estaban diseñados inicialmente para soportar múltiples DSLAM, que pueden tener cientos de circuitos virtuales por cada circuito DSLAM-conmutador [17].

2.6.1.2. Red de concentración

La misión de esta red, situada en el borde de la red de datos, es agregar las conexiones de los clientes en los puntos de presencia del proveedor. Dentro del POP, en el nivel de concentración tenemos dos tipos de routers de concentración, unos dedicados a la concentración de clientes conmutados y otros dedicados a la concentración de clientes dedicados.

Las características clave de los routers concentradores de acceso son:

- Escalabilidad y alto ancho de banda para satisfacer la demanda creciente de transmisión de datos, voz y video.
- Alta densidad de puertos para satisfacer el crecimiento continuado del número de clientes.
- Procesador optimizado para gestionar agregaciones de tráfico de gran volumen y nuevas funcionalidades software.
- Prestaciones de valor añadido adicionales al enrutamiento de paquetes de alta velocidad: redes privadas virtuales, seguridad con listas de acceso extendidas y firewalls, diferenciación de calidad de servicio, soporte multicast, etc.
- Mecanismos para flexibilizar las velocidades de acceso permitidas, como Multilink PPP. Este estándar de Internet (IETF RFC 1990) usa cabeceras de paquetes y procedimientos especiales para distribuir un único flujo de paquetes sobre varios enlaces en paralelo y recomponerlo en el extremo receptor. Esto permite a los clientes cuyas necesidades han sobrepasado una línea E1 (2Mb/s), utilizar varias líneas E1 en vez de pasar a una línea E3 (34 Mb/s), lo cual supone un salto excesivo. Este protocolo también se emplea para permitir que un cliente pueda conectarse a Internet utilizando a la vez los 2 canales B de un acceso básico RDSI.
Si tomamos el caso de los clientes dial-up, los routers concentradores disponen en ambos extremos de interfaces Fast Ethernet o Gigabit Ethernet con redundancia física, conectándose en un extremo a las VLAN de los RAS y en el otro extremo a las VLAN de los routers de backbone (véase la figura 2.13) [9].

La siguiente figura representa la estructura y conexiones lógicas de un POP.

![Figura 2.13 Estructura y conexiones lógicas de un POP. [9]](image)

Como vemos, en este escenario se emplea el switching Ethernet (tecnología IP/Ethernet) tanto en la interconexión entre el nivel de acceso y el de concentración como entre el nivel de concentración y el troncal.

Se puede optimizar este escenario reemplazando el switching Ethernet por enlaces punto a punto (tecnología PACKET OVER SONET) en la interconexión entre el nivel de concentración y el troncal. En este caso sería necesario disponer de GigaRouters en el nivel troncal con capacidad para concentrar un gran número de interfaces de fibra. Este nuevo escenario presentaría los siguientes beneficios:

- Reducir el retardo de los paquetes en el POP, por la supresión del proceso de tramas (SWITCH LEVEL 2) entre la capa de concentración y la capa troncal.
• Reducir puntos de fallo en la interconexión entre la capa de concentración y backbone.
• Optimizar las interconexiones mediante un entorno VLAN conmutado entre la capa de acceso y concentración.

Volviendo a las características de los routers de concentración, estos deben disponer de funcionalidades de routing OSPF y BGP, y políticas de control de tráfico. En los bordes de la red la política de control de tráfico más empleada es CAR (Committed Access Rate), que limita la tasa máxima de tráfico transmitido o recibido, y también puede marcar la Precedencia IP de los paquetes. Los dispositivos del interior de la red pueden usar la precedencia IP para determinar cómo se trata el tráfico para entregar la calidad de servicio requerida, usando algoritmos de planificación como WFQ (Weighted Fair Queing).

DWRED (Distributed Weighted Random Early Discard) es un algoritmo inteligente de gestión de colas para tráfico TCP que establece en función de la precedencia IP la probabilidad de que un paquete sea descartado, evitando congestiones de los enlaces y mejorando su utilización. No es propiamente un mecanismo de control de congestión, sino más bien un mecanismo para prevención de congestiones, que evita la sincronización entre sesiones de transporte y las oscilaciones [15].

Sin embargo, la activación de estos mecanismos incrementa la carga en los procesadores de los routers, y limita por tanto el ancho de banda de los enlaces que son capaces de gestionar. Se pueden instalar en los routers módulos con procesadores adicionales para ejecutar estos algoritmos en modo distribuido, con lo que se podrían gestionar anchos de banda más elevados (45 Mb/s o incluso 155 Mb/s).

Si se desea implementar un control de tráfico más refinado en la red, se requieren mecanismos de diferenciación de servicios como Diffserv, o MPLS.

En cuanto a las políticas de Routing en la red de datos, los RAS implementan generalmente rutas estáticas y usan RIPv2 para la publicación de las direcciones de las sesiones PPP. Los routers concentradores de clientes suman las direcciones que reciben por RIPv2 y las publican vía OSPF a los demás routers de la red [16].
Los routers de backbone no necesitan conocer cada red individual en el nivel de acceso. Por eso los routers concentradores, en lugar de anunciar al backbone una gran cantidad de información detallada sobre destinos individuales, suman o concentran grupos de destinos del nivel de acceso en prefijos de ruta únicos más cortos, y anuncian estas rutas sumadas al backbone. Asimismo, esta técnica (address summarization) permite que cada vez que se produzcan cambios topológicos la información no tenga que ser transmitida por toda la red, sino sólo por la región de concentración local, y hace que las tablas de enrutamiento se reduzcan de modo significativo.

2.6.1.3. Red troncal

La red troncal se encarga de:

- Agregar el tráfico procedente de las redes de acceso y concentración.
- Interconexión con el resto de POP de la Red.
- Interconexión a otras Redes, proveedores de tránsito y puntos neutros.
- En uno de los POP se efectuará también la interconexión con el entorno del Centro de Proceso de Datos.

En la tabla 2.2 contrastamos las principales diferencias entre los routers de concentración y los routers de backbone:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Router de Backbone</th>
<th>Router de concentración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput en paquetes/seg</td>
<td>Extremadamente alto</td>
<td>Alto</td>
</tr>
<tr>
<td>Conjunto de funcionalidades de procesamiento de paquetes</td>
<td>Mínimo, centrado en el reenvío rápido</td>
<td>Funcionalidades de alto valor añadido</td>
</tr>
<tr>
<td>Tipos de interfaces</td>
<td>Número modesto de interfaces de muy alta velocidad</td>
<td>Número elevado de interfaces de relativamente baja velocidad</td>
</tr>
<tr>
<td>Patrones de tráfico</td>
<td>Cualquier interfaz a cualquier interfaz</td>
<td>Predominantemente cliente-troncal y troncal-cliente</td>
</tr>
</tbody>
</table>

Tabla 2.2 Diferencias entre routers de concentración y backbone.

Las diferencias listadas en esta tabla no son absolutas, y frecuentemente un router concreto puede desempeñar ambos papeles. No obstante, a medida que el tráfico de
Internet siga creciendo la exigencia de que los routers de concentración tengan una mayor densidad y los routers troncales manejen throughputs más elevados se irá acentuando. Otra cuestión importante es que la existencia de un número de elevado de interfaces, es decir la densidad, en los routers de concentración mejora el rendimiento estadístico de la red. Ello es debido a que las redes de paquetes están diseñadas para aprovechar la multiplexación estadística, basándose en el hecho de que todos los enlaces no están activos al mismo tiempo. El tener más enlaces disponibles reduce la probabilidad de que un pico de tráfico simultáneo de varias fuentes cause una congestión de red temporal.

Otros beneficios de la densidad son:

- El coste del metro cuadrado en un POP es elevadísimo. El gasto en alquiler de locales se rebaja al disminuir el número de bastidores necesarios para conectar un número elevado de clientes.
- La gestión de red se simplifica al desplegar un número menor de routers de mayor potencia. Disponer de menos routers individuales que configurar, gestionar y monitorizar produce una operación más eficiente [23].

2.6.2. Evolución de los routers e implantación de MPLS

Los routers están constantemente evolucionando y adquiriendo nuevas prestaciones. Las últimas tendencias de los principales fabricantes de routers, que denominan en la actualidad a estos equipos NextGen Routers o routers de nueva generación, son las siguientes:

- **Routers de concentración**: se está integrando MPLS en los routers, para establecer en los bordes de la red la calidad de servicio. Los routers del backbone deberán soportarla. MPLS también permite ofrecer servicios customizados para Ethernet (por ejemplo, mapeo de VLAN a MPLS). Algunos fabricantes hablan de nuevos servicios de emulación de circuitos sobre IP, otros soportan funcionalidades de billing sofisticadas basadas en identidades de grupos de trabajo, aplicaciones o zonas geográficas.
• **Routers de backbone**: sus funcionalidades de gestión de tráfico evolucionan con la inclusión de MPLS, y sus capacidades se incrementan con la adopción de interfaces STM-64.

La orientación a conexión de MPLS, a diferencia de IP, y la conmutación basada en etiquetas posibilitan las siguientes oportunidades:

- **Ingeniería de tráfico**: el enrutamiento salto a salto (hop-by-hop) de IP no tiene por qué ser el más eficiente o adecuado, sobre todo teniendo en cuenta los requisitos actuales de calidad de servicio en Internet. Una de las principales ventajas que aporta la implantación de MPLS en la red de datos es la ingeniería de tráfico para optimizar la utilización de los enlaces entre los routers. En ausencia de ingeniería de tráfico, el tráfico IP sigue el camino más corto, ignorando rutas alternativas a través de la red. Esto conduce a cuellos de botella en enlaces fuertemente cargados (hipergagregación), mientras que otros enlaces permanecen infrautilizados.

La utilización del enrutamiento basado en restricciones de red y caminos conmutados conduce a una red cargada de forma más uniforme y permite realizar un control de congestión. Una red con ingeniería de tráfico basada en MPLS tendrá los enlaces igualmente cargados, dando como resultado una red con mayor robustez contra los picos de tráfico y unas mayores prestaciones globales [16].

- **Servicios de conectividad VPN multitecnología**: Los caminos conmutados de MPLS o LSP (Label Switched Path) permiten provisionar servicios de interconexión corporativos de forma segura, puesto que los paquetes son conmutados mirando sólo las etiquetas, sin entrar en el contenido IP ni de nivel superior. Esto es, MPLS permite transportar de forma transparente y conmutada cualquier tipo de información entre dos puntos. MPLS va a permitir, por consiguiente, proporcionar múltiples servicios de transporte de modo muy similar a como se pueden proporcionar mediante una red ATM.

- **Calidad de servicio**: por medio de los LSP’s, se podrán proporcionar calidades de servicio diferenciadas, de modo similar a como se hace en ATM. Sin embargo, en la actualidad ATM tiene definidas calidades de servicio cuantitativas en los estándares, que son implementadas e interoperables con
los diferentes fabricantes, mientras que de momento MPLS sólo ofrece la promesa de proporcionar al tráfico IP un cierto nivel de calidad de servicio. Esta se implementará inicialmente como un grado de prioridad alta o baja en base a una clase de servicio (CoS) cualitativa, mediante una combinación de MPLS con el modelo de Servicios Diferenciados del IETF.

- **Posibilidad de ofrecer servicios orientados a conexión en entornos LAN/MAN:** MPLS permite ofrecer Redes Privadas Virtuales de Nivel 2 (también denominadas TLS o Transparent LAN Services), en las que el que el camino MPLS a través de la red del ISP es un circuito virtual entre dos ubicaciones de cliente. Los circuitos virtuales de nivel 2 son una red superpuesta (overlay) MPLS sobre la red troncal del proveedor [21].

En la terminología de las Redes Privadas Virtuales MPLS existen 3 tipos de routers:

- **Router de cliente o CPE:** La utilización de MPLS es completamente transparente a estos equipos. Los CPE intercambian rutas con la red en RIP (también pueden tener rutas estáticas) de manera transparente a MPLS.

- **Provider Edge (PE) router:** ubicados en el borde de la red MPLS. Son los routers que tienen conocimiento de la Red Privada Virtual. Tienen conexión directa con los routers de los clientes e implementan una tabla de enrutamiento virtual (VRF, Virtual Routing and forwarding). Cuando el CPE envía un paquete al PE, el PE consulta la VRF para saber el PE al que enviará al paquete, y a continuación encapsula el paquete dentro de un LSP hacia este PE. Para mantener el nivel de seguridad necesario en una red privada virtual el ISP establece túneles L2TP entre el NAS y el PE.

- **P (Provider) router:** que forman el núcleo de la red MPLS. Sólo conocen los LSP. Los P conmutan los paquetes recibidos a través de la etiqueta más exterior que los encapsula, por lo que no tienen conocimiento de las Redes Privadas Virtuales. Su única función es conmutar los paquetes de cada LSP que los atraviesa.

Con la introducción de MPLS en la red de datos del ISP, los Routers Concentradores de acceso pasarán a actuar como PE y los Routers de Backbone harán funciones de P, como se refleja en la figura 2.14 [17].

2.7. Consideraciones generales de diseño

Para favorecer una alta calidad de acceso a Internet, la topología interna de la red de datos de un ISP se diseña de manera que el número máximo de saltos en toda la red es reducido (idealmente, 3). Asimismo, se utilizan equipos de altas prestaciones y se establecen políticas de routing que favorecen el reparto de carga entre todos los enlaces.

Se han realizado distintos modelos teóricos para optimizar el diseño de una red de paquetes en base a la reducción del retardo medio de tránsito. Este parámetro es crucial para las aplicaciones en tiempo real, multimedia y streaming. Las variables que se pueden ajustar en el diseño son la capacidad de los enlaces y la topología, y se considera como condición de contorno adicional el coste de la red.

Las topologías ideales que resultan son las de alta conectividad, es decir, aquellas que tienden a conectar los routers del backbone con todos los demás. El ejemplo extremo es la topología en malla, en la que el número medio de saltos en el backbone es 1.
Sin embargo, en esa topología el número de conexiones varía con el cuadrado del número de nodos. Por otro lado, una topología completamente mallada sobrecarga el protocolo de enrutamiento IGP (Interior Gateway Protocol) del ISP. Esta sobrecarga resulta del número de relaciones entre pares que es necesario mantener, del reto de procesar \(n^3 \) actualizaciones de estado de enlace en caso de un fallo, y de la complejidad de realizar el cálculo de Dijkstra sobre una topología con un número elevado de enlaces.

En la práctica se tiende a un compromiso, empezando con una topología de red suficiente para las necesidades del momento (por ejemplo, una topología en estrella con cada nodo de conexión con proveedores de tránsito, en la que el número medio de saltos en el backbone tiende a 2), y se va mallando en función de la utilización de los enlaces y de las necesidades cambiantes de los clientes.

Asimismo, se habilitan enlaces redundantes que protejan frente a la caída o saturación de los enlaces principales, y todos los enlaces se sobredimensionan para hacer frente al crecimiento del tráfico, toda vez que en la práctica desde la solicitud de un enlace a un operador de acceso hasta su disponibilidad transcurren varias semanas [18].

Para la conectividad internacional se dispone de varios proveedores de tránsito. La conexión con los proveedores de tránsito internacionales o puntos neutros nacionales se efectúa por POPs distintos, consiguiendo de este modo:

- Ofrecer un mejor balanceo de carga en el interior de la red, con la consiguiente mejora de calidad de servicio a los clientes al no centralizar en un único punto de la red todo el tráfico de Internet.
- Proteger el acceso internacional frente a desastres en un único POP.

Los ISP simplifican el diseño y mantenimiento de la red usando un mismo patrón para todos sus POP. Un diseño de POP típico es el reflejado en la figura 2.13, que tiene las siguientes ventajas:

- Los routers de concentración y backbone están separados, por lo que la configuración de los routers de backbone puede permanecer relativamente estable en el tiempo. Los routers de backbone no se ven afectados cuando
se añaden o eliminan clientes individuales de los routers de concentración, o cuando clientes individuales contratan servicios de valor añadido.

- Se emplean dos routers de backbone en cada POP para aumentar la disponibilidad de red.
- Hay redundancia en los enlaces entre los routers y entre los RAS y los routers de acceso, mejorando la disponibilidad de red.
- Se pueden añadir fácilmente routers de concentración a medida que crece el número de usuarios.

2.7.1. Centro de proceso de datos

Alberga los servidores de: gestión de red IP, gestión de equipos de cliente, DNS, Radius. Todos ellos son sistemas de elevada disponibilidad en balanceo de carga, altamente escalables, y protegidos por firewalls.

Al tratarse de sistemas críticos, encontrar las causas de posibles fallos en el menor tiempo posible se convierte en una prioridad. En consecuencia, se recomienda no instalar sistemas heterogéneos en un mismo segmento de LAN. Asimismo, es necesario realizar un diseño con el mínimo número de equipos entre la red de acceso y los servidores finales, para eliminar puntos de fallo.

En el caso de sistemas que lleven un tráfico reducido o no sean críticos (por ejemplo, sistemas de News) se puede reemplazar la instalación de un firewall por la implantación de listas de control de acceso (ACL) en los routers y la seguridad a nivel de sistema operativo [19].

En la figura 2.14 se representa un ejemplo de estructura de CPD de un ISP. Como se ve, el CPD se conecta a un router del backbone por dos líneas redundantes y está compuesto por las siguientes redes de área local:

- **LAN de gestión**: que incluye los servidores de gestión de red IP, gestión de equipos de cliente, estadísticas y acuerdos de nivel de servicio, y máquinas de visualización. El acceso desde la red IP a esta LAN está protegido por un firewall dedicado.
• **LAN DNS/Radius**: incluye los servidores de DNS principal, DNS caché y Radius. Debido a que esta LAN incluye los servidores más críticos, el acceso desde la red IP está protegido por dos firewalls dedicados en balanceo de carga. El balanceo de carga hace que la carga máxima posible se duplique. Para tener una alta disponibilidad de servicio, se recomienda instalar un servidor DNS en cada POP, o al menos un servidor DNS en cada uno de los POP de más tráfico de la red. Por ejemplo, un ISP nacional podría instalar un DNS en el DF y otro en Hidalgo, de tal manera que parte de los usuarios del territorio nacional tendrían como DNS primario DF y la otra parte de los usuarios Hidalgo, y como DNS secundario el DNS del otro POP.

Con esta estructura hemos conseguido separar el tráfico de gestión del resto del tráfico. Además, se puede aprovechar la presencia de dos firewalls en la subred de DNS y Radius para evolucionar posteriormente a un escenario con una LAN específica para DNS y otra para Radius, separando también estos dos tipos de tráfico [20].

En la figura 2.15 también se han representado las consolas ubicadas en dos centros remotos de operación de red, desde las que los operadores de la red realizan la operación y mantenimiento de la misma. El acceso se realiza sobre Redes Privadas Virtuales u otros enlaces encriptados, como Secure Shell (SSH).

![Figura 2.15 Estructura LAN DNS/Radius](image-url)
CAPÍTULO 3.
INFRAESTRUCTURA DE LA RED DEL WISP

3.1. Introducción

El presente capítulo inicia hablando sobre los Protocolos y Normas estándar, para ello se realiza un análisis previo del estándar 802.16, en sus dos apartados: fijo y móvil, dedicando un tema acerca de los beneficios de adopción de una solución fija, similar se realiza la comparación de tecnologías Wimax para acceso fijo con y exentas de licencia; abordamos los fundamentos legales en nuestro país, y adentrando mas al tema detallamos la instalación teórica de la tecnología, sus ventajas, desventajas, características técnicas, desafíos de instalación, la resolución teórica de los mismos desafíos, su coexistencia, trabajo, tratamiento y mejora.
3.2. Protocolos y normas estándar

3.2.1. Análisis previo del estándar 802.16

Los proveedores de servicio inalámbrico de Internet (WISPs) existentes y en potencia, y los mercados verticales tales como el gubernamental y el educativo, están considerando los beneficios relacionados con la Interoperabilidad Mundial para Acceso por Microondas (WiMax), específicamente la flexibilidad y los beneficios de la reducción de costos relacionados con la porción exenta de licencia de WiMax.

La importancia de establecer y dar a conocer en términos técnicos el estándar 802.16 tiene como objetivo mostrar los usos y alcances de la tecnología que pretendemos utilizar.

La tecnología WiMax ofrece más alcance y ancho de banda que la familia de estándares de fidelidad inalámbrica (Wi-Fi) y ofrece una alternativa inalámbrica a las instalaciones backhaul por cable (wired backhaul) y last mile (de última milla) que usan módems por cable, de Especificación de Interfaz de Datos sobre Servicios de Cable (DOCSIS), tecnologías de Líneas de Abonado Digital (xDSL), sistemas de Portadoras T (T-carrier) y Portadoras E (E-carrier) - T-x/E-x -, y tecnologías de Nivel de Portadora Óptica (OC-x) [7].

WiMax está proyectado para tratar desafíos relacionados con tipos de instalación de acceso por cable tradicional tales como:

- **Backhaul**: Usa antenas punto a punto para conectar sitios de abonados entre sí y a las estaciones base en largas distancias.
- **Last mile**: Usa antenas punto a multipunto para conectar abonados hogareños o de empresas a la estación base.
- **Acceso de cobertura de áreas extensas**: Usa estaciones base, estaciones de abonados, y soluciones Wi-Fi, como las redes de malla, para cubrir un área extensa y proveer acceso a clientes 802.16e, también llamadas hot zones (áreas calientes).
El IEEE 802.16 el estándar con revisiones específicas se ocupa de dos modelos de uso:

- **Fijo.**
- **Móvil.**

3.2.1.1. Fijo

El estándar del 802.16-2004 del IEEE (el cuál revisa y reemplaza versiones del IEEE del 802.16a y 802.16d) es diseñado para el acceso fijo que el uso modela. Este estándar puede ser al que se refirió como "fijo inalámbrico" porque usa una antena en la que se coloca en el lugar estratégico del suscriptor. La antena se ubica generalmente en el techo de una habitación o en el mástil, parecido a un plato de la televisión del satélite. 802.16-2004 del IEEE también se ocupa de instalaciones interiores, en cuyo caso no puede ser tan robusto como al aire libre. El 802.16-2004 para el estándar es una solución inalámbrica que tiene acceso a Internet de banda ancha que provee interoperabilidad, solución de clase de transportador para la última milla. WiMax como punto de acceso fijo funciona desde 2.5-GHz autorizado, 3.5-GHz y 5.8-GHz exento en la licencia. Esta tecnología le provee una alternativa inalámbrica, las líneas digitales del suscriptor de cualquier tipo (xDSL).
3.2.1.2. Móvil

El estándar del 802.16e del IEEE es una enmienda para la especificación de la base 802.16-2004 y le apunta al mercado móvil sumando portabilidad y la habilidad para clientes móviles con IEEE. Los adaptadores del 802.16e para conectarse directamente al WiMax enlazan en red del estándar. El estándar 802.16e ha sido ratificado en 2005. El estándar 802.16e usa Acceso Múltiple por División Ortogonal de Frecuencia (OFDMA), lo cual es similar a OFDM en que divide en las subportadoras múltiples. OFDMA, sin embargo, se pasa un paso más allá para entonces agrupando subportadoras múltiples en subcanales. Una estación del cliente del suscriptor podría usar todos los subcanales dentro del periodo de la transmisión, o los clientes múltiples podrían transmitir con cada uno usando una porción del número total de subcanales simultáneamente. El estándar del 802.16-2004 del IEEE mejora la entrega de la última milla en varios aspectos cruciales:

- La interferencia del multicamino.
- El retraso difundido.
- La robustez [29].

3.2.2. Beneficios de la adopción de una solución fija WiMax

Uno de los beneficios de las soluciones WiMax para instalaciones en todo el mundo es la capacidad de utilizar una solución estandarizada tanto en una banda con licencia como en una exenta de licencia.

Las soluciones WiMax con licencia y las exentas de licencia ofrecen ventajas significativas sobre las soluciones por cable. La adopción de soluciones WiMax exentas de licencia y con licencia está impulsada por los siguientes beneficios adicionales:

- **Escalabilidad:** El estándar 802.16-2004 soporta anchos de canal de frecuencia de radio (RF) flexibles como una forma de aumentar la capacidad de la red. El estándar también especifica el soporte para el Control de Potencia de Transmisión (TPC) y a las medidas de la calidad del canal como herramientas adicionales al espectro eficiente de soporte. El estándar fue elaborado para
escalar cientos o inclusive miles de usuarios dentro de un canal RF. Los operadores pueden reasignar el espectro por medio de la sectorización a medida que aumente el número de abonados. El soporte a canales múltiples permite que los fabricantes de equipos suministren medios para tratar el alcance del uso del espectro y la asignación de reglamentaciones enfrentadas por operadores en los diversos mercados internacionales.

- **Bajo costo:** El medio inalámbrico usado por WiMax permite que los proveedores de servicio eviten los costos relacionados con la instalación de cableado, como por ejemplo, tiempo y mano de obra.
- **Flexibilidad:** Un medio inalámbrico permite la instalación de una solución de acceso a largas distancias a travésando terrenos variados en diferentes países.
- **Basado en estándares:** WiMax Forum ayuda a soportar interoperabilidad y coordinación entre proveedores que desarrollan productos según el estándar 802.16-2004 al probar y certificar que sus productos cumplen con sus requisitos [28].

3.2.3. Comparación de tecnologías WiMax para acceso fijo con licencia y exentas de licencia

Los gobiernos de todo el mundo reconocen el valor de las innovaciones asociadas con los estándares abiertos y las soluciones exentas de licencia y han establecido bandas de frecuencias disponibles para uso de tecnologías WiMax con licencia y exentas de licencia. Sin embargo, para imponer algún tipo de control sobre las soluciones exentas de licencia y para disminuir el potencial de interferencia, algunos gobiernos estipulan requisitos de potencia para operaciones de alta potencia y de baja potencia.

<table>
<thead>
<tr>
<th>Ventajas de Solución con Licencia</th>
<th>Ventajas de Solución Exenta de Licencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mejor calidad del servicio</td>
<td>Desarrollo rápido</td>
</tr>
<tr>
<td>Mejor recepción “non-line-of-sight” (sin línea de vista) – NLOS en bajas frecuencias</td>
<td>Menores costos</td>
</tr>
<tr>
<td>Mayores barreras de entrada</td>
<td>Más opciones en todo el mundo</td>
</tr>
</tbody>
</table>

Tabla 3.1 Beneficios de soluciones con licencia y exentas de licencia.
Cada región geográfica define y regula sus propias bandas con licencia y las exentas de licencia y permiten que los proveedores usen todos los espectros disponibles dentro de estas bandas, el estándar 802.16-2004 soporta tamaños de canal entre 1.5 MHz y 20 MHz [29].

<table>
<thead>
<tr>
<th>País/Área Geográfica</th>
<th>Bandas Usadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>América del Norte, México</td>
<td>3.5GHz y 5.8GHz</td>
</tr>
<tr>
<td>América Central y del Sur</td>
<td>2.5GHz, 3.5GHz y 5.8GHz</td>
</tr>
<tr>
<td>Europa Occidental y Oriental</td>
<td>3.5GHz y 5.8GHz</td>
</tr>
<tr>
<td>Medio Oriente y África</td>
<td>3.5GHz y 5.8GHz</td>
</tr>
<tr>
<td>Asia-Pacífico</td>
<td>3.5GHz y 5.8GHz</td>
</tr>
</tbody>
</table>

Tabla 3.2 Asignación mundial de bandas con licencia y exentas de licencia [29].

3.2.3.1. Bandas con licencia: 2.5 GHz y 3.5 GHz

La banda de 2.5 GHz se ha asignado en gran parte del mundo, incluso en América del Norte, América Latina, Europa Occidental y Oriental y partes de Asia-Pacífico, como banda con licencia.

Cada país asigna la banda de forma diferente, por lo que el espectro asignado en las regiones puede variar entre 2.6 GHz y 4.2 GHz. Un sistema que opera en la banda con licencia tiene una ventaja sobre un sistema que opera en una banda sin licencia: tiene un mayor presupuesto de potencia de downlink (enlace de descarga) y puede soportar mejor antenas interiores.

En Estados Unidos, la Federal Communications Comission (FCC) creó el Servicio de Radio de Banda Ancha (BRS), antes llamado sistema de distribución multipunto multicanal (MMDS) para acceso inalámbrico de banda ancha. La reestructuración siguiente permitió la apertura de bandas entre 2.495 GHz y 2.690 GHz para soluciones con licencia como, por ejemplo, 2.5 GHz en WiMax.

En Europa, el European Telecommunications Standards Institute (ETSI) asignó la banda de 3.5 GHz, originalmente usada para wireless local loop (WLL) a soluciones WiMax con licencia [27].
3.2.3.2. Banda exenta de licencia: 5 GHz

La mayoría de los países en todo el mundo han acogido el espectro de 5 GHz para comunicaciones exentas de licencia. Las bandas de 5.15 GHz y 8.85 GHz han sido designadas como exentas de licencia en gran parte del mundo.

Aproximadamente 300 MHz de espectro se encuentra disponible globalmente en muchos mercados, y 255 MHz adicionales de espectro de 5 GHz exento de licencia está disponible en mercados muy populares como el de Estados Unidos. Algunos gobiernos y proveedores de servicios están preocupados con la interferencia resultante de la disponibilidad de demasiadas bandas exentas de licencia, pues puede afectar a las redes de comunicación públicas y gubernamentales más importantes, tales como los sistemas de radar. Estos países y entidades se han ocupado en establecer requisitos de control limitados para espectros de 5 GHz. Por ejemplo, el Reino Unido está introduciendo restricciones a algunos canales de 5 GHz y considerando la aplicación del uso de la función DFS (Selección Dinámica de Frecuencia) [27].

En México, las leyes que requieren el uso del espectro “para beneficiar al pueblo” han influenciado al gobierno para que tome un enfoque proteccionista y generador de ingresos hacia el licenciamiento. El gobierno mexicano está dirigiendo hacia el licenciamiento al menos a 1 de las bandas de 5 GHz, con 5.8 GHz como candidato primario (Véase anexo 1).
La tabla 3.3 describe la disponibilidad de las bandas de frecuencia para WiMax.

<table>
<thead>
<tr>
<th>Banda</th>
<th>Frecuencias</th>
<th>¿Se requiere licencia?</th>
<th>Disponibilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 GHz</td>
<td>2.5 a 2.69 GHz</td>
<td>Sí</td>
<td>Asignadas en Brasil, México, algunos países del sudeste asiático y Estados Unidos (WiMax Forum también incluye 2.3 GHz en esta categoría de banda porque espera cubrir 2.3 GHz con la radio de 2.5 GHz). Su propiedad depende del país.</td>
</tr>
<tr>
<td>3.5 GHz</td>
<td>3.3 a 3.8 GHz pero primariamente 3.4 a 3.6 GHz</td>
<td>Sí, en algunos países</td>
<td>En la mayoría de los países la banda de 3.4 GHz se asigna a la banda ancha inalámbrica.</td>
</tr>
<tr>
<td>5 GHz</td>
<td>5.25 a 5.85 GHz</td>
<td>No</td>
<td>En la parte de 5.725 GHz a 5.85 GHz, muchos países permiten mayor salida de potencia (4 watts), lo que puede mejorar la cobertura.</td>
</tr>
</tbody>
</table>

Tabla 3.3 Bandas y frecuencias disponibles para WiMax [27].

3.3. Fundamentos legales de la implantación del WISP en México

3.3.1. Fundamento legal de la Ley Federal de Telecomunicaciones (COFETEL)

En base a la ley Federal de Telecomunicaciones publicada el día 7 de junio de 1995 la cual tiene por objeto regular el uso, aprovechamiento y explotación del espectro radioeléctrico de las redes de telecomunicaciones, y de la comunicación vía satélite (Articulo 1). Hemos de implantar una red publica de telecomunicaciones (Articulo 3, Fracción X) para ofrecer servicios de valor agregado (Articulo 3, Fracción XII) y para dichos efectos utilizaremos el Espectro radioeléctrico de uso libre de acuerdo al (Articulo 10 Fracción I) y el cual no requiere de concesión de acuerdo al (Articulo 11, Fracción I,II). Y para la operación del servicio obtendremos una concesión para una Red Publica de Telecomunicaciones (Articulo 24 al 28).
3.3.2. Fundamento legal de la banda de frecuencia de uso libre para WiMax

Basándonos en la resolución por medio de la cual la Comisión Federal de Telecomunicaciones (COFETEL) expide las condiciones técnicas de operación de la banda 5.725 a 5.850 MHz, para su utilización como banda de uso libre. Publicada aprobada, en todos y cada uno de sus términos, por el Pleno de la Comisión Federal de Telecomunicaciones, en su III Sesión Extraordinaria fechado el 15 de marzo de 2006 finalmente publicada en el diario oficial de la federación para su entrada en vigor el día Viernes 14 de Abril de 2006 establecemos nuestro Fundamento legal para la implantación del proyecto: DISEÑO DE UN PROVEEDOR DE SERVICIOS DE INTERNET INALAMBRICO (WISP) TECNOLOGIA WIMAX.

3.4. Instalación de una solución exenta de licencia

3.4.1. Soluciones exentas de licencia: ventajas y usos

Los costos relacionados con la adquisición de bandas con licencia están llevando a muchos WISPs y mercados verticales a considerar las soluciones exentas de licencia para mercados especializados. Las soluciones exentas de licencia ofrecen varias ventajas clave sobre las soluciones con licencia, incluso menores costos, desarrollo rápido, y una banda común que puede usarse en la mayor parte del mundo. Estos beneficios están alimentando los intereses y tienen potencial para acelerar la adopción de la banda ancha.

Los proveedores de servicios en mercados emergentes, como países en desarrollo o países maduros con regiones subdesarrolladas, pueden disminuir el tiempo de lanzamiento al mercado y los costos iniciales al instalar rápidamente una solución exenta de licencia sin permisos o subastas. Incluso las regiones maduras pueden beneficiarse de las soluciones exentas de licencia. Algunos proveedores de servicio pueden usar una solución exenta de licencia para proveer acceso last mile para hogares, empresas y backhaul.

Una solución exenta de licencia está regulada en términos de la potencia de salida de la transmisión en el caso de México no deberá exceder de 4 watts de Potencia
Isotrópica Radiada (PIRE), aunque generalmente no se necesita licencia. Un dispositivo o servicio puede usar la banda en cualquier momento en tanto que la potencia de salida sea controlada adecuadamente.

Un proveedor de servicio que desea servir a un mercado emergente o subdesarrollado con un servicio de clase ejecutiva puede usar una solución exenta de licencia, con un diseño de red correcto que incluya inspección de sitios y soluciones especializadas de antena, para ofrecer determinados Contratos de Nivel de Servicio (SLAs) para sus mercados especializados [27].

3.4.2. Características técnicas de bandas exentas licencia

Tanto las soluciones con licencia o exentas de licencia WiMax se basan en el estándar IEEE 802.16-2004, que usa multiplexación por división de frecuencia ortogonal (OFDM) en la capa física (PHY). OFDM ofrece beneficios tales como una relación señal-ruido (SNR) mejorada de estaciones de abonado y flexibilidad mejorada para interferencia multi-path y ambientes externos.

Duplexación se refiere al proceso de crear canales bi-direccionales para transmisión de datos de uplink (enlace de carga) y de downlink (enlace de descarga). Dúplex por división de tiempo (TDD) y dúplex de división de frecuencia (FDD) son soportadas por el estándar 802.16-2004. Las soluciones con licencia usan dúplex de división de frecuencia (FDD) mientras que las soluciones exentas de licencia usan dúplex por división de tiempo (TDD).

FDD requiere dos canales que son separados para minimizar la interferencia, uno para transmisión y otro para recepción. La mayoría de las bandas FDD son asignadas a voz porque la arquitectura bi-direccional de FDD permite manejar la voz con demoras mínimas. Sin embargo, FDD tiene componentes adicionales al sistema y esto eleva los costos.
TABLA 3.4 Comparación de TDD y FDD.

<table>
<thead>
<tr>
<th></th>
<th>TDD</th>
<th>FDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
<td>Técnica de duplexación usada en soluciones exentas de licencia y que usa un solo canal para el uplink (enlace de carga) y el downlink (enlace de descarga).</td>
<td>Técnica de duplexación usada en soluciones con licencia que usa un par de canales de espectro, uno para el uplink y otro para el downlink.</td>
</tr>
</tbody>
</table>
| **Ventajas** | - Flexibilidad mejorada porque no se requiere espectro en pares.
- Más fácil hacer par con tecnologías de antenas inteligentes.
- Asimétrica. | - Tecnología probada para voz.
- Diseñada para tráfico simétrico.
- No requiere tiempo de guarda. |
| **Desventajas** | - No puede transmitir y recibir al mismo tiempo. | - No puede instalarse si le falta un par al espectro.
- Generalmente el espectro tiene licencia.
- Costo más elevado con relación a la compra del espectro. |
| **Uso** | - Aplicaciones de datos asimétricas “explosivas”.
- Ambientes con diagramas de tráfico variable.
- La eficiencia RD es más importante que el costo. | - Ambientes con diagramas de tráfico previsibles.
- El costo del equipo es más importante que la eficiencia RF. |

Se usa FDD en redes inalámbricas de tercera generación (3G), que operan en una frecuencia conocida y son proyectadas para aplicaciones de voz. La mayoría de los esquemas de codificación usados en redes 3G tienen limitaciones para producción de datos. A medida que el tráfico de la red aumenta o disminuye, la región geográfica cubierta por el transmisor puede encogerse o crecer, fenómeno denominado “respiración de la celda”. Además, cuando un usuario que comparte un canal deja de transmitir, la velocidad de transmisión se reduce de forma proporcional al número de usuarios para minimizar la interferencia y resulta en un nivel de potencia de transmisión menor. Las variaciones de alcance y del nivel de poder de transmisión pueden ser aceptables para aplicaciones de voz pero ofrecen desafíos para las redes de datos.

TDD es útil en ambientes donde los pares de canales no están disponibles debido a restricciones legales, o donde pueden usarse frecuencias exentas de licencia. TDD ofrece un único canal para transmisiones upstream (de carga) y downstream (de descarga). Un sistema TDD puede asignar dinámicamente ancho de banda upstream.
y downstream, según su tráfico. La transferencia asimétrica es apropiada para el tráfico de Internet en el que hay grandes volúmenes de datos en downstream.

Un sistema TDD funciona transmitiendo primero upstream de una estación base a la estación del abonado. Después de poco tiempo de guarda, generalmente 1 ms, la estación del abonado transmite en la misma frecuencia en la dirección upstream.

Las soluciones TDD y FDD no son interoperables porque usan diferentes bandas y técnicas de duplexación. En el Cuadro 4 se muestra una comparación entre TDD y FDD.

En resumen, FDD y TDD sirven para diferentes propósitos. FDD opera en dos canales separados, uno para recibir tráfico y otro para transmitirlo. El espectro otorgado para tecnologías FDD es licenciado en bandas de igual tamaño. No se requieren tiempos de guarda entre upstream y downstream, lo que permite una implementación dúplex completa. FDD no soporta una solución de Malla Wi-Fi.

En una solución TDD, un canal se usa tanto para transmitir como para recibir tráfico. Se requieren tiempos de guarda entre upstream y downstream. TDD puede soportar Malla Wi-Fi. TDD usa dos juegos distintos de time slots (ranuras de tiempo) en la misma frecuencia para el uplink y para el downlink, mientras que FDD usa dos frecuencias diferentes, una para el uplink y otra para el downlink.

Una solución FDD cuesta más porque requiere más hardware para soportar a los canales del uplink y del downlink. El costo se justifica por el uso más eficiente del ancho de banda y la QoS mejorada. Las soluciones con licencia usan FDD debido a su naturaleza dúplex robusta y al espectro modulado por frecuencia. Esto permite a la portadora QoS de calidad, la que no se puede alcanzar totalmente en soluciones sin licencia [36].

3.4.3 Desafíos de la instalación de una solución WiMax exenta de licencia

Las soluciones WiMax con licencia y exentas de licencia enfrentan desafíos comunes relacionados con reglamentaciones gubernamentales, localización de estructura, e interferencia. Sin embargo, las soluciones exentas de licencia tienen más que probar
en ambientes donde se ven a las soluciones con licencia como más estables y confiables.

Los beneficios de una solución Wi-MAX exenta de licencia, incluyendo bajo costo y fácil ingreso de nuevos proveedores, pueden llevar a dificultades adicionales. El fácil ingreso de nuevos proveedores y los bajos costos permiten que más operadores instalen soluciones. Más instalaciones significan más uso de RF, más probabilidad de interferencia, y más competencia por instalaciones sofisticadas para instalación. La interferencia RF y la localización física de la infraestructura son los desafíos primarios relacionados con la instalación de una solución exenta de licencia.

El estándar 802.16-2004 permite operaciones “non-line-of-sight” (sin línea de vista) - NLOS y mejor flexibilidad a la interferencia multi-path que el estándar 802.11 y sus revisiones. Esto permite que los operadores instalen estaciones base lejos de las estaciones de abonados y dentro de áreas que han obstruido la vista del abonado, como puede ser dentro de un bosque o entre edificios en un área de densa población. La capacidad de una solución basada en el estándar 802.16-2004 de enfrentar a una interferencia multi-path le permite operar en diversas localizaciones en condiciones extremas, aunque la instalación en condiciones más favorables puede mejorar su desempeño.

Los dos desafíos más importantes para vencer al instalar una solución WiMax son:

- **Interferencia RF:** Una fuente de RF con interferencia interrumpe una transmisión y disminuye su desempeño dificultando que la estación receptora
interprete una señal. Las formas de interferencia RF que se encuentran con frecuencia son la interferencia multi-path y la atenuación. La interferencia multi-path es causada porque las señales se reflejan en objetos, lo que causa la distorsión de la recepción. La atenuación ocurre cuando una señal RF atraviesa un objeto sólido, como un árbol, y reduce la fuerza de la señal y, en consecuencia, su alcance. La superposición de interferencia de una estación base adyacente puede generar ruido aleatorio.

Las soluciones exentas de licencia deben enfrentar más interferencia que las soluciones con licencia, incluso la interferencia intra-red causada por el equipo del propio proveedor de servicio operando en las proximidades, y en la interferencia de red externa. Las soluciones con licencia sólo deben enfrentar interferencia intra-red. Para las soluciones exentas de licencia, la interferencia RF es un problema más grave en redes con control centralizado que en una red compartida, porque la estación base coordina todo el tráfico y la asignación de ancho de banda.

- **Localización de la Infraestructura**: La localización de la infraestructura se refiere a la localización física de los elementos de la infraestructura. La localización de la infraestructura puede ser un problema tanto para las soluciones con licencia como para las exentas de licencia. Sin embargo, la localización de la infraestructura presenta algunas consideraciones especiales para las soluciones exentas de licencia. Los proveedores de servicio implementan rápidamente soluciones en áreas específicas para no atravesar territorios con alta densidad de abonados y eficiencia de espectro. Dichas áreas incluyen: terrenos elevados, densamente poblados o áreas de población creciente, y áreas con espectro RF menor. Además, la estructura física que alberga o soporta a la estación base debe ser compatible con RF, un silo metálico, por ejemplo, puede distorsionar señales, o un árbol meciéndose debido al viento puede alterar la fuerza de la señal [27].
3.4.4 Resolución de los desafíos de la instalación de una solución WiMax exenta de licencia

En una red exenta de licencia, la correcta proyección de la red y la localización de la infraestructura son críticas. La reducción de la interferencia por medio de la planificación puede reducir en gran medida la interferencia y mejorar la calidad de un servicio.

- **Sitio del abonado**: Una instalación profesional de una estación de abonado debe incluir inspecciones del sitio para reunir información, tales como tipos de antena y ángulos de inclinación requeridos para una perfecta recepción RF.
- **Antenas**: Además de los enlaces redundantes y los ángulos de inclinación de las antenas, la ampliación del diagrama y de la diversidad pueden ayudar a mejorar la recepción RF.

 - **Ampliación del Diagrama**: Ampliación del diagrama logrado por la utilización de antenas múltiples para la adición coherente de señal.
 - **Ampliación de diversidad**: Ampliación lograda por la utilización de múltiples paths (múltiples rutas), para que si una señal está comprometida en uno de los paths, se mantenga el desempeño general. Efectivamente, la ampliación de la diversidad se refiere a las técnicas usadas en el transmisor o receptor para conseguir looks (enfoques) múltiples al canal que está debilitándose. Estos esquemas mejoran el desempeño al mejorar la estabilidad de la potencia de la señal recibida en presencia del debilitamiento de la señal inalámbrica. La diversidad puede explotarse en las dimensiones espaciales (antena), temporales (tiempo) o espectrales (frecuencia).

- **Oficina central (CO) o punto de presencia (POP)**: La CO o POP es el centro de operaciones de red del proveedor. La correcta proyección e instalación del centro de operaciones de la red incluye:

 - Identificación de las necesidades de los usuarios.
 - Instalación profesional de estaciones base y antenas con ángulos de inclinación adecuados.
- Provisión de un servicio de banda ancha con un mínimo típico de 1 Mbps por abonado.
- Conexión a servicios de voz, como las redes telefónicas públicas conmutadas (PSTNs), y puertos de enlace.
- Implementación de administración de tráfico, enrutar andores y firewalls.
- Establecimiento de un medio de recolección de estadísticas de red.

• **Estación de base o celdas de vanguardia instaladas:**

- Aseguramiento de acceso 24 horas durante 7 días por semana,
- Estructura robusta que reduzca el ruido de RF, y
- Blindaje contra los elementos externos pueden ayudar a reducir la interferencia y aumentar la calidad del servicio.

3.4.4.1 Tratamiento de los problemas de localización de la infraestructura

La localización de la infraestructura es la base de la red del proveedor de servicio. Al elegir su localización de instalación, el proveedor de servicio debe asegurarse de poder tener acceso al sitio 24 horas por día, los 7 días de la semana, de que el edificio o instalaciones no tengan material físico que no sea amigable con RF, y de que la Infraestructura ofrezca protección contra las inclemencias del tiempo, como ser viento y rayos. Los obstáculos tales como árboles y edificios generalmente bloquean el camino de las señales en áreas urbanas y en algunas áreas rurales. El desempeño NLOS mejoró con el 802.16-2004 debido a su resistencia mejorada a la interferencia multi-path. Aun sin línea de vista NLOS entre la estación base y la estación de abonado, las señales se pueden recibir después de superar edificios y otros obstáculos.

Algunos factores como estos hacen que sea indispensable una inspección primaria al sitio. La localización de la infraestructura ofrece una sólida ventaja de mercado para los incumbidos.
3.4.4.2 Tratamiento de los problemas de interferencia y calidad de servicio

La interferencia es la interrupción o degradación de una señal transmitida por energía RF ajena. La interferencia impide que un receptor RF distinga entre la señal transmitida y la energía RF de fondo que existe en ese punto específico de tiempo.

Las causas de energía RF ajenas pueden ser:

- **Ruido:** Las fuentes de energía que no están en el mismo espectro RF pero que aún así afectan al receptor RF debido a la armonía o “bleed-over” en bandas de frecuencia RF o canales adyacentes. Un sistema de teléfono celular, por ejemplo, puede generar este tipo de ruido.

- **Superposición directa por fuentes no identificadas:** Fuentes de energía RF que están en el mismo espectro RF pero que no pueden ser identificadas por el receptor RF porque usan un protocolo RF o esquema de codificación/modulación diferentes.

- **Superposición directa por fuentes identificadas:** Fuentes de energía RF que están en el mismo espectro RF pero que pueden ser identificadas por el receptor RF porque usan el mismo protocolo y esquema de codificación/modulación que el receptor RF. Por ejemplo: dos instalaciones de Espectro Ensanchado por Secuencia Directa (DSSS) 802.11b DSSS pueden “oírse”, estando o no en la misma estructura física.

La energía RF ajena puede ser tratada por:

- **Estándares:** El estándar IEEE 802.16-2004 implementa la subcanalización OFDM y soporta modulación adaptable, lo que permite que la velocidad de datos y la calidad del enlace se equilibren dinámicamente, basándose en la calidad del enlace y las condiciones del canal.

Por lo general se pasa por alto el enfoque del proyecto tomado en la capa MAC del 802.16-2004, a pesar de ser esencial para eliminar la interferencia RF indeseada. La naturaleza multipunto de la capa MAC permite que cientos de sitios fijos compartan una misma estación base en un radio de muchos
kilómetros. La capa MAC del 802.16-2004 asigna ancho de onda a dispositivos móviles dinámicamente usando acceso múltiple por división de tiempo (TDMA).

Por el contrario, la capa de Control de Acceso a Medios (MAC) usa mecanismos de detección de la portadora y de contención para ofrecer control de ancho de banda.

- **Proyecto de red correcto**: Incluye implementar una medición del sitio y acceso 24 horas por día, los 7 días de la semana, a estructuras y estaciones base. La interferencia causada por la mayoría de fuentes de energía RF (efecto de campo lejano) pueden reducirse y mejorarse la QoS al localizar puntos de conectividad de la red inalámbrica, tales como torres y puntos de acceso cercanos a los clientes y ofrecer múltiples opciones para que el cliente seleccione la mejor conexión RF en un determinado momento.

La baja latencia soporta aplicaciones sensibles a la demora tales como video o voz sobre IP (VoIP) y asignación de prioridad al tráfico de datos. Al implementar Sistemas de Posicionamiento Global (GPSs) dentro de estaciones base y usar sincronización basada en GPS se pueden evitar problemas a nivel intersectorial y entre estaciones base al identificar la localización de la estación base y la localización de la posible interferencia entre estaciones, así como sincronizar horarios de transmisión RF.

- **Amplificadores de potencia y tecnologías de antena**: Implementación de la sectorización y polarización de antenas para ayudar a minimizar los efectos de las fuentes de interferencia de energía RF a una distancia del receptor (efectos de campo lejano). Controlar la dirección de la antena y de la potencia puede ayudar a disminuir la interferencia pero pueden aumentar los costos. La canalización OFMD controla el ruido y ayuda a administrar el espectro como se muestra en la Figura 3.4.

- **Filtración**: Implementación de filtros de paso de banda para minimizar los efectos de fuentes de energía RF que están fuera del espectro operativo del receptor o dentro de un canal específico del espectro operativo (tanto efectos locales como de campo lejano).
• **Protección**:Implantación de una protección de RF dentro de un contenedor del receptor para asegurarse de que las fuentes de energía RF localizadas no estén penetrando en el equipo de modo diferente por antena o coaxial (efectos de campo local).

• **Reuso**:Implementación del esquema de reuso de canal o frecuencia para que el receptor no cree su propia fuente de energía RF ajena (efecto de campo local).

• **Sincronización de señales con otros proveedores**:La coordinación del uso de frecuencia y horarios de transmisión por medio de la colaboración entre los proveedores puede reducir y limitar muchos problemas de interferencia.

3.4.4.3. Coexistencia con otras redes inalámbricas exentas de licencia

La popularidad de la Wi-Fi ha llevado al surgimiento de muchos hotspots (puntos de conexión) Wi-Fi y WLANs. Estas grandes instalaciones han preocupado a algunos operadores por la coexistencia de WiMax y Wi-Fi. Una solución exenta de licencia WiMax puede operar cerca de una red Wi-Fi si hay canales disponibles y si se utilizaron los métodos correctos de proyección de la red. WiMax permite a los proveedores que ofrezcan cobertura por cable y Wi-Fi extendidas en ciudades con cobertura más amplia y también más económica que con sólo Wi-Fi.

La mayoría de las redes Wi-Fi instaladas en la actualidad se basan en el estándar IEEE 802.11b-g de 2.4 GHz y no operan en la misma amplitud de frecuencia que las soluciones WiMax exentas de licencia. Sin embargo, algunos operadores de red han instalado soluciones basados en el estándar 802.11a y sus revisiones en el espectro de 5 GHz, que pueden agregar ruido al ambiente WiMax, como se muestra en la Figura 3.3.
Las redes WiMax no reconocerán transmisiones de 2.4 GHz (802.11bg) porque no operan en esta banda. No obstante, las transmisiones Wi-Fi en los 5 GHz (802.11a) pueden resultar en congestión y agregar ruido a una red WiMax. Generalmente, la función de Evaluación de Canal Limpio Wi-Fi (CCA) no reconoce transmisiones WiMax y las trata como ruido. La degradación de una señal generalmente ocurre cuando las estaciones están cerca (a metros) unas de otras [34].

3.4.4.4. Mejora de instalaciones WiMax exentas de licencia usando técnicas de antenas

Algunos ejemplos de instalaciones WiMax exentas de licencia se describen a continuación y se muestran en la Figura 3.4.
La tecnología de antenas puede utilizarse para mejorar transmisiones de dos modos: usando técnicas de diversidad y con sistemas de antena avanzados y alternando técnicas. Estas técnicas pueden mejorar la flexibilidad y el coeficiente señal-ruido pero no garantizan que la transmisión no sea afectada por interferencias.

- **Técnicas de Diversidad:** Las técnicas de diversidad, tales como antenas, receptores o transmisores, reducen el múltiple debilitamiento, al proveer paths (caminos) alternativos para la señal. El sistema selecciona el receptor o transmisor apropiado según la técnica implementada. Se aplican los códigos de espacio-tiempo apropiados para determinar el mejor path. La disponibilidad de paths alternativos permite una mayor flexibilidad de la red.

- **Sistemas de Antenas Avanzados y Alternación:** Este enfoque usa una técnica de formación de haz y de dirección en la que se altera el ângulo, el path y el ancho del haz. Al enfocar el haz en un determinado punto a través de la potencia y codificación RF, puede mejorarse la calidad de la señal [39].

A continuación, se describen ejemplos del uso de tecnología de antenas para mejorar transmisiones:
Ejemplo 1: WiMax permite un control de transmisión centralizado; de este modo, la estación base controla y coordina transmisiones.

Esta capacidad posibilita el uso de varias técnicas de antenas múltiples para aumentar el alcance y la confiabilidad de sistemas WiMax. El estándar IEEE 802.16-2004 soporta técnicas de antenas múltiples tales como Codificación Bloque Espacial Temporal (STC) de Alamouti, Sistemas de Antenas Adaptables (AAS), antenas inteligentes, y sistemas de múltiples entradas y múltiples salidas (MIMO). El esquema de transmisión STC de Alamouti transmite información en dos antenas de estación base. Al enviar dos transmisiones consecutivas, transmite información en tiempo y espacio, maximizando la diversidad de transmisión. La diversidad de la demora cíclica es otro esquema de diversidad de transmisión que puede usarse en un sistema WiMax. Ambos esquemas tienen la ventaja de poder ser implementados en la estación base, donde pueden absorberse más fácilmente los costos más elevados de antenas múltiples y cadenas de RF asociadas. Esto aleja los costos de la estación del abonado, lo que permite una penetración de mercado más rápida.

Las ventajas de usar tecnología de antenas múltiples sobre tecnología de antenas únicas son:

- Un Sistema de Antenas Adaptables (AAS) permite que se transmitan señales superpuestas múltiples usando un Acceso Múltiple de División Espacial (SDMA), que es una técnica que explota las propiedades direccionales de las antenas. La modulación adaptable adapta la modulación a las condiciones del enlace y ofrece la mejor densidad espectral para un determinado SNR. Las tecnologías de Antenas Múltiples, como, por ejemplo, AAS, permiten una proporción máxima para combinar múltiples paths de recepción para maximizar SNR.
- La utilización del protocolo de Solicitud Automática (ARQ) para transmisión puede impactar en el desempeño del sistema al permitir que el receptor solicite una retransmisión cuando se detecta un error.
- La codificación de la Corrección de Error de Envío (FEC) mejora la exactitud y la confiabilidad en la presencia de interferencia RF al permitir corregir errores sin solicitar la retransmisión de la información original.
- Determinación de los atributos de la modulación de la amplitud y/o de la fase le permiten al proveedor prevenir más la demora de la red en un viaje de paquetes programado. Una base de datos de estadísticas relacionada a una red WiMax exenta de licencia o con licencia puede ayudar a que el proveedor anticipe problemas y los trate por medio del mapeo y la planificación de la modulación.

- **Ejemplo 2:** WiMax soporta DFS en la banda de 5 GHz. DFS se proyectó originalmente para evitar interferencia con los sistemas de radar. Algunos proveedores permiten que DFS se use para el cambio automático o manual de canales para resolver problemas de interferencia.

 DFS configura un intervalo (generalmente 1 ms) dentro del cual la estación base coordina la detención o el tiempo de inactividad de la red en el que identifica los canales con ruido para no usarlos.

- **Ejemplo 3:** Se han establecido las etiquetas de espectro para DFS y TPC (requerido en Estados Unidos y Europa). Para DFS, la función es verificar si un canal se encuentra en uso y, si lo está, encontrar otro para usarlo. Para TPC, una transmisión es para usar solamente tanta potencia como se necesite.

- **Ejemplo 4:** La canalización de bandas estrechas permite mayor flexibilidad en toda la red. Con más bandas estrechas, la interferencia puede identificarse y resolverse más fácilmente. La canalización de banda estrecha reduce el ancho de banda para un abonado individual pero puede ofrecer mayor flexibilidad general a la red.

La tecnología WiMax representa una oportunidad creciente para los proveedores de servicio, y para los proveedores de chipsets que operan en las bandas con licencia y las exentas de licencia. Inicialmente, las soluciones WiMax se basan en la especificación IEEE 802.16-2004, lo que permite acceso fijo para uso punto a punto y punto a multipunto. Se espera que se desarrolle un ecosistema de tecnología robusto basado en estándares mundiales para rendir los beneficios duales de interoperabilidad y economía de volumen.
Como con cualquier tecnología nueva o en desarrollo, deben comprenderse diversos factores para asegurar una instalación exitosa. Este apartado se ha concentrado en diversos problemas específicos relacionados con las instalaciones exentas de licencia, incluso la interfaz RF y la localización de la infraestructura.

La interferencia RF resulta en un ambiente complejo y siempre cambiante que los proveedores de servicio deben respetar y entender, pero no temerle. Las soluciones para resolver la interferencia RF incluyen: correcta proyección de la red, uso de tecnologías de antena avanzadas, instalaciones punto a punto, identificación de mercados apropiados para tecnología WiMax, filtración, protección, reuso de frecuencia y sincronización con otros proveedores. Estas soluciones ayudarán a resolver algunos problemas de interferencia RF.

Un proyecto de red robusto se basa en inspección de sitios, agrupación de estadísticas, y coordinación de uso RF con los proveedores vecinos para resolver directamente problemas de interferencia. Las soluciones exentas de licencia WiMax basadas en proyectos de red robustos son equilibradas para convertirse en una solución segura y flexible para mercados especializados.
CAPÍTULO 4.
DISEÑO E INSTALACIÓN DEL WISP WIMAX

4.1. Introducción

En este cuarto capítulo, se tratan temas acerca de la construcción física del proyecto tomando como punto inicial las generalidades del funcionamiento del WISP, en el cual se describen las recomendaciones sobre el equipo, su preparación, la instalación y configuración tanto de la estación base como la de los clientes. Como segundo tema se detallan las características del equipo a utilizar: la estación base, las antenas de panel sectoriales, las estaciones clientes fijas, las móviles, las antenas de Backhaul, los sistemas de energía ininterrumpidas de routers y servidores, de la estación base, y la descripción de la planta de emergencia. El tercer tema engloba la ubicación e instalaciones, los diagramas arquitectónicos, la estructura metálica de la estación base, y otros muestran el contenido de cada elemento vital para el funcionamiento del WISP, el rack de comunicaciones, los routers tanto backbone como el de concentración, el servidor recomendado, el sistema operativo, la seguridad de acceso al servidor, el sistema de facturación y el proveedor que nos enlaza a la troncal de fibra óptica. Cada uno de los elementos que constituyen físicamente el WISP esta descrito en este capítulo.
4.2. Generalidades del funcionamiento del WISP

El Sistema de Proveedor de Servicio de Internet Inalámbrico (WISP) es un sistema de Red de Área Metropolitana (MAN) integrado, cuyo propósito es conectar a sus clientes a la Internet. Se usan enlaces de datos de alta velocidad para proveer acceso a Internet mediante enlaces inalámbricos punto a punto y punto-multipunto a compañías, organizaciones gubernamentales, escuelas, universidades, hogares y otras instituciones que disponen de redes de área local (LAN) [37].

Nuestro enlace inalámbrico de datos toma el lugar de líneas dedicadas donde éstas no son posibles o son muy caras. Los requerimientos básicos para usar enlaces inalámbricos de nuestro proveedor son:

- Clientes ubicados dentro del radio 24 kilómetros alrededor de la estación base.
- Sin línea de vista directa entre los clientes y la antena ubicada en la estación base.
- Uso de las frecuencias de 5.725 GHz o 5.850 GHz (Bandas no Licenciadas) de acuerdo a las regulaciones locales.

Obteniendo así los siguientes beneficios:

- Enlaces de Alta Velocidad (hasta 70 Mbps).
- Rápida Instalación de la Estación Base (uno o dos días).
- Rápida Instalación de los Clientes (de 2 a 6 horas por sitio).
- Efectividad en Costos para acceso prolongado y usuarios múltiples.
- Acceso confiable e instantáneo a Internet en 24 horas.

El WISP funcionará como una conexión permanente de línea dedicada con sus usuarios, pero con una mayor velocidad y un menor costo. El sistema Wireless ISP es un servicio inalámbrico constituido por un nodo central y el cliente.

El sistema Wireless ISP es un servicio regional que opera como una Red de Área Metropolitana con una celda en principio cubriendo aprox. 24 Km. de radio. El sistema es un servicio bi-direccional, donde ambos, el cliente y el nodo central están enviando y recibiendo datos.
4.2.2. Equipo y preparación de emplazamiento del cliente

Para puntos cliente, consideramos dónde colocar o montar la antena receptora, dónde colocar el router wireless y cómo conectarlo a la LAN del cliente y a la fuente de energía de 110V o 220V. Debemos encontrar un lugar apropiado para el router, de tal forma que la distancia a la antena sea mínima.

Los lugares apropiados donde instalaremos la antena del cliente son:

- Techo de una edificación, con la antena sujetada a la antena de televisión, o a un poste especial para su antena.
- Muro de una edificación.
- Marco de ventana, el soporte de la antena se fija al marco de la ventana de una habitación, en donde se encuentra el router.

4.2.3. Instalación y configuración de la estación central con la unidad base y la antena de panel de sector

Cuando se haya encontrado un lugar apropiado para la antena de panel de sector y para la unidad base, la antena debe ser montada y el cable de la antena conectada a la unidad base y a la misma antena. Los conectores que se encuentran fuera de la habitación deberán ser protegidos con materiales de caucho o goma resistentes a la intemperie para evitar que la humedad los afecte. Cintas adherivas corrientes (para aplicaciones eléctricas) deberán cubrir el material de caucho o goma. Usar solamente cintas adherivas corrientes no protege a los cables de conexión herméticamente. En cuestión de meses la humedad afectará los cables de conexión y la calidad del sistema se verá terriblemente afectada.

Lo que concierne a los mínimos requerimientos de configuración de la unidad base, hacemos uso de la frecuencia en la que el sistema pueda operar a la más básica tasa de transferencia como también con el sistema de identificación. Sólo los clientes que tengan los mismos rangos en la configuración serán capaces de trabajar con su unidad base.
4.2.4. Instalación y configuración de los puntos clientes con el router wireless y la antena

La antena direccional debe ser instalada con polarización vertical, ya que la antena de la estación base está polarizada verticalmente. Las mismas reglas descritas más arriba son aplicables para conectar y proteger a los cables. La antena debe apuntar directamente a la antena central. Realizar una prueba de enlace entre la estación base y el router del cliente será el último ajuste que se tenga que hacer.

4.2.5. Configuraciones de red TCP/IP para el sistema WISP

Normalmente los clientes LANs tienen operando el protocolo TCP/IP con direcciones IP's no registradas. Dejaremos las direcciones como están y tomaremos una dirección libre de la red del cliente para la interfase Ethernet del router Wireless. Por otro lado, podemos otorgarle a los clientes una sub-red con las direcciones de red que nosotros tendremos como ISP. La dirección Ethernet del router wireless será la entrada por defecto de todos los hosts en la LAN del cliente.

La LAN Wireless es otra red TCP/IP, ya que está separada de la red del cliente por routers. Un IP de sub-red deberá ser asignado a los hosts en la LAN wireless incluyendo las interfases inalámbricas de todos los routers de los clientes y la estación base, una dirección para cada uno de ellos. Lo que se describe a continuación debe ser considerado cuando se establecen entradas de acceso por defecto para todos los routers de cliente y el bridge.

Si la red inalámbrica está conectada a la red del cliente, por ejemplo, el puerto Ethernet de la unidad de la estación base está conectada al cable de la red ISP, entonces el gateway por defecto es ese host/router. La unidad base es un bridge y no un router, entonces esto significa que no sirve como un gateway TCP/IP.

Si el cliente usa uno de los routers wireless como un gateway para conectar la red inalámbrica con la red ISP, entonces usaremos la dirección IP de la interfase de la radio como gateway por defecto para todo los routers clientes y la unidad base.
Finalmente aplicaremos ping y traceroute para probar cuán bien se realizó la configuración TCP/IP.

4.3. Descripción del equipo

Para la implantación del WISP WiMax hemos decidido utilizar la solución que ofrece Netkrom Technologies Inc. La cual ofrece adaptabilidad a las necesidades del presente proyecto.

![Figura 4.1 Diagrama generalizado que corresponde a la construcción del WISP [37].](image)

4.3.1. Estación base (Base station)

Hemos decidido utilizar este producto que integra cuatro radios y múltiples frecuencias denominado: ISPAIR Tri-Band 2.4/4.9/5GHz Base Station 500.

4.3.1.1. Descripción

ISPAIR Tri-Band Base Station 500 es un radio Access Point Outdoor con cuatro puertos inalámbricos de alta potencia a 2.4/4.9/5GHz, que cumplen con el estándar de WiMax. El ISPAIR Tri-Band Base Station 500 es la solución ideal para Wireless ISPs,
Mesh Networks, HotSpot y Aplicaciones Multipunto que necesiten de equipamiento Wi-Fi y WiMax del tipo Outdoor y de alto rendimiento para abastecer un mercado de rápido crecimiento, a un bajo precio.

El ISPAIR Tri-Band Base Station 500 puede ser usado con cuatro antenas sectoriales de 90 grados ó tres antenas sectoriales de 120 grados y un backhaul, la cual será la opción que utilizaremos (véase figura 4.6). El ISPAIR Tri-Band Base Station 500 proporciona servicio de Internet a sus clientes con laptops o con una red LAN, podremos usar está Estación Base para proveer aplicaciones de no línea de vista y de línea de vista, una tasa alta de transmisión de datos y un superior throughput, que permite que múltiples sitios compartan una sola conexión a Internet de alta velocidad. El mejor Firmware y Sistema Operativo nos permite aplicar las características más avanzadas de routing, Firewall, NAT, administración de ancho de banda y otras tecnologías para crear una red inteligente y sencilla de controlar.

El ISPAIR Tri-Band Base Station 500 puede trabajar como Access Point, WDS, Cliente y Repetidor o como una combinación de estas. Cada radio tiene independientemente una potencia de salida ajustable, con su propia frecuencia y canal, SSID y configuraciones de encriptación, que le permite cubrir largas distancias en aplicaciones Multipunto, hasta 32 Km. Todas éstas características transforman a ésta Estación Base en la más completa, potente y avanzada del mundo.

Con su prominente tasa de transferencia de datos de 70 Mbps y una potencia de salida de hasta 400mW, así la interferencia podrá ser mínima.
CAPÍTULO 4
DISEÑO E INSTALACIÓN DEL WISP WIMAX

Figura 4.2 Vista frontal del ISPAIR Tri-Band 2.4/4.9/5GHz Base Station 500 [37].

Figura 4.3 Vista lateral ISPAIR Tri-Band 2.4/4.9/5GHz Base Station 500 [37].

Figura 4.4 Vista Posterior ISPAIR Tri-Band 2.4/4.9/5GHz Base Station 500 [37].
4.3.1.2. Características

- Tecnología Intel XScale CPU potente para conexiones de altas velocidades.
- Cuatro radios y Múltiples Frecuencias en uno.
- Trabaja como Access Point, WDS, Cliente y Repetidor en modo Bridge o Router.
- Puertos RF de alta Potencia de hasta 400mW, para grandes distancias.
- Parámetros de Larga Distancia y regulación de Potencia de salida.
- Diseño perfecto y características de uso industrial outdoor (impermeable).
- Compatibilidad completa con cualquier red estándar IEEE WiMax
- Funciones de red Avanzada (IP Routing, Hotspot, Firewall, DHCP, NAT, etc.)
- Administración de Ancho de Banda y QoS.
- Carrier Class Radio para ambientes extremos -60 hasta 230 ºC.

4.3.1.3. Aplicaciones

Las aplicaciones que ofrece esta estación base son superiores a las requeridas para el arranque del proyecto es por ellos que las seleccionamos ya que nos permitirán crecer rápidamente y ofrecer otro servicios de valor agregado lo que permitirá consolidar los ingresos y con ello el crecimiento.

Figura 4.5 Aplicaciones del ISPAIR Tri-Band 2.4/4.9/5GHz Base Station 500 para cuatro antenas [37].
Como podemos observar no solo se puede prestar servicio de Banda ancha en Hogares y negocios, si no también a computadoras móviles y teléfonos Wi-Fi.

4.3.1.4. Especificaciones

A continuación describimos las especificaciones en cuanto a hardware, software y módulos de RF.

4.3.1.4.1. Hardware

<table>
<thead>
<tr>
<th>Procesador</th>
<th>Intel® IXP425 XScale® 533 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memoria</td>
<td>64 MB SDRAM</td>
</tr>
<tr>
<td>Memoria Flash</td>
<td>128 MB</td>
</tr>
<tr>
<td>Puerto Ethernet</td>
<td>Dos Ethernet 10/100 Mbps</td>
</tr>
<tr>
<td>Puerto de Consola Serial</td>
<td>Un Puerto con Estándar DB9</td>
</tr>
<tr>
<td>Puerto RF</td>
<td>Cuatro Módulos RF Mini-PCI</td>
</tr>
<tr>
<td>Conector RF</td>
<td>Cuatro, N-Hembra</td>
</tr>
<tr>
<td>Conexión de Energía</td>
<td>802.3af Power over Ethernet 9-48v DC</td>
</tr>
<tr>
<td>Caja exterior</td>
<td>Industrial Die-Cast Thermal Aluminum, NEMA-67/IP-67</td>
</tr>
<tr>
<td>Dimensiones</td>
<td>8.3 x 6 x 2 pulg. (21 x15 x 5cm.)</td>
</tr>
<tr>
<td>Peso</td>
<td>4.5 Lb. o 2 Kg. (Radio, Bracket y accesorios)</td>
</tr>
<tr>
<td>Temperatura de</td>
<td>Empaque Impermeable -60°C hasta 230°C</td>
</tr>
</tbody>
</table>
4.3.1.4.2. Software

<table>
<thead>
<tr>
<th>Modos de Operación en RF</th>
<th>Access Point (Función de Bridge o Router)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WDS (Función de Bridge)</td>
</tr>
<tr>
<td></td>
<td>Repeater (Función de Bridge)</td>
</tr>
<tr>
<td></td>
<td>AP Client (Función de Bridge o Router)</td>
</tr>
<tr>
<td></td>
<td>Station (Función de Bridge o Router)</td>
</tr>
<tr>
<td>Seguridad Wireless</td>
<td>Lista de Control de Acceso</td>
</tr>
<tr>
<td></td>
<td>WEP 64/128</td>
</tr>
<tr>
<td></td>
<td>WPA1/WPA2 con cifrado TKIP & AES</td>
</tr>
<tr>
<td>Características Avanzadas en Wireless</td>
<td>Potencia de Tx y tasa de Tx</td>
</tr>
<tr>
<td></td>
<td>Selección de Antena</td>
</tr>
<tr>
<td></td>
<td>ACK Timeout</td>
</tr>
<tr>
<td></td>
<td>WMM - Wireless QoS (Calidad de Servicio)</td>
</tr>
<tr>
<td></td>
<td>Mac Address Spoofing</td>
</tr>
<tr>
<td></td>
<td>Ocultamiento de SSID y Modo Stealth</td>
</tr>
<tr>
<td></td>
<td>Selección del Mejor Canal y Selección de País</td>
</tr>
<tr>
<td></td>
<td>DFS/TPC (Selección Dinámica de Frecuencia / Control de Transmisión de Potencia)</td>
</tr>
<tr>
<td></td>
<td>Compression, Bursting, Fast Frames</td>
</tr>
<tr>
<td></td>
<td>Soporte completo en 802.11h</td>
</tr>
<tr>
<td></td>
<td>Alineación de Antena (Site Survey (escaneo) / Calidad de Enlace / Nivel de Señal)</td>
</tr>
<tr>
<td>QoS – Administración de Ancho de Banda</td>
<td>Committed Information Rate (CIR)</td>
</tr>
<tr>
<td></td>
<td>Peak Information Rate (PIR)</td>
</tr>
<tr>
<td></td>
<td>Excess Burst Size (EBS)</td>
</tr>
<tr>
<td></td>
<td>Basado en:</td>
</tr>
<tr>
<td></td>
<td>- Input/Output Interface</td>
</tr>
<tr>
<td></td>
<td>- Source IP/Subnet</td>
</tr>
<tr>
<td></td>
<td>- Source Port(s)</td>
</tr>
<tr>
<td></td>
<td>- Source Mac</td>
</tr>
<tr>
<td></td>
<td>- Destination IP/Subnet</td>
</tr>
<tr>
<td></td>
<td>- Destination Port(s)</td>
</tr>
<tr>
<td></td>
<td>- Destination Mac</td>
</tr>
<tr>
<td></td>
<td>- Protocolo (FTP, ICMP, TCP, etc.)</td>
</tr>
<tr>
<td></td>
<td>- Aplicaciones (Peer to Peer, EDonkey, Kazza, IRC, etc.)</td>
</tr>
<tr>
<td>Características Avanzadas en Networking</td>
<td>Bridge Transparente</td>
</tr>
<tr>
<td></td>
<td>Capa 2 (Mac Address) Forwarding</td>
</tr>
<tr>
<td></td>
<td>Capa 3 (IP Address) Forwarding</td>
</tr>
<tr>
<td></td>
<td>Enrutamiento Estático</td>
</tr>
<tr>
<td></td>
<td>Servidor y Cliente DHCP</td>
</tr>
<tr>
<td></td>
<td>Cliente PPPoE / Cliente PPTP</td>
</tr>
<tr>
<td></td>
<td>Soporta Vlan (802.1Q)</td>
</tr>
<tr>
<td></td>
<td>Estadísticas Avanzada</td>
</tr>
<tr>
<td></td>
<td>Interfaz de Usuario Gráfica</td>
</tr>
<tr>
<td></td>
<td>Utilidades de Monitoreo (Ping y Trace Route)</td>
</tr>
<tr>
<td>Características</td>
<td>WAN, LAN, DHCP, Firewall - NAT</td>
</tr>
</tbody>
</table>
Hot Spot
- QoS – Administración de Ancho de Banda
- Radius Client - Wireless
- Autenticación UAM, Autenticación por Direcciones MAC
- Walled Garden (Restricción de paginas Web a sólo las pertenecientes al ISP)
- Sites de Publicidad
- Página de Logueo Personalizado
- Información para Usuarios, Estadísticas del Radius

Firewall - NAT
- Interfase Entrada/Salida
- IP/Subnet Origen
- Puerto(s)
- MAC Origen
- IP/Subnet Destino
- Protocolo (ICMP, TCP, etc.)
- Estado de Conexión (New, Established, etc.)

Herramientas Administrativas
- Gestor SNMP
- Gestor NTP
- Servidor HTTP
- SSH

| Tabla 4.2 Especificaciones del software [37]. |

4.3.1.4.3. Módulos RF

| Frecuencias | Banda 2.4GHz: 2400-2497MHz (Programable de acuerdo a las regulaciones de distintos países)
| | Banda 4.9GHz: 4940-4990MHz (Banda de Seguridad Pública)
| | Banda 5GHz: 5150-5350MHz, 5470-5725MHz, 5725-5850MHz (Programable de acuerdo a las regulaciones de distintos países)
| | Rango de Frecuencias Adicionales: 2300-2700MHz & 4900-6100MHz en Canales de 5, 10 o 20Mhz |
| Método de Acceso | TDD (CSMA/CA) |
| Técnica de Modulación | Banda 2.4GHz:
| | DSSS (DBPSK, DQPSK, CCK)
| | OFDM (BPSK,QPSK, 16-QAM, 64-QAM)
| | Banda 4.9GHz:
| | OFDM (BPSK,QPSK, 16-QAM, 64-QAM)
| | Banda 5GHz:
| | OFDM (BPSK,QPSK, 16-QAM, 64-QAM) |
| Potencia de Salida | Banda 2.4GHz:
| | 26dBm 6-24Mbps
| | 23dBm 54Mbps
| | Banda 4.9/5GHz:
| | ISP-BS500: 20dBm 6-24Mbps
| | ISP-BS500: 15dBm 54Mbps
| | ISP-BS500A: 26dBm 6-24Mbps
| | ISP-BS500A: 22dBm 54Mbps |
| Sensibilidad de Recepción | Banda 2.4GHz:
| | -95dBm 1Mbps
| | -91dBm 6Mbps
| | -74dBm 54Mbps |
4.3.2. Antenas de panel sector de 5.8 GHz

Después de analizar la información hemos decidido utilizar las antenas de panel de la compañía Netkrom: modelo W58-17SP para frecuencia de 5.8GHz, ganancia 16dBi, 120º de sector de polarización y 30º de inclinación del Panel. Para lo cual ocuparemos tres paneles para tener la cobertura total de 360º.

Figura 4.7 Antena de panel de sector 5.8 GHz [37].

4.3.2.1. Descripción

Los sistemas de antena de Sector Horizontalmente Polarizados ofrecidos por Netkrom son construidos de plástico UV estable ABS radomes y anaqueles robustos galvanizados para una larga vida de servicio, en condiciones ambientales extremas.
Su Polarización Horizontal tiene el potencial de interferencia reducida, en los sistemas que son instalados en áreas con niveles altos de ruido de RF verticalmente polarizado o donde el sistema central deba evitar potenciales problemas futuros con la interferencia. Los componentes de la base son fáciles para instalar y adaptarse hasta 30 grados de inclinación.

4.3.2.2. Características

- Horizontalmente Polarizado.
- Modelos de: 90º 17dBi y 120º 16dBi.
- Conector Integrado tipo N Hembra.
- Sumamente Resistente para una larga vida de servicio en ambientes extremos.
- Completamente Impermeable.

4.3.2.3. Aplicaciones

- 5.8GHz y Aplicaciones de Banda U-NII
- Antenas para Estación Base
- Para Sistemas inalámbricos
- Sistemas Punto Multi-Punto
- Sistemas Inalámbricos de banda ancha

4.3.2.4. Especificaciones

<table>
<thead>
<tr>
<th>Código de producto</th>
<th>W58-17SP</th>
<th>W58-16SP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especificaciones eléctricas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganancia</td>
<td>17dB</td>
<td>16 dB</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>5.725 a 5.850 GHz</td>
<td>5.725 a 5.850 GHz</td>
</tr>
<tr>
<td>Pérdida de retorno de entrada</td>
<td>-14dB</td>
<td>-14dB</td>
</tr>
<tr>
<td>VSWR</td>
<td>1.5:1</td>
<td>1.5:1</td>
</tr>
<tr>
<td>F/Back ratio</td>
<td>>25 dB</td>
<td>>25 dB</td>
</tr>
<tr>
<td>Input power</td>
<td>100 Watts</td>
<td>100 Watts</td>
</tr>
<tr>
<td>Inclinación Horizontal</td>
<td>90º</td>
<td>120º</td>
</tr>
<tr>
<td>Inclinación Vertical</td>
<td>8º</td>
<td>8º</td>
</tr>
<tr>
<td>Impedancia</td>
<td>50 ohms</td>
<td>50 ohms</td>
</tr>
<tr>
<td>Conector</td>
<td>Tipo-N (hembra)</td>
<td>Tipo-N (hembra)</td>
</tr>
<tr>
<td>Polarización</td>
<td>Horizontal</td>
<td>Horizontal</td>
</tr>
</tbody>
</table>

Especificaciones mecánicas
4.3.3. Estaciones cliente (suscriber station)

4.3.3.1 Fijas

Se utilizará la solución modelo: ISPAIR 54Mb CPE 500 Series de la empresa Netkrom Inc.

4.3.3.1.1 Descripción

Los sistemas wireless ISP ISPAIR 70Mb 802.16 son usados para proveer a los usuarios finales acceso a la Internet usando una arquitectura punto-multipunto a 70 Mbps en la bandas no licenciadas de 2.4 GHz y 5 GHz. Con estos equipos inalámbricos podremos obtener un gran ancho de banda a distancias bastante largas y a un precio bastante razonable. Estos equipos ofrecen distintas características tales como Routing, Firewall, NAT, DHCP, Control de ancho de banda y mucho más.

El Cliente CPE el cual tiene la Antena Integrada es la más comprensible solución inalámbrica, el cual incluye un router inalámbrico potente con característica de Power over Ethernet (PoE), todo integrado con una antena de alta ganancia. La Antena Flat Panel ofrece una amplia cobertura territorial sin ninguna pérdida de señal y además el inyector Power over Ethernet le provee la posibilidad de entregar la necesaria potencia y datos a su router (el cual está adjunto a las antenas) a través de un simple cable Ethernet.
Figura 4.8 Vista frontal del ISPAIR 54Mb CPE 500 Series [37].

Figura 4.9 Vista lateral del ISPAIR 54Mb CPE 500 Series [37].

Figura 4.10 Vista posterior del ISPAIR 54Mb CPE 500 Series [37].
4.3.3.1.2. Características

- Solución rentable.
- Completa Solución Impermeable para exteriores.
- Todo en un dispositivo inalámbrico – CPE.
- Power over Ethernet integrado.
- Gestión vía Web y función SNMP.
- Conexión inalámbrica de alta velocidad (hasta 70Mbps).
- Distancia de conexión hasta 24km.
- Firewall, NAT, IP Routing, DHCP.
- Seguridad de alto nivel con full 64/128Bit WEP y Encriptación WPA-WPA2.
- Chipset Atheros XR – Características Avanzadas para larga distancia.
- WDS - Wireless Distribution System.
- Control de ancho de banda.
- SPI Firewall y filtrado de paquetes y URLs.
- Alineador de Antenas y escaneador de sitios inalámbricos.
- Instalación rápida y simple para estaciones bases y clientes.

4.3.3.1.3. Especificaciones

4.3.3.1.3.1. Características de la radio

<table>
<thead>
<tr>
<th>Puerto Ethernet</th>
<th>Ethernet 10/100Base-TX (RJ-45)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frecuencia/Canal de operación</td>
<td>ISP-CPE500G/ISP-CPE500GH</td>
</tr>
<tr>
<td></td>
<td>2.412 ~ 2.462GHz (FCC-US)</td>
</tr>
<tr>
<td></td>
<td>2.412 ~ 2.472 (ETSI-EU)</td>
</tr>
<tr>
<td></td>
<td>2.412 ~ 2.484 (TELEC-JAPAN)</td>
</tr>
<tr>
<td></td>
<td>Programable de acuerdo a las regulaciones de distintos países</td>
</tr>
<tr>
<td>ISP-CPE500A/ISP-CPE500AH:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.155.35 & 5.7255.850 GHz (FCC-US)</td>
</tr>
<tr>
<td></td>
<td>5.155.35GHz & 5.475.725GHz (ETSI-EU)</td>
</tr>
<tr>
<td></td>
<td>5.15~5.25GHz (TELEC-JAPAN)</td>
</tr>
<tr>
<td></td>
<td>Programable de acuerdo a las regulaciones de distintos países</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulación RF</th>
<th>ISP-CPE500G/ISP-CPE500GH:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>802.11b: DSSS (DBPSK, DQPSK, CCK)</td>
</tr>
<tr>
<td></td>
<td>802.11g: OFDM (BPSK,QPSK, 16-QAM, 64-QAM)</td>
</tr>
<tr>
<td>ISP-CPE500A/ISP-CPE500AH:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>802.11a: OFDM (BPSK,QPSK, 16-QAM, 64-QAM)</td>
</tr>
</tbody>
</table>

<p>| Potencia de Salida RF | ISP-CPE500G: Regulable hasta 35dBm / |</p>
<table>
<thead>
<tr>
<th>Sensibilidad</th>
<th>ISP-CPE500G: -97dBm 6Mb -73dBm 54Mb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ISP-CPE500GH: -97dBm 6Mb -73dBm 54Mb</td>
</tr>
<tr>
<td></td>
<td>ISP-CPE500A: -97dBm 6Mb -73dBm 54Mb</td>
</tr>
<tr>
<td></td>
<td>ISP-CPE500AH: -97dBm 6Mb -73dBm 54Mb</td>
</tr>
<tr>
<td>Velocidad de Datos</td>
<td>54, 48, 36, 24, 18, 12, 11, 5.5, 2, 1Mbps</td>
</tr>
<tr>
<td>Modos de Operación RF</td>
<td>Access Point</td>
</tr>
<tr>
<td></td>
<td>Client mode</td>
</tr>
<tr>
<td></td>
<td>Point to Point</td>
</tr>
<tr>
<td></td>
<td>Point to Multiple Point</td>
</tr>
<tr>
<td></td>
<td>Wireless Routing Client</td>
</tr>
<tr>
<td></td>
<td>Wireless Adapter</td>
</tr>
<tr>
<td></td>
<td>Gateway</td>
</tr>
<tr>
<td>Alcance</td>
<td>ISP-CPE500G: 5millas (8Km)</td>
</tr>
<tr>
<td></td>
<td>ISP-CPE500GH: 15 millas (24Km)</td>
</tr>
<tr>
<td></td>
<td>ISP-CPE500A: 3 millas (5 Km.)</td>
</tr>
<tr>
<td></td>
<td>ISP-CPE500AH: 7 millas (10 Km.)</td>
</tr>
<tr>
<td>Protección de Datos</td>
<td>WEP 64/128/152 - bit</td>
</tr>
<tr>
<td></td>
<td>Filtrado de direcciones Mac</td>
</tr>
<tr>
<td></td>
<td>IEEE 802.1x—TLS, TTLS, PEAP</td>
</tr>
<tr>
<td></td>
<td>WPA-PSK and WPA-EAP, WPA2 (con técnicas de encriptación AES)</td>
</tr>
<tr>
<td>Características avanzadas de Red</td>
<td>IP Routing - estático, NAT y Port Forwarding (Sólo para Wireless Routing Client y modo Gateway).</td>
</tr>
<tr>
<td></td>
<td>WDS - Wireless Distribution System.</td>
</tr>
<tr>
<td></td>
<td>PPPoE Client (Sólo para Wireless Routing Client y modo Gateway).</td>
</tr>
<tr>
<td></td>
<td>PPTP para redes VPNs.</td>
</tr>
<tr>
<td></td>
<td>802.1d Spanning Tree Protocol</td>
</tr>
<tr>
<td></td>
<td>Función SNMP.</td>
</tr>
<tr>
<td></td>
<td>Servidor y Cliente DHCP.</td>
</tr>
<tr>
<td></td>
<td>Control de ancho de banda.</td>
</tr>
<tr>
<td></td>
<td>Tecnología Pseudo VLAN.</td>
</tr>
<tr>
<td></td>
<td>Algoritmo Propietario para Larga Distancia con ACK y función para ajuste delCTS timeout.</td>
</tr>
<tr>
<td></td>
<td>Cortafuego y Filtrado de paquetes y URLs (Sólo para Wireless Routing Client y modo Gateway).</td>
</tr>
<tr>
<td></td>
<td>Load Balancing & Fail-Over Redundancy (Sólo modo Gateway).</td>
</tr>
<tr>
<td>Parámetros de Enlace</td>
<td>Alineador de antenas y niveles de señal en valores RSSI</td>
</tr>
<tr>
<td></td>
<td>Escaneador de señales inalámbricas y access points</td>
</tr>
<tr>
<td></td>
<td>Datos estadísticos de la Radio y del tráfico Ethernet</td>
</tr>
<tr>
<td>Gestión</td>
<td>Web y utilitario basado en Windows</td>
</tr>
<tr>
<td>Sunimistro de Energía</td>
<td>Power over Ethernet - PoE 802.11af (AC 110~220/DC 48V)</td>
</tr>
</tbody>
</table>
CAPÍTULO 4
DISEÑO E INSTALACIÓN DEL ISP WIMAX

<table>
<thead>
<tr>
<th>Dimensiones</th>
<th>ISP-CPE500G: 10.75”x10.75”x2.6” pulg. (267x267x67 mm)</th>
<th>ISP-CPE500GH: 18.5”x16.8”x2.5” pulg. (470x427x64 mm)</th>
<th>ISP-CPE500A: 10.75” x 10.75”x2.6”pulg. (267x267x67 mm)</th>
<th>ISP-CPE500AH: 18.5”x16.8”x2.5” pulg. (470x427x64 mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso</td>
<td>ISP-CPE500G: 4 lb. (1.8 Kg.) set completo</td>
<td>ISP-CPE500GH: 6 lb. (2.7 Kg.) set completo</td>
<td>ISP-CPE500A: 4 lb. (1.8 Kg.) set completo</td>
<td>ISP-CPE500AH: 6 lb. (2.7 Kg.) set completo</td>
</tr>
<tr>
<td>Cable</td>
<td>50”, 100", 150”, o 200” de longitud en Outdoor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAT5E Rated Shielded Cable (Opcional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humedad</td>
<td>-10-90%, (Operativo)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperatura</td>
<td>-30~70 grados C (Operativo)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norma</td>
<td>FCC Part 15 class B, CE Mark, ETSI 300 328</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.5 Características de la radio [37].

4.3.3.1.3.2. Características de la Antena

<table>
<thead>
<tr>
<th>Ganancia</th>
<th>ISP-CPE500G: 15dBi</th>
<th>ISP-CPE500GH: 19dBi</th>
<th>ISP-CPE500A: 19dBi</th>
<th>ISP-CPE500AH: 24dBi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarización</td>
<td>Horizontal o Vertical</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 4.6 Características de la antena [37].

4.3.3.2. Móviles

La tecnología y robustez de la estación base permitirá conectar tarjetas PCMCIA WiMax móviles con modulación OFDM para laptops, así como teléfonos celulares que cumplan con el estándar WiMax y otros dispositivos inalámbricos que en corto plazo se exhiban en el mercado de las Telecomunicaciones y sea compatible con el estándar 802.16 (véase figura 4.6).
4.3.4. Antena Backhaul

4.3.4.1. Descripción

Los sistemas de Antena parabólica ofrecidos por Netkrom son construidos con un plato de aleación de aluminio con el fin de que la pintura funcione como abrigo para protección del polvo, para el excelente funcionamiento mecánico y eléctrico. El reflector parabólico es hecho con una tecnología de moldeado especial de un paso que alcanza la consistencia excelente y la estabilidad a largo plazo. Los soportes son hechos con acero universal galvanizado, así como el sistema de montaje de poste con pintura de protección contra el polvo. La antena parabólica puede ser usada en una amplia variedad con alto rendimiento en los 5.8 GHz con tecnología inalámbrica (véase figura 4.10).

4.3.4.2. Características

- Alta ganancia en la antena de 29 dB y 32.5 dB.
- Montaje de poste de inclinación ajustable.
- Polarización Vertical u Horizontal.
- Conector de hembra tipo N.
- Corriente continua conectada con tierra para protección de relámpago.
- Robusta de peso ligero e impermeable.
4.3.4.3. Aplicaciones

- Aplicaciones para 5.8 GHz ISM Ata.
- Manejo del estándar 802.11 para enlaces inalámbricos.
- Aplicaciones para tecnología Wi-Max.
- Enlaces de transmisión Backhaul.
- Punto para señalar enlaces de transmisión.
- Edificio a edificio con eslabones de alta velocidad.

4.3.4.4. Especificaciones

4.3.4.4.1. Eléctricas

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor 1</th>
<th>Valor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ganancia</td>
<td>29dBi</td>
<td>32.5 dBi</td>
</tr>
<tr>
<td>Frecuencia</td>
<td>5.725 to 5.850 GHz</td>
<td>5.725 to 5.850 GHz</td>
</tr>
<tr>
<td>VSWR</td>
<td>1.5:1</td>
<td>1.5:1</td>
</tr>
<tr>
<td>Front/Back ratio</td>
<td>25 dB</td>
<td>38dB</td>
</tr>
<tr>
<td>Máx. Entrada de poder</td>
<td>100 Watts</td>
<td>100 Watts</td>
</tr>
<tr>
<td>3dB Beam Angle</td>
<td>6°</td>
<td>4°</td>
</tr>
<tr>
<td>Cross pole</td>
<td>-32dB</td>
<td>-34dB</td>
</tr>
<tr>
<td>Side Lobe</td>
<td>-28dB</td>
<td>-30dB</td>
</tr>
<tr>
<td>Inclinación Vertical</td>
<td>11°</td>
<td>6°</td>
</tr>
<tr>
<td>Impedancia</td>
<td>50 ohms</td>
<td>50 ohms</td>
</tr>
<tr>
<td>Conector</td>
<td>Tipo-N (hembra)</td>
<td>Tipo-N (hembra)</td>
</tr>
<tr>
<td>Polarización</td>
<td>Horizontal o Vertical</td>
<td>Horizontal o Vertical</td>
</tr>
</tbody>
</table>

Tabla 4.7 Especificaciones eléctricas [37].

4.3.4.4.2. Mecánicas

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor 1</th>
<th>Valor 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensiones (dia)</td>
<td>25.5” In (648mm)</td>
<td>35.4” In (900 mm)</td>
</tr>
<tr>
<td>Soporte de viento</td>
<td>125 mph</td>
<td>125 mph</td>
</tr>
<tr>
<td>Peso</td>
<td>11 Lbs. (5 kg)</td>
<td>22 Lbs. (10 kg)</td>
</tr>
<tr>
<td>Diámetro del polo (OD)</td>
<td>1.5 a 3.0 Inch (38 a 76 mm)</td>
<td>1.5 a 3.0 Inch (38 a 76 mm)</td>
</tr>
<tr>
<td>Temperatura de operación</td>
<td>-40 a +70 ºC</td>
<td>-40 a +70 ºC</td>
</tr>
</tbody>
</table>

Tabla 4.8 Especificaciones mecánicas [37].
4.3.5. Sistemas de energía ininterrumpidas (UPS’s)

A continuación describiremos las características los sistemas de energía ininterrumpidas para el respaldo del equipo de nuestro site de telecomunicaciones.

4.3.5.1. Routers y servidores

![Figura 4.12 UPS para routers y servidores](image)

Utilizaremos el modelo Q520 de la empresa AQS Business Continuity distribuido por Prolyt (véase figura 4.12) el cual es ideal para medianos clusters de cómputo, servidores, redes, telecomunicaciones y aplicaciones críticas. Este sistema cuenta con las siguientes características:

- Equipo en línea de doble conversión bidireccional.
- Disponible en capacidades de 6, 8, 10 y 15 kVA (entrada monofásica o trifásica).
- Bypass interno con control manual para revertir el estado de interrupción de la línea comercial a una condición segura.
- Alto nivel de eficiencia.
- Redundancia en las baterías.
- Amplia ventana de tensión de entrada a plena carga y sin descargar la batería.
- Óptimo tiempo de recarga que preserva la vida útil de las baterías.
• Diseño de corrección de factor de potencia que asegura menores costos de instalación y permite reducir el tamaño de la planta de emergencia.
• Función de modo ahorrador de energía.
• Control a base de microprocesador y transistores IGBT.
• Panel LCD para obtener mayor información de las condiciones de operación del equipo.
• Ideal para operar con plantas de emergencia.
• Administración activa de la batería para la predicción de fallas.
• Software y SNMP (opcional) [39].

4.3.5.2. Respaldo de la estación base

4.3.5.2.1. Equipo de respuesta inmediata

Utilizaremos el siguiente equipo distribuido por Prolyt y fabricado por Onguard, empresa dedicada a equipos de protección energética para aplicaciones de alta precisión en procesos industriales, así como en equipos de medición (véase figura 4.13), se colocará antes de la planta eléctrica de emergencia debido a que las plantas tienen un retraso en la activación de sus circuitos de respuesta; elegimos este equipo debido a su gran precisión y triple conversión para aplicaciones críticas; posee las siguientes características:

Figura 4.13 Equipo de respuesta inmediata modelo ED [39].
• Equipos en línea de triple conversión.
• Disponible en capacidades de 500 VA a 2kVA.
• Salida senoidal en línea regenerativa.
• El más alto porcentaje de confiabilidad probado en campo.
• Variación de frecuencia de entrada de 45 a 450 Hz. sin descargar la batería.
• Protección contra tensiones de entrada demasiado bajas (+15% a -55%) sin descargar la batería.
• Virtualmente elimina el tiempo perdido por descomposturas.
• Interfase RS-232 para servidores.
• Cumple con las normas UL, CSA, ANSI/IEEE C62.41, IEEE587 y NOM.
• Pequeño y silencioso.
• Ideal para uso con plantas de emergencia.
• Transferencia automática.
• Regulación de tensión y frecuencia ultraprecisa [39].

4.3.5.2. Planta de emergencia

La planta de emergencia que utilizaremos el la fabricada por Productos Lyt S.A de C.V. Especificamente el modelo Silicon (véase figura 4.14) ya que es de fácil manejo, ahorrativa en su operación, ideal para circuitos de emergencia y procesos industriales de baja escala; posee las siguientes características:

- Equipada con motor a diesel enfriado por agua o por aire que opera a velocidades de 1800 ó 3600 r.p.m.
- Disponible en capacidades de 10, 15, 20 y 25 kW.
Los comandos y controles están agrupados en un solo panel de control para facilitar su manejo.

Disponibilidad de arranque y tableros de transferencia automáticos.

Equipo estándar:

- Motor
- Generador
- Soportes amortiguadores
- Tanque diario
- Escape con silenciador
- Batería de arranque
- Tablero manual

Equipo opcional:

- Tablero automático.
- Tanque externo.
- Silenciador catalítico.
- Control remoto [39].

4.3.6. Sistema de aire acondicionado

Utilizaremos este sistema modelo 3 TR sólo frío 220/3/60 de la empresa York; para mantener en óptimas condiciones el site de telecomunicaciones para excelente funcionamiento del equipo electrónico (véase figura 4.15).

Figura 4.15 Sistema de aire acondicionado [40].
Este sistema tiene las siguientes características:

- Gabinete de acero galvanizado resistente con protección anti-corrosión.
- Base con entradas para montacargas y agujeros de drenaje.
- Compresor protegido internamente contra alta temperatura y presión.
- Equipado con válvula para aliviar presión y protección de sobrecarga.
- Serpentín condensador recubierto para operación duradera y eficiente.
- Área de inyección aislada y compresor montado en resortes de neopreno.
- Motores de evaporador y condensador permanentemente lubricados.
- 1 año de garantía en partes y 5 en compresor.
- Capacidad Toneladas: 3
- Tipo de Control: termostato (no incluido).
- Eficiencia: 10 SEER

Dimensiones:

- Alto (cm/pulg): 27 pulg.
- Ancho (cm/pulg): 30 pulg.
- Profundidad (cm/pulg): 44 pulg.
- Peso Neto: 268 lbs. [40]

4.4. Ubicación e instalaciones

Consideramos una gran altura para instalar la antena de la estación base, de tal forma que todas las antenas de los clientes puedan ver la antena central (recomendado). Algunas sugerencias para mejores ubicaciones de la antena de la estación base podrían ser:

- La parte más alta de un edificio en la ciudad.
- La parte más alta de un edificio ubicado en un cerro.
- Una torre alta (de TV o alguna torre de comunicación).

Aunque un cable de baja pérdida se usa para conectar la antena con la estación base, su longitud debe ser lo más corto posible para evitar pérdida de señal. La longitud del cable no debe exceder los 9 metros sin la utilización de un amplificador. No se
recomienda tener cables más largos o sustituir los cables de baja pérdida por otros de baja calidad ya que el sistema no funcionaría.

Necesitaremos una fuente de energía de 110 o 220V en la unidad base, un sistema UPS (Fuente de Energía Ininterrumpida) es muy recomendable.

4.5. Diagramas arquitectónicos y obra civil del WISP

Véase anexo B.

4.6. Mástil de antena

Para la instalación del soporte de la antena utilizaremos un monopolo debido a sus características de la empresa mexicana ABC Ingeniería Estructural S.A. de C.V. la cual cuenta con varios tipos de monopolos, acorde a los requerimientos específicos de comunicación. Requieren un espacio mínimo para su instalación (véase figura 4.16).

Figura 4.16 Torre de monopolo [41].

Se tienen para alturas de hasta 36 m. en secciones de 6.00 m., fabricados con tubo tipo industrial NOM-B177 (ASTM-A-53) de diferentes diámetros y espesores de pared, acordes a las características de los esfuerzos a los que serán sometidos (véase figura 4.17).
En ellos podemos instalar antenas para celulares, micro ondas de radio y telecomunicaciones, así como plataformas, pasillo andador y soportes, entre otros, capaces de resistir velocidades de viento hasta 200 Km/hr en diferentes condiciones de terreno (véase figura 4.18) [41].

<table>
<thead>
<tr>
<th>Torre Modelo</th>
<th>Vr (km/hr)</th>
<th>F.T.</th>
<th>C.T.</th>
<th>msnm</th>
<th>Altura (mts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>200</td>
<td>1.1</td>
<td>3</td>
<td>>1500</td>
<td>12</td>
</tr>
<tr>
<td>ABC</td>
<td>200</td>
<td>1.1</td>
<td>3</td>
<td><1500</td>
<td>18</td>
</tr>
<tr>
<td>ABC</td>
<td>200</td>
<td>1.1</td>
<td>3</td>
<td>>1500</td>
<td>24</td>
</tr>
<tr>
<td>ABC</td>
<td>200</td>
<td>1.1</td>
<td>3</td>
<td><1500</td>
<td>30</td>
</tr>
<tr>
<td>ABC</td>
<td>200</td>
<td>1.1</td>
<td>3</td>
<td><1500</td>
<td>36</td>
</tr>
</tbody>
</table>

Tabla 4.9 Características de antenas tipo monopolo [41].
Vr = Velocidad Regional
F.T. = Factor Topográfico
C.T. = Categoría de Terreno
msnm = Metros sobre el nivel del mar

4.7. Rack de telecomunicaciones

Para instalar los sistemas se utilizará un Armario Rack de 19" Flytech S.A, quien distribuye armarios Rack profesionales, diseñados para todo tipo de sistemas informáticos. Estos armarios constan de multitud de detalles, como:

- Bandejas extraíbles para teclado y ratón.
- Sistema de ventilación en la parte superior regulable de gran potencia.
- Rejillas de ventilación tanto en la puerta delantera como en la trasera.
- Estabilizadores deslizantes para la extracción total de las bandejas sin peligro de vuelco.
- Aperturas laterales para un rápido acceso al sistema.
- Canalización para los cables, que evitan enredos y errores.

El rack profesional de seguridad para redes RACK LAN de 19", ha sido especialmente diseñado para las cajas de servidores de 1U, 2U y 4U (véase figura 4.19) [42].

![Figura 4.19 Racks de telecomunicaciones [42].](image)
Su estructura lo hace ideal para la instalación de clusters en centros de procesos de datos. Al aplicar la tecnología del Switch, racionaliza extraordinariamente el espacio disponible, a la vez que facilita al máximo su administración.

Su seguridad, junto con un moderno diseño y original acabado, permiten su perfecta integración en cualquier ambiente (véase figura 4.20).

Vista de 2 armarios Rack de 19", sin las puertas, y con las bandejas extraíbles metidas, utilizados en el SIMO 2002 y 2003 (véase figura 4.21).
Figura 4.21 Vista de dos armarios abiertos [42].

Foto de un Rack de 41U, con servidores tamaños supermicro de 1U, 2U, y 4U (véase figura 4.22).

Figura 4.22 Foto de Rack de 41U [42].
Vista interior del lateral con la tapa quitada (véase figura 4.23).

Imagen del armario con la bandeja del ratón y el teclado fuera, lo que nos permite manejar sin tener que abrir el armario rack (véase figura 4.24).
Se le pueden insertar múltiples accesorios, entre ellos esta bandeja para soportar un monitor (véase figura 4.25).

Figura 4.25 Bandeja para soporte de monitor [42].

Así mismo posee su propio sistema de ventilación (véase figura 4.26).

Figura 4.26 Sistema de ventilación [42].
4.8. Routers

4.8.1. Router backbone

En el caso del router Backbone utilizaremos el que es entregado por Red 1 y se interconectará físicamente al router Cisco serie 3845 para el óptimo desempeño de la red.

4.8.2. Router de concentración

El Router de concentración de usuarios será uno de la serie 3000 el cual a su robustez permite que la gestión y administración sea lo mas apta posible cabe mencionar que por medio de una conexión física se interconectará al servidor de gestión IBM System x366 (véase figura 4.27) [38].

4.9. Servidor

Para instalar el software de control del sistema se recomienda un servidor modelo IBM System x366. Ya que el x366 brinda una performance extraordinario, una latencia extremadamente baja y una alta disponibilidad y manejo, junto con tecnologías de avanzada integradas que ayudan a proteger la inversión de IT (véase figura 4.28) [43].
Las aplicaciones ideales incluyen: Enterprise Resource Planning, Serving de base de datos o aplicaciones basadas en tecnología de Java™ desarrolladas por los clientes.

4.9.1. Procesador

Intel® Xeon® Processor MP de hasta 3.66GHz (Single-Core) y hasta 3.00GHz (Dual-Core) Procesadores máximos 4 Altura del bastidor 3U Unidades duras máximas 6.

- Ofrece un rendimiento avanzado con cuatro procesadores, con una posibilidad de direccionamiento de memoria de 64-bit a través de IBM® X3 Architecture, la tercera generación de IBM Enterprise X-Architecture™.
- Ofrece menor tiempo parado con tres niveles de protección de memoria y tecnología avanzada de administración de sistemas opcional.
- Soporta procesadores de alto rendimiento, dual-core de 64-bit Intel® Xeon™ MP y ejecuta aplicativos de 32- y 64-bit, proporcionando espacio amplio y protección a la inversión.
- Aprovecha años de experticia en implementación de servidores de IBM y la confiabilidad comprobada en corporaciones del diseño de arquitectura Intel.

El IBM eServer xSeries® 366 entrega un rendimiento extraordinario, latencia extremadamente baja y alta disponibilidad y facilidad de administración, juntamente con tecnologías avanzadas e integradas que ayudan a proteger su inversión en IT. El x366 está diseñado con IBM eServer X3 Architecture, la tercera generación de IBM.
Enterprise X-Architecture Technology inspirada en mainframe e Intel® Xeon™ Processors MP de 64-bit. Accionando aplicativos de misión crítica que incluyen aplicativos con tecnología Enterprise Resource Planning, servicios a base de datos o desarrollados de forma personalizada, Java™ como el software IBM WebSphere®, el x366 se destaca en la ejecución de funciones intensivas de transacciones, tradicionales del back-office.

El x366 proporciona más potencia de computación en un factor de forma más pequeño (3U) que muchos modelos de la competencia, brindando a las organizaciones capacidades potentes de hosting de aplicativos comerciales en un diseño compacto. Entrega hasta 16 veces la posibilidad de direccionamiento de memoria y tres veces el ancho de banda de bus de CPU, comparado a diseños de servidores anteriores. Utilizando el chipset IBM XA-64e™, este sistema de X3 Architecture se beneficia de tráfico reducido de procesador en el bus frontal a través de un filtro snoop integrado. El XA-64e acelera las comunicaciones entre los procesadores, memoria principal e I/O, ayudando a que el x366 accione aplicativos comerciales de IT.

Entregando disponibilidad sin comprometer el rendimiento, el x366 es una elección líder de mercado para entornos de misión crítica. Combinando tecnologías de alta disponibilidad a recursos de seguridad basados en hardware recién integrados, el sistema permite un alto índice de tiempo en marcha y protección de los aplicativos de su corporación. Herramientas de software líderes de mercado y verdadera administración remota de sistemas basada en hardware, capacidades de monitoreo y de emisión de alertas, se combinan para entregar aún más mejoras en disponibilidad. Estos adelantos incluyen:

- La arquitectura comprobada en campo, de bus frontal doble del Intel® Xeon™ Processor MP de 64i-bit.
- Tecnología IBM Active Memory™ basada en DDR II, incluyendo memoria IBM Chipkill™, IBM Memory ProteXion™, Memory Mirroring y capacidad hot-swap/hot-add.
- Recursos clásicos de IBM inspirados en mainframe, incluyendo diagnósticos light path, IBM Predictive Failure Analysis®, IBM Active™ PCI-X y completa redundancia de hot-swap en todos los principales sub-sistemas.
Entregando una estructura de 64-bit líder de mercado para desarrollo de aplicativos mid-tier, el x366 está basado en la potencia de X3 Architecture, la tercera generación de tecnología inspirada en mainframe IBM Enterprise X-Architecture. X3 Architecture activa el x366 para entregar el rendimiento extraordinario, la disponibilidad y facilidad de administración necesarios para roles de servidor de aplicativos de 64-bit verdaderos. Con su amplia experiencia de desarrollo de chipset y los avances en alto rendimiento y disponibilidad, IBM está posicionada de modo único para ofrecer un servidor robusto y potente, ofreciendo innovación que entrega resultados de negocios y de TI reales.

Recursos avanzados e integrados en el x366 también ayudan a racionalizar y simplificar la administración de sistemas mientras ayudan a reducir los costos asociados. Los recursos para la facilidad de administración de sistemas incluyen:

Monitoreo y alerta de hardware básico fiel a IPMI con upgrade opcional al RSA (Remote Supervisor Adapter) II SlimLine avanzado, ayudando a proteger la disponibilidad del servidor a través del monitoreo del sistema y entregando capacidades de verdadera administración remota, ahorrando tiempo a los administradores y proporcionándoles mayor flexibilidad.

Un TPM (Trusted Platform Module), ayudando a simplificar y a mejorar la administración de seguridad con funcionalidad de seguridad integrada, basada en hardware, que autentifica a los usuarios y protege contra virus y otras amenazas al sistema.

Software IBM Director, que ofrece amplia administración de hardware dentro de una interfaz de usuario conveniente, soporte a múltiples sistemas operativos y estructura consistente, que puede ser extendida con plugins para administración más avanzada, todo esto proporciona a los administradores mayor facilidad de uso, implementación más rápida de aplicativos y capacidad de adaptación para monitoreo remoto con alertas que se pueden personalizar.

Muchos de los recursos integrados y las innovaciones ofrecidos en el x366 ayudan también a entregar protección a la inversión dejando a las organizaciones listas para la próxima evolución en aplicativos corporativos y tecnologías de servidor-la migración a
aplicativos de 64-bit en hardware x64 estándar de mercado. El x366 incluye IBM Calibrated Vectored Cooling™ que ayuda a mantener los componentes internos refrigerados resultando en rendimiento óptimo y mayor durabilidad. Con compatibilidad simultánea de software de 32- y 64-bit proporcionada por la Tecnología Intel® Extended Memory 64 (Intel® EM64T), el x366 también ayuda a proteger el valor de su inversión en software con una estructura que soporta nuevos aplicativos corporativos de 64-bit juntamente con aplicativos legados de 32-bit así como herramientas de sistema. Y el x366 contiene Active PCI-X 2.0 con hasta 266MHz de ancho de banda por slot, el nuevo estándar para i/o de servidor de alto rendimiento-preservando la compatibilidad con la existente base instalada de adaptadores PCI y PCI-X 1.0.

4.9.2. Recursos del producto

• Predictive Failure Analysis® proporciona monitoreo preventivo de componentes críticos del sistema ayudando a reducir el tiempo parado.
• Unidades de disco rígido de hot-swap, ventiladores, placas I/O PCI-X y DIMMs de memoria que protegen las operaciones ininterrumpidas.
• Diagnósticos Light Path que ayudan a acelerar los reparos de hardware y a reducir el tiempo de servicios.
• Soporte para IPMI estándar con posibilidad de hacer upgrade al Remote Supervisor Adapter II SlimLine, para lograr administración remota de sistema más avanzada.
• Software IBM Director que une el monitoreo basado en hardware con análisis y alerta integral de sistemas.

4.9.3. Resumen de hardware

• Optimizado para rack de 3U.
• Procesador Intel® Xeon™ MP de hasta 3.66GHz (single-core) y hasta 3.00GHz (dual-core).
• Hasta 64GB de memoria DDR II ECC.
• Seis slots Active™ PCI-X 2.0 estándar soportan el I/O de servidor de alto rendimiento.
• Soporta Serial Attached SCSI HDDs, la última palabra en almacenamientos de servidor de alto rendimiento, confiable para las corporaciones.
Cabe hacer mención que el servidor está interconectado directamente al router Backbone para garantizar la gestión de la red, así mismo para integrar el sistema de facturación [43].

4.10. Sistema operativo del WISP

Para la implantación se instalará el sistema operativo Windows Server versión 2003 el cual debido a sus características es la opción viable como sistema operativo compatible con la Tecnología de Netkrom, dicha es la tecnología inalámbrica que habremos de adoptar, solo utilizaremos el sistema operativo ya que la misma trae consigo las aplicaciones de gestión y administración del sistema.

4.11. Seguridad del servidor

Para mantener los niveles óptimos de seguridad utilizaremos las siguientes aplicaciones que son suficientes para evitar intrusiones en la red.

- Lista de Control de Acceso.
- WEP 64/128.
- WPA1/WPA2 con cifrado TKIP & AES.

Lo cual lograremos siguiendo los siguientes pasos:

1. Configurar puntos de acceso.
2. Agrupar usuarios y máquinas.
3. Configurar IAS (RADIUS)
 - Dar de alta los AP como clientes.
 - Configurar la política de acceso.
5. Definir políticas para obtención de certificados.
4.12. Sistema de facturación

El sistema de facturación que se implantará es la solución que desarrolla Quantiqus permitirá de manera automática informarle al servidor de gestión de red de los pagos de los usuarios del Sistema y de esta manera mensualmente se tendrá un control más sólido para evitar cualquier tipo de pérdida del ancho de banda contratado. Al mantener la base de datos de clientes constantemente enlazada al servidor de gestión se podrán obtener resultados del uso y desuso de la conexión.

Admincontrol Plus es el software administrativo integrado que abarca todos los módulos necesarios para una administración eficiente.

El Admincontrol Plus tiene las siguientes características:

Sucursales

- Controla ilimitadas sucursales.

Agentes de ventas

![Figura 4.29 Agentes de ventas](image)

- Asigna vendedores a clientes.
- Controla el rendimiento por vendedores.
- Asigna la comisión.
- 12 categorías.
• Inserta una foto.
• Asigna privilegios de grupos de usuarios.
• Fácil y rápida búsqueda de agentes y sus operaciones.

Clientes

![Figura 4.30 Clientes [44].](image)

• Datos generales.
• Asigna condiciones de ventas, lista de precio, límite de crédito, etc.
• 12 categorías.
• Maneja ilimitadas direcciones de embarque.
• Asigna el formato de reporte de operaciones.
• Maneja ilimitados contactos por cliente.
• Controla el rendimiento de clientes.
• Fácil y rápida búsqueda de clientes y sus operaciones.

Proveedores

• Datos generales.
• Asigna condiciones de compras, etc.
• 12 categorías.
• Asigna el formato de reporte de operaciones.
• Maneja ilimitados contactos por proveedor.
• Controla el rendimiento de proveedores.
• Fácil y rápida búsqueda de proveedores y sus operaciones.

Divisas

• Permite el manejo de ilimitadas divisas.

Catálogos diversos

• Diversos.
• Cotizaciones.
• Permite la cotización en cualquier divisa.
• Convierte cotizaciones a pedidos y ventas con un solo clic.
• Cotiza servicios que no están ligados a un catálogo.
• Inserta comentarios generales y por partida.

Pedidos

• Permite la elaboración de pedidos en cualquier divisa.
• Transforma pedidos totales o parciales desde una o varias cotizaciones.
• Convierte pedidos a ventas con un solo clic.
• Elabora pedidos de servicios que no están ligados a un catálogo.
• Inserta comentarios generales y por partida Ventas.
Ventas

- Permite la elaboración de remisiones y facturas en cualquier divisa.
- Transforma ventas totales o parciales desde una o varios pedidos.
- Convierte ventas a devoluciones de ventas con un solo clic.
- Elabora pedidos de servicios que no están ligados a un catálogo.
- Inserta comentarios generales y por partida.
- Genera la cuenta por cobrar en forma automática.
- Permite la generación de ventas a plazos diferidos, calculando automáticamente los intereses y saldos.
- Por cada documento genera un documento de cuentas por cobrar.

Devoluciones de ventas

- Transforma devoluciones de ventas totales o parciales desde una o varios ventas.
- Genera notas de crédito y afecta automáticamente cuentas por cobrar.
Cuentas por cobrar

![Imagen de Cuentas por cobrar](image_url)

Figura 4.32 Cuentas por cobrar [44].

- Elabora cargos, abonos, anticipos y notas de créditos.

Ordenes de compra

- Permite la elaboración de órdenes de compra en cualquier divisa.
- Convierte órdenes de compra a compras con un solo clic.
- Elabora órdenes de compras que no están ligados a un catálogo.
- Inserta comentarios generales y por partida.

Compras

- Permite la elaboración de compras en cualquier divisa.
- Transforma compras totales o parciales desde una o varias órdenes de compras.
- Convierte compras a devolución de compras con un solo clic.
- Elabora compras de servicios que no están ligados a un catálogo.
- Inserta comentarios generales y por partida.
- Genera la cuenta por cobrar en forma automática.

Cuentas por pagar

- Elabora cargos, abonos, anticipos y notas de créditos.
Promociones

- Define promociones por producto, cliente y proveedor asignando el rango de fechas y descuentos.

Inventarios

Almacenes

- Controla ilimitados almacenes.
- Asigna a cada almacén sus folios de operaciones (ventas, compras, etc.).
- Traspasa mercancía entre almacenes.
- Maneja almacenes de tránsito Productos y servicios.

Productos y servicios

- Permite 2 descripciones.
- Permite descripción en ilimitados idiomas.
- 17 categorías.
- Ilimitada listas de precios.
- Maneja factores de precios.
- Asigna a cada producto sus impuestos.
- Maneja ilimitadas medidas de conversión.
• Control números de serie, lotes y pedimentos.
• Asigna una foto desde un escáner o una foto.
• Permite ilimitados sub-ensembles – kits.
• Permite el ensamblaje de materia prima y convertirla a un producto terminado.
• Permite asignar si el producto es materia prima o producto terminado.
• Manejo de Kardex por producto y características.
• Asigna hasta 3 características, por ejemplo colores, tallas, estilos, etc.
• (pedidos, ventas, compras, etc.) se controla la entrada y salida por característica.

Bancos

• Maneja ilimitadas cuentas bancarias.
• Controla cuentas bancarias en cualquier divisa.
• Elabora cargos, cheques y abonos.
• Permite la impresión de cheques.
• Concilia tus cuentas bancarias en forma sencilla.
• Traspasa fondos entre cuentas propias.
• Afecta automáticamente cuentas por cobrar y cuentas por pagar.
• Permite la elaboración de pólizas contables en el momento de la captura de un movimiento bancario.
• Maneja presupuestos y compara vs. tus flujos reales.
• Reporta el estado financiero de la empresa.
• Gráfica los indicadores más importantes.
• Exporta a Excel.
• Programa movimientos bancarios y envía alertas automatizadas.

Contabilidad

• Maneja ejercicios contables abiertos.
• Catálogos contables.
• Crea pólizas contables.
• Genera en forma automática las pólizas contables de las operaciones.
• Reportes de estados financieros, balance general, balanza, auxiliares, etc.

Relaciones con clientes y proveedores - CRM

• Panel de control de operaciones: E-mail, Notas, Tareas, Citas, Oportunidades, Alertas.

Consultas y reportes

![Figura 4.35 Consultas y reportes](image)

• Acceso rápido a las consultas más relevantes.
• Tiene más de 300 consultas y reportes definidos.
• Diseña y modifica Reportes.
• Aplica filtros sin limitaciones.
• Envía cualquier reporte vía E-Mail con un solo clic.
• Exporta los reportes a MS Excel con un solo clic.
• Gráfica los indicadores más importantes.
• Programa alertas que se ejecutan en forma automática.
• Publica los reportes a un sitio Internet.

Utilerías

• Configuración: Admincontrol es muy configurable y versátil y se adapta a tu flujo de trabajo.
• Se pueden dar de alta los catálogos directamente desde las operaciones sin tener que salir de la operación.
• Envía y recibe E-mail's directamente desde la aplicación.
• Admincontrol permite enviar cualquier documento de operación a tus contactos por E-mail o a MS Word con un solo clic.
• El reportador de operaciones te permite diseñar y ajustar los formatos de cotizaciones, pedidos, facturas, etc. a tus necesidades y formatos pre-establecidos.
• Es muy fácil y rápido encontrar cualquier información.
• Puedes importar tus catálogos de otras aplicaciones, por ejemplo desde ASPEL SAE, Adminpac, Excel, etc.

Seguridad

• Se asignan los usuarios a grupos de usuarios.
• Se define los niveles de privilegios por cada grupo de usuarios.
• Permite el manejo de la seguridad al incluir grupos de usuarios/vendedores permitiendo que el usuario solo vea las operaciones de los vendedores y clientes del grupo al que pertenece [44].
4.13. Proveedor del servicio a la nube de Internet de alcance local

Realizamos la comparación de empresas que proveen el servicio de enlaces dedicados a la red de Internet, las cuales son por orden alfabético Alestra, Avantel y Telmex, de acuerdo a las características del servicio que ofrecen hemos optado por el servicio que ofrece la empresa Telmex que ofrece los siguientes planes de contratación:

- Servicio de enlace dedicado E1 a 2 Mbps, con una capacidad de 200 usuarios concurrentes se propone unir y contratar tres enlaces.
- Enlace E3 a 34 Mbps.

Con una disponibilidad anual del servicio del 98% y contratos de entre 1 a 3 años, incluye la instalación del enlace en cualquier punto geográfico que se solicite con la tecnología que garantice la disponibilidad de la conexión [45].

Como podemos observar la ciudad de Pachuca, Hidalgo; será cubierta por la tecnología de WiNet, ya que la estación base de Netkrom tiene la capacidad de irradiar con una cobertura de hasta 24 Km. a la redonda, citado este antecedente cabe mencionar que la ubicación de la estación base tiene una altura de 2560.00 metros sobre el nivel del mar aproximadamente y en promedio la zona habitada de Pachuca esta a 2400.00 metros sobre el nivel cero (véase figura 4.36).
Hemos determinado algunos puntos estratégicos, mencionamos su altura y distancia, ya que WiMax posee la capacidad de reflejar las señales esto permite una amplia cobertura a pesar de no existir LOS (Línea de Vista).

<table>
<thead>
<tr>
<th>Lugar</th>
<th>Altura</th>
<th>Distancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Antonio</td>
<td>2339 m</td>
<td>10.47 Km</td>
</tr>
<tr>
<td>La Providencia</td>
<td>2370 m</td>
<td>6.90 Km</td>
</tr>
<tr>
<td>Punta Azul</td>
<td>2380 m</td>
<td>7.85 Km</td>
</tr>
<tr>
<td>San Bartola</td>
<td>2400 m</td>
<td>5.12 Km</td>
</tr>
<tr>
<td>Loreto</td>
<td>2493 m</td>
<td>3.78 Km</td>
</tr>
<tr>
<td>San Judas</td>
<td>2472 m</td>
<td>4.18 Km</td>
</tr>
</tbody>
</table>

Cubitos

Altura: 2560 m

Tabla 4.10 Puntos de referencia [46].
En cuanto a la instalación de la Estación Base y la conexión del Backhaul, el plan de instalación consiste en edificar en el cerro de cubitos una torreta tipo monopolo de 36 m. de altura, donde se proyecta colocar el Radio, las antenas sectoriales de paneles, y su sistema de protección de energía eléctrica.

La contratación de los enlaces E1, el servidor de gestión, los routers y demás equipo que contemplan el site de telecomunicaciones, los instalaremos en locales de la Plaza Galerías Pachuca, lo anterior debido a que el lugar es estratégico para la ventas y también porque la plaza cuenta con una línea de vista óptima hacia cubitos la distancia es de 4.1 km, y la altura de la plaza es de 2365 mts. respecto al nivel del mar (véase figura 4.37).
Exponemos una proyección donde podemos apreciar, el enlace a simple vista será exitoso, debido a que Wimax utiliza OFDM no es necesario tener líneas de vista entre la estación base y el suscriptor bastara con orientar hacia el cerro de cubitos y con ello se obtendrá la conexión (véase figura 4.38).

Finalmente hemos virtualizado la ciudad de Pachuca, desde la central de autobuses, demostrando como se colocan los accesos hacia el cerro de Cubitos; este análisis demuestra la factibilidad técnica de instalación de la tecnología que ofrece Netkrom; nosotros realizamos la convergencia de múltiples elementos para plasmarlos (véase figura 4.39) [46].
Figura 4.39 Virtualización de la instalación [46].
CAPÍTULO 5.
REALIDAD E IMPACTO DEL ISP WIRELESS EN PACHUCA

5.1. Introducción

En este capítulo se realizó el análisis de los competidores, mostrando la situación del mercado actual, describiendo el producto que se va a ofrecer al cliente potencial y un tema en particular interesante que se denomina “Las estrategias de comercialización” en el cual se incluye una propuesta de campaña publicitaria dividida en etapas, así como el plan de presentación del producto con contenido de folletería, texto para spot en radiodifusoras, eslogan y sugerencias para que los promotores aborden al público. Se propone el diagrama de operación del proveedor de servicio de Internet, el personal necesario y los asesores externos que se necesitan para mantener a punto el servicio.
5.2. Competidores principales, proveedores de Internet de banda ancha en Pachuca

Los competidores actuales del mercado local al que pretendemos ingresar están concentrados en dos ramas los cableados y los Inalámbricos.

5.2.1. Cableados

- **Tv cable de provincia**: que ofrece servicio de Internet por medio de su red de cable coaxial su producto se llama Access Net con enlaces de Kbps.
- **Telmex**: que ofrece servicios de Internet fija por medio de su inmensa red cableada su producto se denomina Prodigy Infinitum con enlaces de 1, 2, y 4 Mbps.
- **Mexline**: que ofrece servicios de Enlaces Dedicados DS0 de 64, 128, 256, 1024 y 2048 Kb.

5.2.2. Inalámbricos

- **Iusacell**: que ofrece Servicio de Internet Móvil tecnología 3G.
- **Unefon**: que es fue actualmente Adquirida por el Grupo Salinas.
- **Telcel**: que utiliza Tecnología GPRS EDGE para ofrecer servicio de Internet.
- **Movistar**: que utiliza tecnología GPRS EDGE para ofrecer servicio de Internet.
- **Intercel**: que utiliza Tecnología Pre-WiMax y ofrece igual enlaces dedicados.

5.3. Situación del mercado

Pues en apariencia parecería que el mercado puede ser cubierto por los proveedores existentes, la situación implica que por el lado de los cableados el promedio que ofrecen es de 1024 Kbps de banda ancha por un costo de $350 más IVA con la mayor penetración del mercado por parte de Telmex de Carlos Slim seguido por Tv-Cable de Provincia de Socios Anónimos, finalmente y con una mínima parte por Mexline.

En el caso de los inalámbricos el promedio por 512 Kbps es de 850 más IVA, y cabe hacer mención que Iusacell y Unefon utilizan tecnología 3G, Telcel y Movistar Tecnología GPRS EDGE e Intercel tecnología Pre-WiMax.
Como podremos entender las telefónicas celulares ofrecen el servicio de manera móvil en bandas licenciadas e Intercel lo ofrece de manera fija en banda exenta de licencia con tecnología pre-wimax (equipo no homologado) en este análisis.

5.4. Servicio ofrecido

El producto estelar de la empresa será ofrecer el doble del promedio analizado por un costo, que en función del análisis de usuarios, es decir 1 Mbps de acceso a Internet por: $300.00 con IVA incluido.

5.5. Operación y producción

Para operación del sistema requerimos de una infraestructura sólida es por ello que hemos escogido los equipos con mejor calidad de servicio, ello permitirá operar la red de manera sólida, para lo cual se requerirá capacitar al personal humano para que de esta manera la producción en nuestro caso cada conexión esté garantizada, en cuanto a la producción aseguraremos el abasto contratando a Telmex enlaces E1 para garantizar el acceso.

5.6. Estrategias para comercializar el servicio (ventas)

5.6.1. Introducción al mercado

La introducción al mercado se realizará de manera paulatina donde se pretende incorporar 250 usuarios en un primer bimestre, e incrementar en los meses subsiguientes más usuarios, hasta llegar a 600 instalaciones (mas detalle sobre tiempos financieros en el Capítulo siguiente), la estrategia mercadologica dividida en tres etapas permitirá introducir el producto de manera efectiva.

5.6.1.1. Primera etapa

En el área de mercadotecnia y en base al análisis del mercado se debe lanzar una intensa campaña publicitaria en medios masivos de comunicación local con la intención de despertar el interés del consumidor por el producto, la metodología será
bombardear de manera contundente con publicidad escuchada, visual y de boca a boca o mejor llamada como Ataque Directo al Consumidor que consistirá en los siguientes métodos.

5.6.1.1.1. Impactos en las radiodifusoras locales

En la cual donde la distribución se hará realizar en las horas de mayor audiencia y también del equipo de perifoneo:

- Grupo Acir, 24 impactos diarios durante 30 días en 12 por cada Frecuencia que posee la radiodifusora.
- Grupo 7, 15 impactos diarios durante 30 días.
- Contrato de 2 autos de perifoneo durante 30 días que recorran principales colonias de la ciudad.

5.6.1.1.2. Incrustaciones en periódicos locales

- 1 incrustación diaria durante 30 días en el Sol de Hidalgo; viernes, sábado, domingo y lunes un 50% más grande el anuncio ya que son los días en los que hay mayor adquisición de ejemplares.
- 1 incrustación por día durante 30 días en Síntesis; viernes, sábado y domingo un %50 más grande el anuncio ya que son los días en los que hay mayor adquisición de ejemplares.
- 1 incrustación por día durante 30 días en Milenio; viernes, sábado, domingo y lunes un %50 ya que son los días en los que hay mayor adquisición de ejemplares.
- 1 incrustación por día durante 30 días en el periódico de bolsillo de Síntesis.

5.6.1.1.3. Publicidad visual

- Contrato de 20 de espectaculares con la empresa Media Publicidad durante dos catorceñas en puntos estratégicos.
- Contrato de 10 espectaculares con la empresa Melgar durante un mes en puntos estratégicos.
• Contrato durante 30 días de Spots Visuales en televisiones de plasma de las avenidas y boulevares.

5.6.1.4. Publicidad de boca a boca

• Impresión de 40000 folletos selección a color en papel couche impresos en ambas caras tamaño media carta, que se repartirán en plazas comerciales de prestigio.
• Instalación de 5 módulos de promoción, Galerías, Plaza Bella, Mega Comercial Mexicana, Gran sur, Plaza Juárez.

5.6.1.2. Segunda etapa

Consistirá en reducir en la publicidad durante 30 días, con el propósito de descansar al público y de esa manera ver la reacción a la campaña y canalizar los resultados para evaluarlos y así plantear los resultados que se obtuvieron.

5.6.1.3. Tercera etapa

El impacto de esta etapa es vital, ya que si la campaña no resulta como lo proyectado deberá relanzarse el producto, si la respuesta de los clientes es satisfactoria debe mantenerse la campaña durante un periodo similar a los anteriores de 30 días.

5.6.2. Plan de presentación del producto

5.6.2.1. Texto del spot de radio

¿Cuanto pagas por Internet? “Pues lo que tu pagarás desde hoy no lo podrás creer”, WiNet te ofrece 1 Mbps, si 1 Mbit por solo $300, si solo $300 con IVA incluido ¿Increible no? más información marca al 7100000, olvidate de los costos elevados, nosotros somos la mejor opción, WiNet ofrece Banda Ancha para que navegues a tus anchas.
5.6.2.2. Esquema del folleto

Figura 5.1 Parte Frontal.

Figura 5.2 Parte interior izquierda.

Figura 5.3 Parte interior derecha.
5.6.2.3. Sugerencias de aborde al público

El promotor debe atender y abordar al posible cliente de la siguiente manera:

- El promotor identificará al cliente; para ello debe primero identificar aquel a quien sea rentable y de esa forma no desaprovechar el tiempo, para ello se basará en características físicas y manera de vestir de quien desee abordar por ejemplo una persona que utiliza accesorios de lujo y viste de manera propia es muy posible que tenga el poder adquisitivo para introducirle el producto con más detalle.
- No deberá discriminar al público solo deberá ser selectivo en el sentido de identificar usuarios potenciales, el folleto se deberá entregar a la mayor cantidad posible de personas pero la explicación detallada sólo a los clientes potenciales.
- Deberá saludar a la persona de manera amable.
- Le mostrará el folleto y la primera pregunta que debe hacer es: ¿Es usted usuario de Internet? Si el cliente potencial responde negativamente basta con decir que WiNet es una empresa que se dedica a proveer Internet al mejor precio; que le obsequia el folleto.
- Si el cliente responde positivamente de igual manera le presentaremos WiNet e inmediatamente pasaremos a preguntar si el cliente tiene conexión en su hogar, claro es si el individuo responde negativa o positivamente le daremos una información más detallada que consistirá en explicarle la tecnología, los requisitos, el costo y los beneficios.
5.7. Crédito y cobranza

El medio más factible de contratación del producto será a través de tarjetas de crédito esto porque de esta manera aseguramos un contrato mínimo de seis meses con los usuarios, además de que si un usuario se retrasará el cargo a la tarjeta nos permitiría reducir este riesgo, independientemente si el cliente tiene saturado su crédito, se le hará firmar un contrato forzoso y un baucher abierto que nos permita cargar el monto, también se aceptaran el pago a cuentas de débito y en efectivo, sólo que el contrato deberá ser anual.

5.8. Diagrama de proceso del WISP

Este diagrama nos permite establecer el proceso que debe seguir la empresa, para su óptimo funcionamiento y por lo cual el análisis del mismo, es de vital importancia al entenderse que se pretende tener éxito. Por lo cual se deben seguir la reglas como están dictadas.
Figura 5.5 Diagrama de proceso.
5.9. Personal de operación

Se necesitaran:

- 2 Ingenieros en Electrónica y Telecomunicaciones para el monitoreo de la red.
- 3 Técnicos en Telecomunicaciones para el soporte técnico e instalación.
- 1 Lic. en Mercadotecnia que se encargue del marketing.
- 1 Contador público para el proceso de facturación, pago de impuestos, etc.
- 2 Técnicos en Administración de empresas para la integración y mejor atención al cliente y cobro en ventanilla.
- 5 Vendedores técnicos en Administración Informática.
- 1 Personal de mantenimiento para aseo de las oficinas.

5.9.1. Asesores externos

Como asesores externos directamente se obtendra el servicio de la empresa Netkrom Inc. ya que ellos tienen pleno conocimiento en caso de fallas mayores en el equipo robusto. A Telmex que nos provee el enlace dedicado.
CAPITULO 6.
RESUMEN EJECUTIVO

6.1. Introducción

Este capítulo está preparado en forma de RESUMEN EJECUTIVO, el cual describe el perfil, ubicación, objeto, clasificación, naturaleza jurídica legal en su primer apartado. Al realizar el estudio de mercado, se define el área geográfica, características del mercado y análisis de la demanda. Como se realizó un perfil económico, se incluye el servicio ofrecido, con la proyección de ingresos durante cinco años, en un programa de Inversión y financiamiento en el cual se describe la inversión fija tangible e intangible, el capital de trabajo y el resumen de inversiones, se propone una esquema de financiamiento, con una proyección de servicio de deuda con un banco por el 80% de la inversión, realizando una proyección por bimestres de ingresos y egresos, estados financieros de ganancias y pérdidas, la evaluación empresarial con un resumen de indicadores de rentabilidad; en la última sección se realizó un análisis FODA y la Unidad Estratégica de Negocios.
6.2. Perfil del proyecto

WISP TECNOLOGIA WIMAX
COMO EMPRESA UNIVERSITARIA

6.2.1. Ubicación

Pachuca de Soto, Hgo. Cerro de Cubitos, se escoge dicha zona por su elevación geográfica y así facilitar de irradiación electromagnética, además de su estratégica situación socio económico por encontrarse esta zona al centro de la ciudad su acceso y electrificación.

6.2.2. Objeto del proyecto

- Ofrecer a los habitantes de Pachuca Hgo, servicio de Banda Ancha de Internet de manera fácil, y a un costo accesible.
- Fomentar el uso de Internet para las PYMES y el público en general.
- Generación de empleos directo e indirecto.
- Al constituir una empresa de carácter formal contribuiremos al la recaudación de impuestos.
6.2.3. Clasificación del proyecto

Este proyecto está circunscrito al sector de las Telecomunicaciones, y se ajusta a las disposiciones legales de la Ley Federal de Telecomunicaciones y la Cofetel quienes norman la operación de las redes públicas de telecomunicaciones en México, para ofrecer servicios de valor agregado y para dichos efectos utilizaremos el espectro radioeléctrico de uso libre el cual no requiere de licencia en las frecuencias comprendidas en la banda 5.725 a 5.850 MHz. La empresa se ubicará y dará servicio a la ciudad de Pachuca de Soto, Hgo.

6.2.4. Naturaleza jurídica legal

La representada será inscrita en los registros públicos de Hidalgo. Functionará con características jurídicas de una sociedad de responsabilidad limitada, es decir, será registrado ante la Secretaría de Hacienda con el nombre de ISP TECNOLOGIA Y TELECOMUNICACIONES S.A. de R.L.

6.3. Estudio de mercado

6.3.1. Definición del área geográfica

Se considera como área geográfica a la ciudad de Pachuca de Soto, Hgo. específicamente 24 Km. alrededor del cerro de Cubitos (area de cobertura), sitio donde realizamos el estudio de mercado, los criterios para la selección de esta área fueron:

- Mayor densidad de PYMES, REPECOS (régimen de pequeños contribuyentes y clientes potenciales), escuelas, hospitales, y hogares.
- Necesidad de acceso a Internet de banda ancha.

6.3.2. Características del mercado objetivo

El mercado está dirigido a los sectores indicados y las principales características de los potenciales clientes-consumidores de banda ancha que son: Todos aquellos que poseen un Sistema de Computo ya sea de escritorio o bien móvil (Laptop, o PDA).
Conocimientos básicos de Sistemas de información, exploradores de Internet, uso de correo electrónico, motores de búsqueda, comunicación con otros usuarios por medio de cámaras web, descargas de audio, video, datos en general y consulta de base de datos online.

Existen múltiples tipos de usuarios para este apartado los cuales corresponden a: personas físicas, personas morales y aquellos que por su naturaleza no se encuentran registrados dentro de ningún régimen de contribuyentes y por lo cual no perciben un ingreso constante como puede ser el caso de estudiantes, y comercios informales. Para lo anterior los ingresos mensuales deben oscilar o ser mayor a $7,800 pesos mexicanos consideramos este ingreso ya que son las personas que pueden mantener una solvencia económica apta para sustentar el costo del servicio y basándonos en la siguiente especificación:

<table>
<thead>
<tr>
<th>Basado en ingresos de $7800</th>
<th>Gasto diario</th>
<th>Total semanal</th>
<th>Total mensual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alimentación (considerando tres raciones promedio)</td>
<td>$95</td>
<td>$665</td>
<td>$2945</td>
</tr>
<tr>
<td>Entretención</td>
<td></td>
<td>$300</td>
<td>$1200</td>
</tr>
<tr>
<td>Servicios básicos agua y electricidad</td>
<td></td>
<td></td>
<td>$450</td>
</tr>
<tr>
<td>Servicios de valor agregado telefonía fija, celular y/o televisión de paga</td>
<td></td>
<td>$700</td>
<td></td>
</tr>
<tr>
<td>Ahorro del %10</td>
<td></td>
<td></td>
<td>$680</td>
</tr>
<tr>
<td>Ropa y calzado</td>
<td></td>
<td>$500</td>
<td></td>
</tr>
<tr>
<td>Medicamentos y consulta dentales (un aprox. anual de una persona entre 18 y 35 años clientes potenciales)</td>
<td></td>
<td></td>
<td>$180</td>
</tr>
<tr>
<td>Transporte (considerando que el individuo posee un auto propio semicompacto) Costo de energético</td>
<td>$170</td>
<td></td>
<td>$680</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>$7335</td>
</tr>
</tbody>
</table>

Tabla 6.1 Mercado objetivo.

Es por ello que se concluye que este producto esta dirigido a la clase media baja de la ciudad quienes perciben ingresos que oscilan sobre este análisis.
6.3.3. Análisis de la demanda

Para realizar este análisis hemos recopilado datos sobre estadísticas realizadas del último censo del INEGI en junio del 2005 Hidalgo participó de manera proporcional al número de muestras correspondientes al número de muestreados, es por ello que la información más que verídica es real proviniendo de una institución reconocida, se a extraído las gráficas de interés concluyendo lo siguiente respecto a la demanda de banda ancha en nuestro campo muestreado.

Equipamiento de TIC en los Hogares, 2001-2005

(Porcentajes)

![Gráfico de equipamiento de TIC en hogares](Image)

Fuente: INEGI. Encuesta Nacional sobre Disponibilidad y Uso de las Tecnologías de la Información en los Hogares.

a/ Incluye hogares que de manera simultánea tienen telefonía celular.
b/ Incluye hogares que de manera simultánea tienen línea telefónica fija.
p/ Cifras preliminares correspondientes al mes de junio

Figura 6.2 Equipamiento de TIC en los hogares [47].

El crecimiento y adopción de tecnologías de información se muestra con un crecimiento constante, como podemos observar en la figura 6.2, en donde la tendencia del mercado actual en los últimos años posee un punto porcentual acumulado de los hogares que tienen arrendada una conexión a Internet estando el marcador en 9 puntos porcentuales, de manera paralela el crecimiento de la presencia de equipo de cómputo es del 18%, es importante mencionar que éste comparativo nos permite
entender que el crecimiento esta aún en su fase inicial y es por ello la factibilidad del producto.

Figura 6.3 Hogares con computadora e Internet, 2001-2005

(Porcentajes)

<table>
<thead>
<tr>
<th>Año</th>
<th>Hogares con computadora</th>
<th>Hogares con conexión a Internet</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>9.0</td>
<td>18.4</td>
</tr>
<tr>
<td>2004</td>
<td>8.7</td>
<td>18.0</td>
</tr>
<tr>
<td>2002</td>
<td>7.4</td>
<td>16.2</td>
</tr>
<tr>
<td>2001</td>
<td>6.1</td>
<td>11.7</td>
</tr>
</tbody>
</table>

Fuente: INEGI. Encuesta Nacional sobre Usabilidad y Uso de las Tecnologías de la Información en los Hogares.

p._/l: Cifras preliminares correspondientes al mes de junio

Figura 6.3 Hogares con computadora e Internet [47].

Independientemente de la brecha digital que muestra la figura 6.3 ahora también añadimos que del 18.4% de hogares con sistema de cómputo solo el 9% posee una conexión a Internet, lo cual demuestra que acumulado el 81.6% de los hogares que no poseen Internet más los otros 9.4 puntos porcentuales de quienes poseen un equipo de cómputo y no tienen conexión a Internet, suman un 91% por ciento de la población que no tiene Internet en su hogar. Ahora la intención es darle servicio a ese 9.4% y sólo una plataforma WiMax será capaz de proveer, esa necesidad en los años próximos. Si sabemos que entre Pachuca y sus suburbios se acumulan una población mayor de 500,000 hab. (según censo INEGI 2005), estamos hablando de cerca de 10,000 conexiones en los próximos años. Cálculo estadístico realizado de la siguiente manera 50000 hab. x .094 porcentaje de usuarios con computadora pero sin Internet entre 4 que es el promedio de las familias pachuqueñas actuales que en realidad marca un resultado de 9400 y sumando el dos puntos porcentuales de acuerdo a la estadística de crecimiento para el año 2007 de computadoras por familia 9588
conexiones lo que generaría una ganancia promedio anual cerca de 34 millones de pesos esto sin incluir las condiciones que vive el país pudiendo multiplicarse.

Hogares con computadora según su disponibilidad de Internet, 2005

<table>
<thead>
<tr>
<th>Porcentaje</th>
<th>Hogares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con internet</td>
<td>40.6%</td>
</tr>
<tr>
<td>Sin Internet</td>
<td>51.1%</td>
</tr>
<tr>
<td>No especificado</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

Fuente: INEGI. Encuesta Nacional sobre Disponibilidad y Uso de las Tecnologías de la Información en los Hogares.

Figura 6.4 Hogares con computadora según su disponibilidad de Internet [47].

Estadísticamente existe un constante crecimiento de la demanda de conexiones de Internet, el 51.4% de los hogares no tienen disponibilidad del servicio, (véase figura 6.4) es decir, más de la mitad tiene computadora pero no hay cobertura del servicio en donde se encuentran sus hogares este fenómeno se concentra principalmente en las zonas de difícil acceso para el cableado, independientemente de la cobertura sabemos que el factor más importante del por cual estos usuarios que poseen un ordenador no cuentan con el servicio es por recurso, ésta limitante data del costo excesivo del servicio de Internet entre la economía propia de la región a esto debemos sumar al monopolio de la Telefónica Mexicana como donde del total de las conexiones a Internet es 73.7% por medio de líneas de telefónicas (véase figura 6.5 y 6.6).
En otro punto del total de la población el 28.5% es usuario de computadoras y el 17.7% es usuario de Internet (véase figura 6.7) y de los mismos el 50.7% usan de una a 3 veces a la semana, 4 a 6 veces por semana el 19.8, siete veces el 16% la conexión lo que permite saturar la cantidad de usuarios en un porcentaje similar en la red y con ello garantizar una pronta recuperación del capital invertido.
Para el plan de mercadotecnia identificamos que la mayor parte de usuarios se centra en personas jóvenes explícitamente al uso escolar, ahora los individuos de 35 años ocupan el 21.6%. En el rango de edades de 18 a 24 se concentra el 26.2%. Finalmente en el rango de 12 a 17 se concentra la mayor población que usa Internet, es decir, el 27.6% ahora el plan de introducción del producto es estratégicamente diseñado para atacar el mercado joven (véase figura 6.7). Respecto al nivel de escolaridad el paquete de 1 Mbps se diseño de acuerdo a las necesidades de los usuarios ya que la mayor proporción de usuarios se centra a partir de los grados de secundaria a postgrado y es fácil identificar que las necesidades de acceso son variadas (véase figura 6.8). Contrario a lo que pareciera a simple vista ser, el mayor acceso se centra en lugares públicos es decir cafés Internet, seguidos por el hogar trabajo y escuela (véase figura 6.9). Los vendedores contratados deberán ser lo suficientemente persuasivos para lograr desplazar al competidor, será factible puesto que el costo de nuestro producto es realmente menor que el acceso de la competencia y además se ofrecen enlaces dedicados garantizando una mejor estabilidad en la conexión.
CAPÍTULO 6

RESUMEN EJECUTIVO

Figura 6.8 Usuarios de Internet por grupos de edad, 2005

(Porcentaje)

<table>
<thead>
<tr>
<th>Edad</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>35+</td>
<td>21.6%</td>
</tr>
<tr>
<td>25 a 34</td>
<td>18.3%</td>
</tr>
<tr>
<td>18 a 24</td>
<td>26.2%</td>
</tr>
<tr>
<td>12 a 17</td>
<td>27.6%</td>
</tr>
<tr>
<td>6 a 11</td>
<td>6.3%</td>
</tr>
</tbody>
</table>

Fuente: INEGI. Encuesta Nacional sobre Disponibilidad y Uso de las Tecnologías de la Información en los Hogares.

Nota:/ Cifras preliminares correspondientes al mes de junio

Figura 6.9 Población por nivel de escolaridad (usuarios y no usuarios de Internet), 2005

(Porcentaje)

<table>
<thead>
<tr>
<th>Nivel Escolar</th>
<th>Usuarios</th>
<th>No usuarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posgrado</td>
<td>86.3%</td>
<td>19.7%</td>
</tr>
<tr>
<td>Licenciatura</td>
<td>62.2%</td>
<td>37.8%</td>
</tr>
<tr>
<td>Preparatoria</td>
<td>34.3%</td>
<td>65.7%</td>
</tr>
<tr>
<td>Secundaria</td>
<td>16.9%</td>
<td>84.0%</td>
</tr>
<tr>
<td>Primaria</td>
<td>9.3%</td>
<td>94.7%</td>
</tr>
<tr>
<td>Otro/No especificado</td>
<td>1.3%</td>
<td>98.7%</td>
</tr>
</tbody>
</table>

Fuente: INEGI. Encuesta Nacional sobre Disponibilidad y Uso de las Tecnologías de la Información en los Hogares.

Nota:/ Cifras preliminares correspondientes al mes de junio

Figura 6.9 Población por nivel de escolaridad [47].
Los usos que se le da a la Internet destacan: el obtener información general, trabajos e investigaciones escolares, servicio de e-mail, chat, información de bienes y servicios, juegos en línea, descargas de música, video (etc.), información acerca de la salud, software, libros online, periódicos, revistas, llenado de formatos del gobierno, servicios bancarios (véase figura 6.11).
6.4. Perfil económico

6.4.1. Servicio ofrecido

Las especificaciones del Servicio principal son las siguientes:

- Implantación y prestación del servicio de Internet Inalámbrico en hogares.
- Acceso tipo línea dedicada de 1 Mbit de Dowlink y Uplink.
- Garantía de funcionalidad de conexión de Download y Upload

6.4.2. Servicios secundarios

 Debido a la naturaleza de la tecnología WiMax se podrá comercializar en corto plazo:

- Mantenimiento de redes inalámbricas.
- Mantenimiento de Routers.
- Auditoría y certificación de Sistemas.
- Diseño web, hosting.
- Asesoría y Consultoría.
- Telefonía IP.

Fuente: INEGI, Encuesta Nacional sobre Disponibilidad y Uso de las Tecnologías de la Información y las Comunicaciones en los Hogares.
Cifras preliminares correspondientes al mes de junio
6.5. Proyección de ingreso al mercado de acuerdo a las instalaciones

Para el primer bimestre, la capacidad planteada ascenderá a un 41.6%; mientras para el 6to bimestre se espera un 100% de las instalaciones de los clientes.

<table>
<thead>
<tr>
<th>Bimestres</th>
<th>Cantidad de abonados</th>
<th>% de capacidad instalada</th>
</tr>
</thead>
<tbody>
<tr>
<td>1er bimestre</td>
<td>250</td>
<td>41.6%</td>
</tr>
<tr>
<td>2do bimestre</td>
<td>350</td>
<td>58.3%</td>
</tr>
<tr>
<td>3er bimestre</td>
<td>450</td>
<td>75.0%</td>
</tr>
<tr>
<td>4to bimestre</td>
<td>500</td>
<td>83.3%</td>
</tr>
<tr>
<td>5to bimestre</td>
<td>550</td>
<td>91.6%</td>
</tr>
<tr>
<td>6to bimestre</td>
<td>600</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tabla 6.2 Proyección de ingresos.

6.6. Inversión y financiamiento del proyecto

El objetivo en este apartado es determinar la cantidad de recursos necesarios para materializar la propuesta y definir la mejor posibilidad de financiamiento. Está conformado por la inversión fija tangible e intangible y el capital de trabajo que requiere la instalación y la puesta en marcha del proyecto, las cuales se detallan a continuación.
6.6.1. Inversión

6.6.1.1. Inversión fija tangible

<table>
<thead>
<tr>
<th>Insumos del ISP Inalámbrico WiMax</th>
<th>Precio Unitario</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversión Fija Tangible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costo de E1 (2048 Mbps) durante los tres primeros meses</td>
<td>Mx $8000.00</td>
<td>Mx $24000.00</td>
</tr>
<tr>
<td>Radio de Estación base modelo ISPAIR Tri-Band 2.4/4.9/5GHz Base Station 500 ISP-BS500 de la Empresa Netkrom Inc.</td>
<td>US $1499.00</td>
<td>US $1499.00</td>
</tr>
<tr>
<td></td>
<td>Mx $16489.00</td>
<td>Mx $16489.00</td>
</tr>
<tr>
<td>Antenas modelo W58-17SP para frecuencia de 5.8GHz</td>
<td>US $1199.00</td>
<td>US $1199.00</td>
</tr>
<tr>
<td></td>
<td>Mx $13189.00</td>
<td>Mx $79134.00</td>
</tr>
<tr>
<td>Router de Concentración modelo Cisco 3845</td>
<td>US $2950.00</td>
<td>US $2950.00</td>
</tr>
<tr>
<td></td>
<td>Mx $32450.00</td>
<td>Mx $32450.00</td>
</tr>
<tr>
<td>Servidor modelo: IBM System x 366</td>
<td>US $2650.00</td>
<td>US $2650.00</td>
</tr>
<tr>
<td></td>
<td>Mx $29150.00</td>
<td>Mx $29150.00</td>
</tr>
<tr>
<td>Pantalla de Plasma de 21 pulgadas para el servidor IBM</td>
<td>US $578.00</td>
<td>US $578.00</td>
</tr>
<tr>
<td></td>
<td>Mx $6358.00</td>
<td>Mx $6358.00</td>
</tr>
<tr>
<td>Monopolo de ABC Ingeniería Estructural S.A. de C.V. de 36 m.</td>
<td>US $1090.00</td>
<td>US $1090.00</td>
</tr>
<tr>
<td></td>
<td>Mx $11990.00</td>
<td>Mx $11990.00</td>
</tr>
<tr>
<td>Rollos de 40 m. de Cable RJ45</td>
<td>Mx $3000.00</td>
<td>Mx $3000.00</td>
</tr>
<tr>
<td>UPS o Nobreak</td>
<td>US $655.00</td>
<td>US $655.00</td>
</tr>
<tr>
<td></td>
<td>Mx $1310.00</td>
<td>Mx $1310.00</td>
</tr>
<tr>
<td>Planta de energía eléctrica de emergencia</td>
<td>US $1150.00</td>
<td>US $1150.00</td>
</tr>
<tr>
<td></td>
<td>Mx $12650.00</td>
<td>Mx $25312.00</td>
</tr>
<tr>
<td>Sistema de aire acondicionado</td>
<td>US $660.00</td>
<td>US $660.00</td>
</tr>
<tr>
<td></td>
<td>Mx $7260.00</td>
<td>Mx $7260.00</td>
</tr>
<tr>
<td>Paneles de Antena Backhaul</td>
<td>US $499.00</td>
<td>US $499.00</td>
</tr>
<tr>
<td></td>
<td>Mx $5489.00</td>
<td>Mx $10978.00</td>
</tr>
<tr>
<td>Estación cliente modelo: ISPAIR 54Mb CPE 500 Series de la empresa Netkrom</td>
<td>US $179.00</td>
<td>US $107400.00</td>
</tr>
<tr>
<td></td>
<td>Mx $1969.00</td>
<td>Mx $1181400.00</td>
</tr>
<tr>
<td>Mástiles de tubo para Estación cliente</td>
<td>Mx $200.00</td>
<td>Mx $12000.00</td>
</tr>
<tr>
<td>Total</td>
<td>Mx $1453931.00</td>
<td></td>
</tr>
</tbody>
</table>

Vehículos

<table>
<thead>
<tr>
<th>Vehículos</th>
<th>Precio Unitario</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camionetas Chevy</td>
<td>Mx $93000.00</td>
<td>Mx $186000.00</td>
</tr>
</tbody>
</table>

Terrenos – Obra Civil

<table>
<thead>
<tr>
<th>Construcción</th>
<th>Precio Unitario</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construcción de Oficinas, costo de terreno y papeleo de registro público de la propiedad</td>
<td>Mx $210000</td>
<td>Mx $210000.00</td>
</tr>
<tr>
<td>Construcción Cuarto de la Estación base, y caseta de vigilancia, terreno y papeleo de registro público de la</td>
<td>Mx $320000</td>
<td>Mx $320000.00</td>
</tr>
</tbody>
</table>
Resumen Ejecutivo

<table>
<thead>
<tr>
<th>Propiedad</th>
<th>Mx $428,000.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>

Muebles y Enseres

<table>
<thead>
<tr>
<th>Item</th>
<th>Costo</th>
<th>Total Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Escritorios</td>
<td>Mx $1800.00</td>
<td>Mx $14400.00</td>
</tr>
<tr>
<td>2 sillones gerenciales</td>
<td>Mx $2200.00</td>
<td>Mx $ 4400.00</td>
</tr>
<tr>
<td>8 sillones tipo ejecutivo</td>
<td>Mx $ 550.00</td>
<td>Mx $ 4400.00</td>
</tr>
<tr>
<td>8 sillones tipo asistente</td>
<td>Mx $ 400.00</td>
<td>Mx $ 3200.00</td>
</tr>
<tr>
<td>3 Armarios de Metal</td>
<td>Mx $2100.00</td>
<td>Mx $ 6300.00</td>
</tr>
<tr>
<td>2 Cestos</td>
<td>Mx $ 80.00</td>
<td>Mx $ 160.00</td>
</tr>
<tr>
<td>1 Reloj</td>
<td>Mx $ 250.00</td>
<td>Mx $ 250.00</td>
</tr>
<tr>
<td>5 PC's IBM</td>
<td>Mx $6500.00</td>
<td>Mx $32500.00</td>
</tr>
<tr>
<td>2 Vitrinas de aluminio</td>
<td>Mx $2800.00</td>
<td>Mx $ 5600.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td>Mx $71,210.00</td>
<td></td>
</tr>
</tbody>
</table>

Equipos Diversos

<table>
<thead>
<tr>
<th>Item</th>
<th>Costo</th>
<th>Total Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mesa taller de trabajo y pruebas</td>
<td>Mx $1800.00</td>
<td>Mx $1800.00</td>
</tr>
<tr>
<td>3 juego desarmadores</td>
<td>Mx $ 450.00</td>
<td>Mx $1350.00</td>
</tr>
<tr>
<td>3 martillos</td>
<td>Mx $ 120.00</td>
<td>Mx $ 660.00</td>
</tr>
<tr>
<td>3 taladros</td>
<td>Mx $ 390.00</td>
<td>Mx $1170.00</td>
</tr>
<tr>
<td>3 juegos de brocas</td>
<td>Mx $ 50.00</td>
<td>Mx $ 150.00</td>
</tr>
<tr>
<td>3 cajas de herramientas</td>
<td>Mx $ 220.00</td>
<td>Mx $ 220.00</td>
</tr>
<tr>
<td>3 cortadores cable coaxial</td>
<td>Mx $ 280.00</td>
<td>Mx $ 940.00</td>
</tr>
<tr>
<td>3 ponchadoras RJ45</td>
<td>Mx $ 350.00</td>
<td>Mx $1050.00</td>
</tr>
<tr>
<td>1 pistola de soldar estaño</td>
<td>Mx $ 450.00</td>
<td>Mx $ 450.00</td>
</tr>
<tr>
<td>3 escuadras</td>
<td>Mx $ 110.00</td>
<td>Mx $ 330.00</td>
</tr>
<tr>
<td>3 multimetros</td>
<td>Mx $ 350.00</td>
<td>Mx $1500.00</td>
</tr>
<tr>
<td>3 juegos de pinzas</td>
<td>Mx $ 450.00</td>
<td>Mx $1350.00</td>
</tr>
</tbody>
</table>

| **Total** | MX $10,970.00 |

| **Total inversión fija tangible** | Mx $1,764,911.00 |

Tabla 6.3 Inversión.
6.6.1.2. Inversión fija intangible

<table>
<thead>
<tr>
<th>INVERSIÓN FIJA INTANGIBLE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseño de Proyecto</td>
<td>Mx $ 10000.00</td>
</tr>
<tr>
<td>Constitución legal</td>
<td>Mx $ 9500.00</td>
</tr>
<tr>
<td>Prueba y puesta en marcha</td>
<td>Mx $ 8000.00</td>
</tr>
<tr>
<td>Publicidad 90 días</td>
<td>Mx $250000.00</td>
</tr>
<tr>
<td>Servicios básicos agua y electricidad</td>
<td>Mx $ 95000.00</td>
</tr>
<tr>
<td>Gasto en dos líneas Telefónicas</td>
<td>Mx $ 22000.00</td>
</tr>
</tbody>
</table>

Total inversión fija intangible: Mx $394,500.00

Tabla 6.4 Inversión fija intangible.

Importante: La tasa de cambio del Dólar Estadounidense que se utilizó es de Mx $11.00 de acuerdo la tasa de cambio base, es importante mencionar que la variación de moneda extranjera de acuerdo a la estabilidad del país es minima.

6.6.1.3. Capital de trabajo

<table>
<thead>
<tr>
<th>CAPITAL DE TRABAJO</th>
<th>TOTAL MENSUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ingenieros en Electrónica y Telecomunicaciones para el monitoreo de la red</td>
<td>$140,00.00</td>
</tr>
<tr>
<td>3 Técnicos en Telecomunicaciones para el soporte técnico, e instalación.</td>
<td>$12,000.00</td>
</tr>
<tr>
<td>1 Lic. en Mercadotecnia que se encargue del marketing</td>
<td>$7,000.00</td>
</tr>
<tr>
<td>1 Contador publico para el proceso de facturación, pago de impuestos etc.,</td>
<td>$7,000.00</td>
</tr>
<tr>
<td>2 Técnicos en Administración de empresas para la integración y mejor atención al cliente y cobro en ventanilla</td>
<td>$8,000.00</td>
</tr>
<tr>
<td>3 Vendedores técnico en Administración Informática</td>
<td>$12,000.00</td>
</tr>
<tr>
<td>1 Personal de mantenimiento para aseo de las oficinas</td>
<td>$2,500.00</td>
</tr>
</tbody>
</table>

Total Mensual: $62,500.00

Inversión total anual de capital de trabajo: $750,000.00

Tabla 6.5 Capital de trabajo.

Importante: Se proyecta para un año por lo cual el total del capital de trabajo se multiplica por doce meses.
6.6.1.4. Resumen de Inversiones

<table>
<thead>
<tr>
<th>INVERSIÓN</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversión Fija Tangible</td>
<td>1764911.00</td>
</tr>
<tr>
<td>Inversión Fija Intangible</td>
<td>277500.00</td>
</tr>
<tr>
<td>Total Capital de Trabajo</td>
<td>750000.00</td>
</tr>
<tr>
<td>Gran Total a Invertir</td>
<td>2,792,411.00</td>
</tr>
</tbody>
</table>

Tabla 6.6 Resumen de inversiones.

6.6.2. Financiamiento

El objetivo del financiamiento es establecer las condiciones financieras con las cuales gira el proyecto. En el presente estudio se evaluara y seleccionara la fuente de financiamiento adecuada a la característica de inversión. En la economía Mexicana, el sistema financiero nacional, tiene como función esencial la de posibilitar, el flujo de recursos de manos de agentes económicos superavitarios como los bancos, hacia aquellos que requieren capitales. Entre las entidades constituidas principalmente tenemos BancaPromex, BANSEFI, Bancos y Financieras.

A continuación presentamos las alternativas de financiamiento propuesta.

6.6.2.1. Aporte interno de socios

Este aporte asciende a un total de $558,482.20 que equivale a una 20% de la inversión Total.

<table>
<thead>
<tr>
<th>Inversión total del proyecto</th>
<th>$ 2,792,411.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% inversión del los Socios</td>
<td>558,482.20</td>
</tr>
<tr>
<td>Numero de Socios</td>
<td>2</td>
</tr>
<tr>
<td>Aporte Individual</td>
<td>279,241.10</td>
</tr>
</tbody>
</table>

Tabla 6.7 Aporte interno de socios.
6.6.2.2. Aporte externo Banco

Asciende a $2233928.80 que es el 80% de la Inversión Total.

<table>
<thead>
<tr>
<th>Inversión total del proyecto</th>
<th>$2,792,411.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% inversión del la inversión total</td>
<td>$2,233,930.00</td>
</tr>
<tr>
<td>Numero de Socios</td>
<td>2</td>
</tr>
<tr>
<td>Tasa efectiva annual</td>
<td>15.43%</td>
</tr>
<tr>
<td>Forma de pago</td>
<td>Trimestral vencido</td>
</tr>
<tr>
<td>Periodo de pago</td>
<td>5 años (20 Trimestres)</td>
</tr>
<tr>
<td>Cobertura de Gracia del Financiamiento</td>
<td>1 año (4 Trimestres)</td>
</tr>
</tbody>
</table>

Tabla 6.8 Aporte externo Banco.

6.6.2.3. Programa de servicio de la deuda con el Banco

<table>
<thead>
<tr>
<th>Trimestre</th>
<th>Saldo</th>
<th>Intereses</th>
<th>Amortización</th>
<th>Cuotas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$2,233,930</td>
<td>$81,538.445</td>
<td>0</td>
<td>$81,538.445</td>
</tr>
<tr>
<td>2</td>
<td>$2,233,930</td>
<td>$81,538.445</td>
<td>0</td>
<td>$81,538.445</td>
</tr>
<tr>
<td>3</td>
<td>$2,233,930</td>
<td>$81,538.445</td>
<td>0</td>
<td>$81,538.445</td>
</tr>
<tr>
<td>4</td>
<td>$2,233,930</td>
<td>$81,538.445</td>
<td>0</td>
<td>$81,538.445</td>
</tr>
<tr>
<td>5</td>
<td>$2,233,930</td>
<td>$81,538.445</td>
<td>$108,461.555</td>
<td>$190,000</td>
</tr>
<tr>
<td>6</td>
<td>$2,125,468.445</td>
<td>$77,579.59824</td>
<td>$112,420.4018</td>
<td>$190,000</td>
</tr>
<tr>
<td>7</td>
<td>$2,013,048.043</td>
<td>$73,476.25358</td>
<td>$116,523.7464</td>
<td>$190,000</td>
</tr>
<tr>
<td>8</td>
<td>$1,896,524.297</td>
<td>$69,223.13683</td>
<td>$120,776.8632</td>
<td>$190,000</td>
</tr>
<tr>
<td>9</td>
<td>$1,775,747.434</td>
<td>$64,814.78133</td>
<td>$125,185.2187</td>
<td>$190,000</td>
</tr>
<tr>
<td>10</td>
<td>$1,650,562.215</td>
<td>$60,235.57846</td>
<td>$129,754.4792</td>
<td>$200,000</td>
</tr>
<tr>
<td>11</td>
<td>$1,520,807.736</td>
<td>$55,509.48236</td>
<td>$144,490.5176</td>
<td>$200,000</td>
</tr>
<tr>
<td>12</td>
<td>$1,376,317.218</td>
<td>$50,235.57846</td>
<td>$149,764.4215</td>
<td>$200,000</td>
</tr>
<tr>
<td>13</td>
<td>$1,226,552.797</td>
<td>$44,769.17708</td>
<td>$155,230.8229</td>
<td>$200,000</td>
</tr>
<tr>
<td>14</td>
<td>$1,071,321.974</td>
<td>$39,103.25204</td>
<td>$160,896.748</td>
<td>$200,000</td>
</tr>
<tr>
<td>15</td>
<td>$910,425.2258</td>
<td>$33,230.52074</td>
<td>$166,769.4793</td>
<td>$200,000</td>
</tr>
<tr>
<td>16</td>
<td>$743,655.7465</td>
<td>$27,143.43475</td>
<td>$172,856.5653</td>
<td>$200,000</td>
</tr>
<tr>
<td>17</td>
<td>$570,799.1813</td>
<td>$20,834.17012</td>
<td>$179,165.8299</td>
<td>$200,000</td>
</tr>
<tr>
<td>18</td>
<td>$391,633.3514</td>
<td>$14,294.61733</td>
<td>$185,705.3827</td>
<td>$200,000</td>
</tr>
<tr>
<td>19</td>
<td>$205,927.9687</td>
<td>$7516.370858</td>
<td>$192,483.6291</td>
<td>$200,000</td>
</tr>
<tr>
<td>20</td>
<td>$13,444.33956</td>
<td>$490.7183939</td>
<td>$199,509.2816</td>
<td>$13,445</td>
</tr>
</tbody>
</table>

Tabla 6.9 Servicio de deuda Banco.
6.6.2.3.1. Resumen por años del servicio de la deuda

<table>
<thead>
<tr>
<th>AÑO</th>
<th>INTERESES</th>
<th>AMORTIZACIÓN</th>
<th>CUOTAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$326,153.46</td>
<td>$0.00</td>
<td>$326,153.46</td>
</tr>
<tr>
<td>2</td>
<td>$301,817.45</td>
<td>$458,182.57</td>
<td>$760,000</td>
</tr>
<tr>
<td>3</td>
<td>$230,805.363</td>
<td>$549,194.63</td>
<td>$790,000</td>
</tr>
<tr>
<td>4</td>
<td>$144,246.39</td>
<td>$655,753.62</td>
<td>$800,000</td>
</tr>
<tr>
<td>5</td>
<td>$43,135.88</td>
<td>$756,864.13</td>
<td>$613,445</td>
</tr>
</tbody>
</table>

Tabla 6.10 Resumen por años de servicio de la deuda.

6.6.2.4. Proyecciones financieras

Determinamos los ingresos y egresos del proyecto a fin de evaluar el mismo y determinar la rentabilidad del proyecto.

6.6.2.4.1. Proyección y presupuesto de ingresos

Nuestros ingresos son el resultado del pronóstico de las ventas anuales de acuerdo con el estudio de mercado y el programa de producción

\[Y = P \times Q \]

\[Y = \text{Ingresos por Ventas} \]
\[P = \text{precio de venta del Producto} \]
\[Q = \text{Cantidad Producida.} \]

Precio de venta del producto: $300.00

\[Y_1 = (300 \times 250) + (300 \times 300) + (300 \times 450) + (300 \times 500) + (300 \times 550) + (300 \times 600) \]

\[Y_2 = (300 \times 600) \]

\[Y_3 = (300 \times 600) \]
\[Y_4 = (300 \times 600) \]
\[Y_5 = (300 \times 600) \]
6.6.2.4.1.1. Proyección de ingresos del 1er año por bimestres

<table>
<thead>
<tr>
<th>Bimestre</th>
<th>Usuarios</th>
<th>Ingreso Capitalizado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>250</td>
<td>$150,000.00</td>
</tr>
<tr>
<td>2</td>
<td>350</td>
<td>$210,000.00</td>
</tr>
<tr>
<td>3</td>
<td>450</td>
<td>$270,000.00</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>$300,000.00</td>
</tr>
<tr>
<td>5</td>
<td>550</td>
<td>$330,000.00</td>
</tr>
<tr>
<td>6</td>
<td>600</td>
<td>$360,000.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>$1,620,000.00</td>
</tr>
</tbody>
</table>

Tabla 6.11 Proyección de ingresos del 1er año.

6.6.2.4.1.2. Proyección de ingresos en los años subsecuentes

En donde se considera mantener los 600 usuarios:

<table>
<thead>
<tr>
<th>Año</th>
<th>Usuarios</th>
<th>Ingreso Capitalizado</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>600</td>
<td>$2,160,000.00</td>
</tr>
<tr>
<td>3</td>
<td>600</td>
<td>$2,160,000.00</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>$2,160,000.00</td>
</tr>
<tr>
<td>5</td>
<td>600</td>
<td>$2,160,000.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>$8,640,000.00</td>
</tr>
</tbody>
</table>

Tabla 6.12 Proyección de ingresos en los años subsecuentes.

6.6.2.4.1.3. Suma total de proyección de ingresos en los primeros 5 años

<table>
<thead>
<tr>
<th>Año</th>
<th>Ingreso Capitalizado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1,620,000.00</td>
</tr>
<tr>
<td>2-5</td>
<td>$8,640,000.00</td>
</tr>
<tr>
<td>GRAN TOTAL</td>
<td>$10,260,000.00</td>
</tr>
</tbody>
</table>

Tabla 6.13 Suma total de Proyección de ingresos en los primeros 5 años.

6.6.2.4.2. Presupuesto de egresos del proyecto

El presupuesto de egresos se refiere a los desembolsos que hay que efectuar por los costos de fabricación de artículos. Por ejemplo, para el primer año, los egresos se originaran por los siguientes conceptos.
6.6.2.4.2.1. Proyección de egresos del primer año

<table>
<thead>
<tr>
<th>Concepto del egreso</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversión Fija Tangible</td>
<td>$1764911.00</td>
</tr>
<tr>
<td>Inversión Fija Intangible</td>
<td>$277500.00</td>
</tr>
<tr>
<td>Total Capital de Trabajo</td>
<td>$750000.00</td>
</tr>
<tr>
<td>2 Enlace E1, 10 meses que no se contemplan en inversión tangible</td>
<td>$160000.00</td>
</tr>
<tr>
<td>Pago de intereses de deuda</td>
<td>$326,153.46</td>
</tr>
</tbody>
</table>

Egresos 1er año $3,198,563.00

Tabla 6.14 Proyección de egresos del primer año.

6.6.2.4.2.2. Proyección de egresos de los 4 años subsecuentes

<table>
<thead>
<tr>
<th>Concepto del Egreso</th>
<th>Año2</th>
<th>Año3</th>
<th>Año 4</th>
<th>Año 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pago de Dos líneas telefónicas</td>
<td>$20000.00</td>
<td>$20000.00</td>
<td>$20000.00</td>
<td>$20000.00</td>
</tr>
<tr>
<td>Pago de electricidad y agua</td>
<td>$95000.00</td>
<td>$95000.00</td>
<td>$95000.00</td>
<td>$95000.00</td>
</tr>
<tr>
<td>Total Capital de Trabajo</td>
<td>$750000.00</td>
<td>$750000.00</td>
<td>$750000.00</td>
<td>$750000.00</td>
</tr>
<tr>
<td>2 Enlace E1, 12 meses</td>
<td>$184000.00</td>
<td>$184000.00</td>
<td>$184000.00</td>
<td>$184000.00</td>
</tr>
<tr>
<td>Mantenimiento del sistema</td>
<td>$60000.00</td>
<td>$65000.00</td>
<td>$70000.00</td>
<td>$75000.00</td>
</tr>
<tr>
<td>Consumibles (hojas de papel, cartuchos de impresoras, focos, lámparas, productos de limpieza, productos de higiene)</td>
<td>$34000.00</td>
<td>$32000.00</td>
<td>$30000.00</td>
<td>$28000.00</td>
</tr>
<tr>
<td>Publicidad</td>
<td>$120000.00</td>
<td>$100000.00</td>
<td>$80000.00</td>
<td>$75000.00</td>
</tr>
<tr>
<td>Pago de deuda</td>
<td>$760,000.00</td>
<td>$790,000.00</td>
<td>$800,000.00</td>
<td>$613,445.00</td>
</tr>
<tr>
<td>Totales</td>
<td>$2,023,000.00</td>
<td>$2,036,000</td>
<td>$2,029,000.00</td>
<td>$1,840,445.00</td>
</tr>
</tbody>
</table>

Tabla 6.15 Proyección de egresos de los 4 años subsecuentes.
6.6.2.4.2.3. Resumen por año de los egresos durante 5 años

<table>
<thead>
<tr>
<th>Año</th>
<th>Egresos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$3,198,563.00</td>
</tr>
<tr>
<td>2</td>
<td>$2,023,000.00</td>
</tr>
<tr>
<td>3</td>
<td>$2,036,000.00</td>
</tr>
<tr>
<td>4</td>
<td>$2,029,000.00</td>
</tr>
<tr>
<td>5</td>
<td>$1,840,445.00</td>
</tr>
</tbody>
</table>

Tabla 6.16 Resumen por año de los egresos durante 5 años.

El primer año de egresos se considero la inversión total como egreso así que para la comparación de estos se debe considerar sumar el préstamo del banco más la inversión de los socios y la ganancia proyectada (véase tabla 6.17).

<table>
<thead>
<tr>
<th>Inversión</th>
<th>Egresos Sin inversión 1er año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banco:</td>
<td>$2,233,930.00</td>
</tr>
<tr>
<td>Inversionistas:</td>
<td>$ 558,482.20</td>
</tr>
<tr>
<td>Total</td>
<td>$2,792,412.20</td>
</tr>
</tbody>
</table>

Tabla 6.17 Comparación de inversiones.
6.6.2.5. Estados financieros

En este apartado determinaremos la situación financiera y económica del proyecto.

6.6.2.5.1. Estado de ganancias y pérdidas

Refleja la utilidad neta del proyecto que se obtendrá cada periodo.

<table>
<thead>
<tr>
<th>RUBRO</th>
<th>Año 1</th>
<th>Año 2</th>
<th>Año 3</th>
<th>Año 4</th>
<th>Año 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ingresos por ventas</td>
<td>162000.00</td>
<td>2160000.00</td>
<td>2160000.00</td>
<td>2160000.00</td>
<td>2160000.00</td>
</tr>
<tr>
<td>total Costos+gastos</td>
<td>406150.80</td>
<td>2023000.00</td>
<td>2036000.00</td>
<td>2029000.00</td>
<td>1840000.00</td>
</tr>
<tr>
<td>Utilidades sin ISR</td>
<td>1213849.92</td>
<td>137000.00</td>
<td>124000.00</td>
<td>131000.00</td>
<td>320000.00</td>
</tr>
<tr>
<td>IVA Retenido</td>
<td>243000.00</td>
<td>324000.00</td>
<td>324000.00</td>
<td>324000.00</td>
<td>324000.00</td>
</tr>
<tr>
<td>Amortizante ISR</td>
<td>27000.00</td>
<td>36000.00</td>
<td>36000.00</td>
<td>36000.00</td>
<td>36000.00</td>
</tr>
<tr>
<td>ISR 30%</td>
<td>364154.98</td>
<td>41100.00</td>
<td>37200.00</td>
<td>39300.00</td>
<td>96000.00</td>
</tr>
<tr>
<td>Utilidad con ISR</td>
<td>876694.94</td>
<td>131900.00</td>
<td>122800.00</td>
<td>127700.00</td>
<td>260000.00</td>
</tr>
<tr>
<td>Reserva legal</td>
<td>87669.00</td>
<td>13190.00</td>
<td>12280.00</td>
<td>12770.00</td>
<td>26000.00</td>
</tr>
<tr>
<td>Dividendos 28%</td>
<td>245474.58</td>
<td>36932.00</td>
<td>34384.00</td>
<td>35756.00</td>
<td>72800.00</td>
</tr>
<tr>
<td>Saldo en Caja</td>
<td>543551.36</td>
<td>81778.00</td>
<td>76136.00</td>
<td>79164.00</td>
<td>161200.00</td>
</tr>
</tbody>
</table>

Tabla 6.18 Estado de ganancias y pérdidas.

Detalle de la proyección del impuesto a cobrar en especial del primer año debido a la variación por el incremento de usuarios, después del primer año se proyecta que será 600 usuarios así que es constante la retención del impuesto.

<table>
<thead>
<tr>
<th>Bimestre</th>
<th>Ingreso Capitalizado</th>
<th>IVA retenido</th>
<th>Amortización de ISR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$150,000.00</td>
<td>22500</td>
<td>2500</td>
</tr>
<tr>
<td>2</td>
<td>$210,000.00</td>
<td>31500</td>
<td>3500</td>
</tr>
<tr>
<td>3</td>
<td>$270,000.00</td>
<td>40500</td>
<td>4500</td>
</tr>
<tr>
<td>4</td>
<td>$300,000.00</td>
<td>45000</td>
<td>5000</td>
</tr>
<tr>
<td>5</td>
<td>$330,000.00</td>
<td>49500</td>
<td>5500</td>
</tr>
<tr>
<td>6</td>
<td>$360,000.00</td>
<td>54000</td>
<td>6000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>243000</td>
<td>27000</td>
</tr>
</tbody>
</table>

Tabla 6.19 Detalle de la proyección del impuesto a cobrar.
6.6.2.5.2. Flujo de caja proyectado

<table>
<thead>
<tr>
<th>Rubros/Años</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingresos</td>
<td>0</td>
<td>1,620,00.00</td>
<td>2,160,00.00</td>
<td>2,160,00.00</td>
<td>2,160,00.00</td>
<td>2,160,00.00</td>
</tr>
<tr>
<td>Costos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inversión Fija Tangible</td>
<td>176,491.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inversión Fija Intangible</td>
<td>394,500.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital de Trabajo</td>
<td>750,000.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costos + Gastos</td>
<td>0</td>
<td>406,150.80</td>
<td>2,023,00.00</td>
<td>2,036,00.00</td>
<td>2,029,00.00</td>
<td>1,840,00.00</td>
</tr>
<tr>
<td>Impuesto a la Renta</td>
<td>0</td>
<td>364,154.98</td>
<td>41,100.00</td>
<td>37,200.00</td>
<td>39,300.00</td>
<td>96,000.00</td>
</tr>
<tr>
<td>FLUJO NETO ECONOMICO</td>
<td>-2,792,412.20</td>
<td>770,305.78</td>
<td>206,4100.00</td>
<td>2,073,200.00</td>
<td>2,068,300.00</td>
<td>1,936,000.00</td>
</tr>
<tr>
<td>Préstamo Bancario</td>
<td>2,233,930.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interés</td>
<td>0</td>
<td>326,153.46</td>
<td>301,817.45</td>
<td>230,805.363</td>
<td>144,246.39</td>
<td>43,135.88</td>
</tr>
<tr>
<td>Amortización</td>
<td>0</td>
<td>0</td>
<td>458,182.57</td>
<td>549,194.63</td>
<td>655,753.62</td>
<td>756,864.13</td>
</tr>
<tr>
<td>FLUJO NETO FINANCIERO</td>
<td>-2,792,412.20</td>
<td>876,694.94</td>
<td>13,1900.00</td>
<td>91850.00</td>
<td>127,690.00</td>
<td>260000.00</td>
</tr>
<tr>
<td>Aportes de los Socios</td>
<td>558,482.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reserva Legal</td>
<td>0</td>
<td>87,669.00</td>
<td>13,190.00</td>
<td>12280.00</td>
<td>12770.00</td>
<td>260000.00</td>
</tr>
<tr>
<td>Dividendos Pagados</td>
<td>0</td>
<td>245,474.58</td>
<td>36,932.00</td>
<td>34384.00</td>
<td>35756.00</td>
<td>72800.00</td>
</tr>
<tr>
<td>Saldo de Caja</td>
<td>0</td>
<td>543,551.36</td>
<td>81,778.00</td>
<td>76136.00</td>
<td>79164.00</td>
<td>161200.00</td>
</tr>
</tbody>
</table>

Tabla 6.20 Flujo de caja proyectado.

6.6.2.6. Evaluación empresarial

Mediante la evaluación económica se efectúa la comparación de los costos con los beneficios durante los 5 años de vida útil del proyecto, para lo cual se mide su rendimiento independientemente de la manera como se obtengan y paguen los recursos financieros.
6.6.2.6.1. Costo de oportunidad

El COK se refiere a la mejor tasa alternativa que tienen los inversionistas para colocar su dinero.

<table>
<thead>
<tr>
<th>Financiamiento</th>
<th>Monto en pesos</th>
<th>%</th>
<th>Tasa Anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversionistas</td>
<td>$ 558,482.20</td>
<td>20</td>
<td>8% pasiva</td>
</tr>
<tr>
<td>Banco</td>
<td>$2,233,930.00</td>
<td>80</td>
<td>15.43% activa</td>
</tr>
<tr>
<td>Total</td>
<td>$2,792,412.20</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6.21 Costo de oportunidad.

COK = (0.20*8) + (0.80*15.43)
COK = 10.82% anual

6.6.2.6.2. Valor actual neto económico (VANE)

Se obtiene del flujo neto económico del flujo de caja proyectado. Con la finalidad de determinar la rentabilidad del proyecto.

<table>
<thead>
<tr>
<th>Año</th>
<th>Flujo neto económico</th>
<th>Factor simple de actualización</th>
<th>Valor actualizado $</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-2,792,412.20</td>
<td>1</td>
<td>-2,792,412.20</td>
</tr>
<tr>
<td>1</td>
<td>770,305.78</td>
<td>0.902364194</td>
<td>695096.3543</td>
</tr>
<tr>
<td>2</td>
<td>2,064,100.00</td>
<td>0.814261139</td>
<td>1680716.417</td>
</tr>
<tr>
<td>3</td>
<td>2,073,200.00</td>
<td>0.734760097</td>
<td>1523304.633</td>
</tr>
<tr>
<td>4</td>
<td>2,068,300.00</td>
<td>0.663021202</td>
<td>1371326.752</td>
</tr>
<tr>
<td>5</td>
<td>1,936,000.00</td>
<td>0.598286593</td>
<td>1158282.844</td>
</tr>
<tr>
<td>Total</td>
<td>6428727.00</td>
<td></td>
<td>6428727.00</td>
</tr>
</tbody>
</table>

Tabla 6.22 Valor actual neto económico.

VANE: $6,428,727.00 siendo criterio de decisión.

El resultado obtenido determina que los flujos económicos cubrirán los costos totales y la inversión.
6.6.2.6.3. Valor actual neto financiero (VANF)

Que hemos obtenido del flujo de caja Proyectado.

<table>
<thead>
<tr>
<th>Año</th>
<th>Flujo neto financiero</th>
<th>Factor simple de actualización</th>
<th>Valor actualizado</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-2792412.20</td>
<td>1</td>
<td>-2792412.20</td>
</tr>
<tr>
<td>1</td>
<td>876,694.94</td>
<td>0.902364194</td>
<td>791098.1229</td>
</tr>
<tr>
<td>2</td>
<td>13,1900.00</td>
<td>0.814261139</td>
<td>107401.0442</td>
</tr>
<tr>
<td>3</td>
<td>91850.00</td>
<td>0.734760097</td>
<td>67487.71481</td>
</tr>
<tr>
<td>4</td>
<td>127,690.00</td>
<td>0.663021202</td>
<td>84661.17728</td>
</tr>
<tr>
<td>5</td>
<td>260000.00</td>
<td>0.598286593</td>
<td>155554.5142</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>1206202.573</td>
</tr>
</tbody>
</table>

Tabla 6.23 Valor actual neto financiero.

VANF: $1,206,202.573 siendo el criterio de decisión.
VANF >0

Determinando que el VANF asciende positivamente.

6.6.2.6.4. Relación beneficio costo económico

La relación beneficio costo aplicado al proyecto se calcula de la siguiente manera:

\[
\text{B/Ce} = \frac{Vane + \text{Inversión}}{\text{Inversión}} = \frac{6428727.00 + 2792411.00}{2792411.00} = 3.30
\]

6.6.2.6.5 Relación beneficio costo financiero

\[
\text{B/C f} = \frac{\text{Vanf} + \text{Aportes}}{\text{Aportes}} = \frac{284779.6716 + 2017498.46}{2017498.46} = 1.14
\]

Al observar las cifras obtenidas las cuales son mayores que la unidad se determina que el proyecto es beneficioso.
6.6.2.6.6. Resumen de los indicadores de rentabilidad

<table>
<thead>
<tr>
<th>Indicador</th>
<th>Resultado</th>
<th>Criterio</th>
<th>Opinión</th>
</tr>
</thead>
<tbody>
<tr>
<td>VANE</td>
<td>6428727.00</td>
<td>>0</td>
<td>RENTABLE</td>
</tr>
<tr>
<td>VANF</td>
<td>284779.6716</td>
<td>>0</td>
<td>RENTABLE</td>
</tr>
</tbody>
</table>

Tabla 6.24 Resumen de los indicadores de rentabilidad.

6.6.2.6.7. Resumen inversión, financiamiento, egresos e ingresos

<table>
<thead>
<tr>
<th>Inversión</th>
<th>Financiamiento</th>
<th>Egresos</th>
<th>Ingresos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fija</td>
<td>Banco y inversores</td>
<td>2,233,300.00</td>
<td>556,482.20</td>
</tr>
<tr>
<td>Intangible</td>
<td></td>
<td>2,790,412.20</td>
<td>556,482.20</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5,023,712.20</td>
<td>1,112,964.40</td>
</tr>
</tbody>
</table>

Tabla 6.25 Resumen inversión, financiamiento, egresos e ingresos.

6.6.2.6.8. Conclusión de la evaluación empresarial

Aumentando la rentabilidad del proyecto en el primer año que da un excedente de caja proyectado de $543,551.36 para la adquisición de más Antenas Clientes, con lo cual se adquirirá 250 antenas más y generar un ingreso extra anual de hasta $900,000.00.

De acuerdo a los múltiples análisis, proyecciones y comparaciones que hemos realizado concluimos que el Proyecto WiNet es altamente rentable.

6.7. Análisis FODA

Dado que durante el transcurso y realización del proyecto se han ido detallando minuciosamente todas y cada una de las fortalezas y debilidades que posee nuestra empresa, a continuación pasamos a describir muy puntualmente y a modo de resumen todas ellas, así como una breve descripción de las oportunidades y amenazas que ha
raíz de las anteriores puedan surgir. La descripción se realiza por las diferentes áreas que la empresa posee.

6.7.1. Área de distribución y almacenaje

Fortalezas:

- Producto de fácil transporte y manejo.
- Producto no perecedero.

Debilidades:

- Pequeña red de distribución propia.

Oportunidades:

- Accesible a cualquier mercado geográfico.

Amenazas:

- Posible saturación de nuestra red de distribución.

6.7.2. Área de marketing

Fortalezas:

- Producto que respeta el medio ambiente.
- Buena imagen en el mercado.

Debilidades:

- Desconfianza y escepticismo hacia nuestro producto.
Oportunidades:

- Buenos argumentos de venta.

Amenazas:

- Posible aparición de competidor con gran inversión en comunicación.
- El consumidor no acceda a la prueba del producto.

6.7.3. Área de producto

Fortalezas:

- Es autosuficiente.
- Instalación inmediata.
- Ahorrativo.
- Ecológico.
- Efectos medibles y probados.
- Precio accesible.

Debilidades:

- Producto poco conocido.
- Desconfianza y escepticismo hacia el producto.

Oportunidades:

- Producto fácil de vender.

Amenazas:

- Aparición de nuevos competidores.
6.8. Unidad estratégica de negocios (UEN)

6.8.1. Distribución

Una vez que se ha localizado y convencido al cliente de la compra del producto, WiNet se encarga de transportar por sus medios. El periodo medio de tiempo entre el suministro del producto, su instalación y funcionamiento (éstas dos últimas por las características del producto se establecen en el mismo momento), es de menos de 48 horas.

6.8.1.1. Servicio preventa

WiNet realiza un proyecto completo de instalación para cada cliente de forma personalizada en el cual aparece una descripción y valoración de las distintas secciones que componen la instalación, así como la valoración total de la misma, todo ello adjuntado de planos, análisis y características del proyecto, finalizando dicho proyecto con las conclusiones de los desarrolladores.

6.8.1.2. Servicio postventa

Una vez que el cliente ha aceptado el presupuesto y da su conformidad para la instalación de los equipos, se le hace un contrato de mantenimiento y seguimiento de su instalación.

Además y aunque la funcionalidad de los equipos es ilimitada, se ofrece una garantía de 1 año dentro de los cuales la empresa se compromete a comprobar las instalaciones con costo a cargo del cliente y a remplazarlos sin costo alguno, en caso de que alguno no reúna las características esperadas.

También se le entrega al cliente todo tipo de documentación referente a las recomendaciones para el manejo y montaje de los sistemas.
6.8.2. Publicidad

En los primeros años para apoyar el lanzamiento de nuestro producto diseña mos una estrategia de publicidad en medios masivos de comunicación con orientación empresarial y enfocada al mercado joven (Vease Estrategias para comercializar el servicio pag. 142).

En la fase donde ya se han captado clientes nuestra comunicación con los clientes potenciales, se basar fundamentalmente en visitas a clientes a domicilio, apoyándonos con catálogos, proyectos y referencias de otros clientes importantes, así como esporádicos correos electrónicos, cartas personalizadas y publicidad en medios masivos de comunicación. [31]
Conjuntamente el desarrollo de cada uno de los capítulos del proyecto, han tenido como finalidad realizar un análisis detallado, en varios sectores de la convergencia de tecnologías de telecomunicaciones, para desarrollar específicamente, el proyecto que hemos diseñado para implantar, el proveedor de servicios de Internet Inalámbrico Tecnología WiMax (WISP) como empresa universitaria.

Denotamos el avance significativo en la evolución de la penetración del uso de las tecnologías en el mundo, y a la vez con juicio propio hemos de ver como el rezago en lo que respecta a nuestro país se debe a la monopolización, y al severo retraso de la economía mexicana que se encuentra muy lejos de su introducción a países de alto desarrollo tecnológico.

La investigación que durante un año hemos realizado sobre la Tecnología WiMax, de reciente aparición a la fecha, permite identificar múltiples compañías que comercializan soluciones WiMax en el mercado internacional, en nuestro caso, muy específicamente, analizamos las soluciones de Alvarion Inc. y Netkrom Inc. ambas poseen una sólida red de distribución, y ambas son robustas tecnologías que ofrecen los componentes para implantar un ISP de las características que se pretenden, la gran diferencia es que los productos Alvarion son excesivamente costosos y ello es un gran impedimento para hacer rentable el proyecto, así que la solución que mejor se adapta, tanto económica, como tecnológicamente a los costos que planteamos ofrecer es la solución tecnológica de Netkrom.
Identificamos en el estudio de mercado que la mayoría de los usuarios de Tecnologías de Información específicamente Internet, se centra en la población joven; diseñamos un plan mercado lógico para introducir nuestro producto el cual fue acompañado de un completo análisis, de competidores locales tanto cableados como inalámbricos que ofrecen servicios de Banda Ancha en Pachuca.

La situación del mercado permitirá de acuerdo al análisis de la demanda tener una aceptación rápida del producto y una penetración que garantiza la recuperación de las inversiones.

Realizamos proyecciones de ingresos y egresos arrojando datos de ganancias importantes para los inversionistas, a las proyecciones les siguió una propuesta de aporte bancario, acompañada de proyecciones de pago de deuda, así como un estado de ganancias y pérdidas, cálculos y una proyección de Flujo de Caja.

Finalmente realizamos una Evaluación Empresarial mediante el Costo de oportunidad, Valor neto económico y financiero, en ambos los resultados más que favorables arrojaron que el proyecto es rentable, y para garantizar el éxito realizamos un análisis FODA y la Unidad Estratégica de Negocios.

El servicio de Internet de banda ancha en Pachuca es una necesidad eminente por lo cual una oportunidad de negocio, el estándar 802.16 es la solución al rezago tecnológico, debido a que es económico y fácil de instalar, la adopción de una solución exenta de licencia nos permite implantar este proyecto; Netkrom es la solución tecnológica que satisface nuestros requerimientos, la introducción al mercado exitosamente esta garantizada en base al estudio de mercado, la recuperación de lo invertido a sido fundamentado de acuerdo a la evaluación empresarial realizada; en conclusión el Proyecto diseño del Proveedor de Servicios de Internet Inalámbrico (WISP) Tecnología WiMax como Empresa Universitaria basada en una solución fija exenta de licencia es rentable, viable y con una expansión a corto y mediano plazo.
ACRÓNIMOS

AAS: Sistemas de antenas adaptables.
AES: Encriptación avanzada de datos.
ARPU: Ingreso promedio por usuario.
BPSK: Transmisión por desplazamiento de fase binaria.
BRD: Servicio de radio de banda ancha.
CAPEX: Gastos de capital.
CLEC: Operadora de cambio local Competitiva.
CPE: Equipo de las instalaciones del cliente.
CSMA/CA: acceso múltiple con detección de portadora y prevención de colisiones.
DES: Selección de frecuencia dinámica.
DOCSIS: Especificación de Interfaz de Datos sobre Servicios de Cable.
DSL: Línea de abonado digital.
DSSS: Espectro ensanchado por secuencia directa.
FCC: Federal Communications Commision.
FBWA: Acceso fijo inalámbrico de banda ancha.
FLASH-OFMD: Acceso rápido de baja latencia con OFMD de transferencia íntegra.
FDD: Duplexación de división de frecuencia.
FDM: Multiplexación por división de frecuencia.
FHHS: Espectro de dispersión con salto de frecuencia.
FTTN: Fibra al nodo.
FTTP: Fibra a las instalaciones.
GPS: Sistema de posicionamiento global.
IEEE: Institute of Electrical and Electronics Engineers.
ILEC: Operadora local de intercambio.
ISP: Proveedor de servicio de Internet.
LOS: Línea de vista (line of sight).
MAC: Control de acceso a medios.
MSO: Operadora de servicios múltiples.
NLOS: Sin línea de vista (non line of sight).
OEM: Fabricante de equipo original.
OFDM: Multiplexación por división de frecuencia ortogonal.
OFDMA: Acceso multiplexado por división de frecuencia ortogonal.
ACRÓNIMOS

OPEX: Gastos operativos.

PCMCIA: Personal Computer Memory Card Internacional Association.

PHY: Capa física.

PMP: Punto a multipunto.

PTP: Punto a punto.

POP: Punto de presencia.

QAM: Modulación de amplitud de cuadratura.

QoS: Calidad de servicio.

QPSK: Transmisión por desplazamiento de fase de cuadratura.

SME: Pequeña y mediana empresa.

SOHO: Pequeña oficina, oficina en el hogar.

TDD: Dúplex por división de tiempo.

VoIP: Voz sobre IP.

Wi-Fi: Fidelidad inalámbrica.

WiMAX: Interoperabilidad mundial para acceso por microondas.

WISP: ISPs inalámbricos.

WLAN: Red inalámbrica local.

WMAN: Red inalámbrica de áreas metropolitanas.

WWAN: Redes inalámbricas de áreas extensas.
GLOSARIO

A

AAA: Abreviatura de Autenticación, Autorización y Accounting, sistema en redes IP para a qué recursos informáticos tiene acceso el usuario y rastrear la actividad del usuario en la red.

- Autenticación es el proceso de identificación de un individuo, normalmente mediante un nombre de usuario y contraseña. Se basa en la idea de que cada individuo tendrá una información única que le identifique o que le distinga de otros.
- Autorización es el proceso de aceptar o denegar el acceso de un usuario a los recursos de la red una vez que el usuario ha sido autenticado con éxito. La cantidad de datos y servicios a los que el usuario podrá acceder dependen del nivel de autorización que tenga establecido.
- Accounting es el proceso de rastrear la actividad del usuario mientras accede a los recursos de la red, incluso la cantidad de tiempo que permanece conectado, los servicios a los que accede así como los datos transferidos durante la sesión. Los datos registrados durante este proceso se utilizan con fines estadísticos, de planeamiento de capacidad, billing, auditoría y cost allocation.

A menudo los servicios AAA requieren un servidor dedicado. RADIUS es un ejemplo de un servicio AAA.

Acceso Remoto: Utilidad para que un usuario acceda desde su propio PC a otro que esté ubicado remotamente y pueda operar sobre él.

Ad Hoc: Una WLAN bajo topología "Ad Hoc" consiste en un grupo de equipos que se comunican cada uno directamente con los otros a través de las señales de radio sin usar un punto de acceso. Las configuraciones "Ad Hoc" son comunicaciones de tipo punto-a-punto. Los equipos inalámbricos necesitan configurar el mismo canal y SSID en modo "Ad Hoc".
Amplificador: Produce un incremento significativo en el alcance de la señal de las WLAN. Consta de un receptor de bajo ruido pre-amplificado y un amplificador lineal de salida de radio frecuencia (RF).

Antena: Dispositivo generalmente metálico capaz de radiar y recibir ondas de radio que adapta la entrada/salida del receptor/transmisor del medio. Dependiendo de hacia que punto emitan la señal podemos encontrarlas direccionales u omnidireccionables.

Ancho de Banda: Este término define la cantidad de datos que puede ser enviada en un periodo de tiempo determinado a través de un circuito de comunicación dado.

Auditoría: Análisis de las condiciones de una instalación informática por un auditor externo e independiente que realiza un dictamen sobre diferentes aspectos. Conjunto de procedimientos y técnicas para evaluar y controlar, total o parcialmente, un sistema informático, con el fin de proteger sus activos y recursos, verificar si sus actividades se desarrollan eficientemente y de acuerdo con la normativa informática y general existentes en cada empresa y para conseguir la eficacia exigida en el marco de la organización correspondiente.

Autenticación: Proceso en el que se da fe de la veracidad y autenticidad de un producto, de unos datos o de un servicio, así como de la fiabilidad y legitimidad de la empresa que los ofrece.

B

Bridge: Elemento que posibilita la conexión entre redes físicas, cableadas o inalámbricas, de igual o distinto estándar

C

Cliente Inalámbrico: Todo dispositivo susceptible de integrarse en una red wireless como PDAs, portátiles, cámaras inalámbricas, impresoras, etc...

Control de Accesos: Se utiliza para restringir el acceso a determinadas áreas del PC, de la red, mainframes, Internet, ftp, web, etc... El permiso o la denegación de acceso puede realizarse en función de la dirección IP, el nombre de dominio, nombre de usuario y password, certificados del clientes, protocolos de seguridad de redes, etc...
Cortafuegos: Software y hardware de seguridad encargado de chequear y bloquear el tráfico de la red. Sistema que se coloca entre una red e Internet para asegurar que todas las comunicaciones se realicen conforme a las políticas de seguridad de la organización que lo instala. Además, estos sistemas suelen incorporar elementos de privacidad, anti-virus, autenticación, etc.

D

DSSS - Espectro Amplio mediante Secuencia Directa: A diferencia de la técnica de transmisión de Espectro Amplio (Spread Spectrum) FHSS, DSSS no precisa enviar la información a través de varias frecuencias sino mediante transmisores; cada transmisor agrega bits adicionales a los paquetes de información y únicamente el receptor que conoce el algoritmo de estos bits adicionales es capaz de descifrar los datos. Es precisamente el uso de estos bits adicionales lo que permite a DSSS transmitir información a 10Mbps y una distancia máxima entre transmisores de 150 metros. Un estándar que utiliza DSSS es IEEE 802.11b.

E

EAP - Protocolo de Autenticación Extensible: Extensión del Protocolo punto a punto (PPP). Proporciona un mecanismo estándar para aceptar métodos de autenticación adicionales junto con PPP. Al utilizar EAP, se pueden agregar varios esquemas de autenticación, entre los que se incluyen tarjetas de identificación, contraseñas de un solo uso, autenticación por clave pública mediante tarjetas inteligentes, certificados y otros. Junto con los métodos de autenticación EAP de alto nivel, es un componente tecnológico crítico para las conexiones seguras a través de una red privada virtual (VPN), puesto que ofrece mayor seguridad frente a ataques físicos o de diccionario y de investigación de contraseñas, que otros métodos de autenticación, como CHAP.

Estándar: Norma que se utiliza como punto de partida para el desarrollo de servicios, aplicaciones, protocolos, etc.

Estandar 802.11 Familia de estándares desarrollados por la IEEE para tecnologías de red inalámbricas (wireless). Permite la conexión de dispositivos móviles (lap-top, PDA, teléfonos celulares a una red cableada, por medio de un Punto de Acceso (Access Point). La conexión se realiza a través de ondas de Radio Frecuencia. Originalmente ofrecía una velocidad de transmisión de 1 o 2 Mbps en la banda de frecuencia de 2.4
GHz. Se le conoce popularmente como WIFI. Tiene un área de cobertura aproximada de 100 ms.

802.11a Estándar de conexión inalámbrica que suministra una velocidad de transmisión de 54 Mbps en una banda de 5 GHz. Utiliza la tecnología OFDM (Orthogonal Frequency Division Multiplexing. Esta banda de 5GHz no se pudo utilizar en muchos países, al comienzo, por estar asignada a las fuerzas y organismos de seguridad.

802.11b Estándar de conexión wireless que suministra una velocidad de transmisión de 11 Mbps en una banda de 2.4 GHz. Utiliza la tecnología DSSS (Direct Sequencing Spread). La mayoría de los equipos utilizados en la actualidad son de esta tecnología. Fue ratificado en 1999. No es compatible con el 802.11a pues funciona en otra banda de frecuencia.

802.11e Estándar en elaboración desde Junio de 2003, destinado a mejorar la calidad de servicio en Wi-Fi (QoS – Quality of Service). Es de suma importancia para la transmisión de voz y video.

802.11g Estándar de conexión wireless que suministra una velocidad de transmisión de 54 Mbps en una banda de frecuencia de 2.4 GHz. Se basa en la tecnología OFDM, al igual que el estándar 802.11a. Fue ratificado en Junio de 2003. Una de sus ventajas es la compatibilidad con el estándar 802.11b.

802.11i Estándar de seguridad para redes wifi aprobado a mediados de 2004. En el se define al protocolo de encriptación WPA2 basado en el algoritmo AES.

802.11n Estándar en elaboración desde enero 2004. Tiene como objetivo conseguir mayores velocidades de transmisión para Wi-Fi. Estas serán superiores a 100 Mbps. Hay 2 propuestas distintas. En 2006 se aprobará una de las dos. La de TGn Sync o la WWiSE.

802.16 Estándar de transmisión wireless conocido como WIMAX (Worldwide Interoperability for Microwave Access). Es compatible con WIFI. Se originó en Abril de 2002 con la finalidad de cubrir inalámbricamente distancias de hasta 50 Km. La tecnología permite alcanzar velocidades de transmisión de hasta 70 Mbits en una
banda de frecuencias entre 10 GHz y 66 GHz. La interoperatividad es certificada por el WIMAX FORUM (http://www.wimaxforum.org/).

802.16d Estándar de transmisión wireless (WIMAX*) que suministra una velocidad de entre 300 K y 2 Mbps en una banda de frecuencia de 2GHz a 11GHz. Ratificado a finales de 2004. Se utiliza para el cubrimiento de la “primer milla”.

802.1x Estándar de seguridad para redes inalámbricas y cableadas. Se apoya en el protocolo EAP y establece la necesidad de autenticar y autorizar a cada usuario que se conecte a una red.

Ethernet: Arquitectura de red de área local desarrollada en 1976 por Xerox Corp. en cooperación con DEC e Intel que emplea una topología lineal (bus) o de estrella, o lo que es lo mismo, los datos pasan en todo momento por todos los puntos de conexión (a 10 Mbps) utilizando el método de acceso por detección de portadora con detección de colisiones (CSMA/CD). Una nueva versión denominada 100Base-T (o Fast Ethernet) soporta velocidades de 100 Mbps. Y la más reciente, Gigabit Ethernet soporta 1 Gb por segundo.

F

FHSS - Espectro Amplio mediante Saltos de Frecuencia: Primer desarrollo de la técnica de transmisión del Espectro Amplio (Spread Spectrum) que, al igual que Ethernet, divide los datos en paquetes de información pero que, por motivos de seguridad, para dificultar su interceptación por terceros, los envía a través de varias frecuencias (Hopping Pattern) seleccionadas al azar y que no se superponen entre sí. Para llevar acabo la transmisión además es necesario que tanto el aparato emisor como el receptor coordinen este "Hopping Pattern". El estándar IEEE 802.11 utiliza FHSS, aunque hoy en día la tecnología que sobresale utilizando FHSS es Bluetooth.

FTP - Protocolo de Transferencia de Archivos: Protocolo de transferencia de archivos que permite a los usuarios de gestores de correo la captura de documentos, archivos, programas y otros datos contenidos en carpetas existentes en cualquier lugar de Internet sin tener que proporcionar nombre de usuario y contraseña. Solamente se puede acceder a los archivos públicos situados en el sistema remoto al que se accede.
G

Gateway: Dispositivo que funciona como puerta de enlace entre Internet y redes inalámbricas.

H

Hot Spot (Punto Caliente): Punto de Acceso generalmente localizado en lugares con gran tráfico de público (estaciones, aeropuertos, hoteles, etc...) que proporciona servicios de red inalámbrico de banda ancha a visitantes móviles.

I

IEEE - Instituto de Ingenieros Eléctricos y Electrónicos: Formado a fecha de julio de 2003 por 377.000 miembros en 150 países. Cuenta con 900 estándares activos y 700 en desarrollo (http://www.ieee.org/).

Infraestructura: Topología de una red inalámbrica que consta de dos elementos básicos: estaciones cliente wireless y puntos de acceso.

L

LAN - Red de Área Local: Red informática que cubre que área relativamente pequeña (generalmente un edificio o grupo de edificios). La mayoría conecta puestos de trabajo (workstations) y PCs. Cada nodo (ordenador individual) tiene su propia CPU y programas pero también puede acceder a los datos y dispositivos de otros nodos así como comunicarse con éstos (e-mail). Sus características son: Topología en anillo o lineal, Arquitectura punto a punto o cliente/servidor, Conexión por fibra óptica, cable coaxial o entrelazado, ondas de radio.

M

MAC - Dirección de Control de Acceso a Medios: Dirección hardware de 6 bytes (48 bits) única que identifica únicamente cada nodo (tarjeta) de una red y se representa en notación hexademinal. En redes IEEE 802, la capa Data Link Control (DLC) del Modelo de Referencia OSI se divide en dos sub-capas: Logical Link Control (LLC) y
Media Access Control (MAC), la cual se conecta directamente con el medio de red. Consecuentemente, cada tipo de medio de red diferente requiere una capa MAC diferente. En redes que no siguen los estándares IEEE 802 pero sí el modelo OSI, la dirección del nodo se denomina Data Link control (DLC) address.

Mbps (Megabits por segundo): Unidad de medida de la capacidad de transmisión por una línea de telecomunicación. Cada megabit está formado por 1.048.576 bits.

MHz (Megahertzio): Unidad empleada para medir la "velocidad bruta" de los microprocesadores equivalente a un millón de hertzios.

OFDM: Orthogonal Frequency Division Multiplexing: Técnica de modulación FDM (empleada por el 802.11a wi-fi) para transmitir grandes cantidades de datos digitales a través de ondas de radio. OFDM divide la señal de radio en múltiples subseñales más pequeñas que luego serán transmitidas de manera simultánea en diferentes frecuencias al receptor. OFDM reduce la cantidad de ruido (crosstalk) en las transmisiones de señal.

PAP: Protocolo de Autenticación de Claves: El método más básico de autenticación, en el cual el nombre de usuario y la contraseña (clave) se transmiten a través de una red y se compara con una tabla de parejas nombre-clave, la no coincidencia provocará la desconexión. Típicamente, las contraseñas almacenadas en la tabla se encuentran encriptadas. El principal defecto de PAP es que tanto el nombre de usuario como la clave se transmiten sin codificar, a diferencia de sistema CHAP.

PEAP: Protected Extensible Authentication Protocol: Protocolo del tipo EAP desarrollado conjuntamente por Microsoft, RSA Security y Cisco para la transmisión datos autenticados, incluso claves, sobre redes inalámbricas 802.11. Autentica clientes de red wi-fi empleando sólo certificados del lado servidor creando una tunel SSL/TLS encriptado entre el cliente y el servidor de autenticación. El túnel luego protege el resto de intercambios de autenticación de usuario.
Protocolo: Estándar establecido. En lo referente a conectividad de redes, el empleo de un protocolo se realiza para direccionar y asegurar la entrega de paquetes a través de la red.

Punto de Acceso (PA): Dispositivo inalámbrico central de una WLAN que mediante sistema de radio frecuencia (RF) se encarga de recibir información de diferentes estaciones móviles bien para su centralización, bien para su enrutamiento.

R

RADIUS: Remote Authentication Dial-In User Service: Sistema de autenticación y accounting empleado por la mayoría de proveedores de servicios de Internet (ISPs) si bien no se trata de un estándar oficial. Cuando el usuario realiza una conexión a su ISP debe introducir su nombre de usuario y contraseña, información que pasa a un servidor RADIUS que chequeará que la información es correcta y autorizará el acceso al sistema del ISP si es así.

RAS: Servidor de Acceso Remoto: Servidor dedicado a la gestión de usuarios que no están en una red pero necesitan acceder remotamente a ésta. Permite a los usuarios, una vez autenticados, obtener acceso a los archivos y servicios de impresora de una LAN desde una localización remota.

Router: Dispositivo que transmite paquetes de datos a lo largo de una red. Un router está conectado al menos a dos redes, generalmente dos LANs o WANs o una LAN y la red de un ISP. Los routers emplean cabeceras y tablas de comparación para determinar el mejor camino para enviar los paquetes a su destino, y emplean protocolos como el ICMP para comunicarse con otros y configurar la mejor ruta entre varios hosts.

S

Servidor de Autenticación: Servidores que gestionan las bases de datos de todos los usuarios de una red y sus respectivas contraseñas para acceder a determinados recursos. Permiten o deniegan el acceso en función de los derechos atribuidos.

SSID: Identificador de red inalámbrica, similar al nombre de la red pero a nivel WI-FI.

T
Tarjeta de Red Inalámbrica: Tarjeta típica de red (con conectividad para LAN) pero diseñada y optimizada para entornos inalámbricos. Dependiendo de a quien vaya destinada existen diversos modelos: CompactFlash, PCI, PCMCIA, USB

TKIP: Protocolo de Integridad de Clave Temporal: Cifra las llaves utilizando un algoritmo hash y, mediante una herramienta de chequeo de integridad, asegura que las llaves no han sido manipuladas.

VLAN: Red de Área Local Virtual: Tipo de red que aparentemente parece ser una pequeña red de área local (LAN) cuando en realidad es una construcción lógica que permite la conectividad con diferentes paquetes de software. Sus usuarios pueden ser locales o estar distribuidos en diversos lugares

VPN: Red Privada Virtual: Red privada que se configura dentro de una red pública. Para establecer este tipo de red, la integridad de los datos y la confidencialidad se protegen mediante la autentificación y el cifrado. Por ejemplo, los datos se pueden transmitir de forma segura entre dos sucursales a través de Internet o cifrarse entre un servidor y un cliente en una Red de área local (LAN).

WAN: Red de Área Amplia: Tipo de red compuesta por dos o más redes de área local (LANs) conectadas entre sí vía teléfono (generalmente digital).

WPA: Protocolo de Seguridad en redes Inalámbricas: Protocolo de Seguridad para redes inalámbricas. Encripta las comunicaciones de WIFI. Se basa en el estándar 802.11i

WPA2: Protocolo de Seguridad Wi-Fi para Redes Inalámbricas: Protocolo de seguridad para redes Wi-Fi, definido en el estándar 802.11i. Reemplaza al protocolo temporal WPA. Se basa en el algoritmo AES y se debe incorporar a todos los Access Point de última generación.

WEP: Wired Equivalent Privacy: Protocolo para la transmisión de datos "segura". La encriptación puede ser ajustada a 128 bits, 64 bits o deshabilitada. La configuración de 128 bits da el mayor nivel de seguridad. También hay que recordar que todas las
estaciones que necesiten comunicarse deben usar la misma clave para generar la llave de encriptación. Actualmente hay más niveles de WEP: 152, 256 y hasta 512 bits!, cuanto más alto es este dato, supuestamente la comunicación es más segura, a costa de perder rendimiento en la red. También decir que este protocolo no es 100% seguro, que hay software dedicado a violar este cifrado, aunque requiere tiempo.

Wi-Fi: Tecnología utilizada en Redes Inalámbricas: Abreviatura de Wireless Fidelity. Es el nombre “comercial” con que se conoce a todos los dispositivos que funcionan sobre la base del estándar 802.11 de transmisión inalámbrica. En lenguaje popular: Redes Wi-Fi.

WIMAX: Worldwide Interoperability for Microwave Access: Grupo no lucrativo formado en abril de 2003 iniciativa de Intel/Nokia/Fujitsu/entre otras que certifica la interoperabilidad de los productos con tecnología inalámbrica (http://www.wimaxforum.org). Técnica de modulación FDM (empleada por el 802.11a y el 802.11g) para transmitir grandes cantidades de datos digitales a través de ondas de radio. OFDM divide la señal de radio en múltiples subseñales más pequeñas que luego serán transmitidas de manera simultánea en diferentes frecuencias al receptor. OFDM reduce la cantidad de ruido (crosstalk) en las transmisiones de señal.

WLAN: Red de Área Local Inalámbrica: También conocida como red wireless. Permite a los usuarios comunicarse con una red local o a Internet sin estar físicamente conectado. Opera a través de ondas y sin necesidad de una toma de red (cable) o de teléfono.

WPA: Acceso Wi-Fi Protegido: Estándar Wi-Fi, aprobado en abril de 2003, desarrollado para mejorar las características de seguridad del estándar WEP y permitir su implementación en productos inalámbricos que actualmente soportan WEP, pero la tecnología incluye dos mejoras con respecto a este último: emplea el protocolo de integridad de claves TKIP y la autenticación de usuarios se realiza mediante el protocolo EAP.
REFERENCIAS BIBLIOGRÁFICAS

[6] Informes de la UIT. Base de datos sobre indicadores de telecomunicaciones.

[40] http://www.york.com

[45] Ing. Francisco Palomo Encargado de Área de Enlaces Dedicados Telmex.

[47] INEGI, *Encuesta nacional sobre disponibilidad y uso de las tecnologías de la información en los hogares.* 2005
ANEXOS
COMISION FEDERAL DE TELECOMUNICACIONES

RESOLUCION por medio de la cual la Comision Federal de Telecomunicaciones expide las condiciones tecnicas de operacion de la banda 5 725 a 5 850 MHz, para su utilización como banda de uso libre.

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Comision Federal de Telecomunicaciones.- Pleno de la Comision Federal de Telecomunicaciones.

RESOLUCION POR MEDIO DE LA CUAL LA COMISION FEDERAL DE TELECOMUNICACIONES EXPIDE LAS CONDICIONES TECNICAS DE OPERACION DE LA BANDA 5 725 A 5 850 MHz, PARA SU UTILIZACION COMO BANDA DE USO LIBRE.

ANTECEDENTES

I. Creación de la Comisión Federal de Telecomunicaciones. El artículo Decimo Primero transitorio de la Ley Federal de Telecomunicaciones (en lo sucesivo, la "Ley"), publicada en el Diario Oficial de la Federación (en lo sucesivo, el "DOF") el 7 de junio de 1995, dispone que el Ejecutivo Federal constituirá un órgano desconcentrado de la Secretaría de Comunicaciones y Transportes (en lo sucesivo, la "Secretaría") con autonomía técnica y operativa, el cual tendrá la organización y facultades necesarias para regular y promover el desarrollo eficiente de las telecomunicaciones en el país. En consecuencia, mediante decreto publicado en el DOF el 9 de agosto de 1996 (en lo sucesivo, el "Decreto de Creación"), el Ejecutivo Federal creó la Comisión Federal de Telecomunicaciones (en lo sucesivo, la "Comisión").

II. Resolución que Clasifica ciertas Bandas de Frecuencia conforme a la Ley. El 22 de julio de 2003 mediante acuerdo número P/EXT/220705/49 el Pleno de la Comisión emitió la "Resolución del Pleno de la Comisión Federal de Telecomunicaciones para clasificar ciertas bandas de frecuencias conforme a la Ley Federal de Telecomunicaciones" (en lo sucesivo, la "Resolución de Clasificación").

III. Resolución que Modifica las Condiciones Técnico Operativas de la Banda 2 400 - 2 403.5 MHz. El 7 de octubre de 2005 mediante acuerdo número P/EXT/071005/60 el Pleno de la Comisión emitió la "Resolución que modifica el Resolución Primero de la diversa de 22 de julio de 2003, aprobada por acuerdo del Pleno número P/EXT/220705/49" (en lo sucesivo, la "Resolución de Modificación de Condiciones").

IV. Resolución que Modifica la Resolución de Clasificación. El 6 de diciembre de 2005 mediante acuerdo número P/061205/224 el Pleno de la Comisión emitió la "Resolución que modifica la clasificación de la banda de frecuencias 5 725-5 850 MHz, contenida en el resolución primero de la diversa de 22 de julio de 2005, aprobada por acuerdo del Pleno número P/EXT/220705/49 y modificada el 7 de octubre de 2005 por acuerdo de Pleno número P/EXT/071005/60.

V. Acuerdo Secretarial. El 7 de marzo de 2006 la Secretaría emitió el "Acuerdo por el que se establece la política para servicios de banda ancha y otras aplicaciones en las bandas de frecuencias del espectro radioteleónico 942 a 958 MHz; 2 400 a 2 403.5 MHz; 3800 a 3 780 MHz; 5 150 a 5 250 MHz; 5 250 a 5 350 MHz; 5 470 a 5 725 MHz y 5 725 a 5 850 MHz", el cual fue publicado en el DOF el 13 de marzo de 2006.

En virtud de los Antecedentes expuestos y

CONSIDERANDO

PRIMERO.- Atribución Legal. De conformidad con los artículos 36 fracción XII de la LOAPF; 2o. y 7o. fracción II de la ley y 1o. del Reglamento Interior, la Secretaría tiene atribuciones para regular el desarrollo de las telecomunicaciones con base en el Plan Nacional de Desarrollo y los programas sectoriales correspondientes, y para elaborar y mantener actualizado el Cuadro Nacional de Atribución de Frecuencias.

Asimismo, la Ley dispone que el Ejecutivo Federal debía crear un órgano desconcentrado de la Secretaría con autonomía técnica y operativa, que tendría la organización y facultades necesarias para regular y promover el desarrollo eficiente de las telecomunicaciones en el país, de acuerdo a lo que establecería su decreto de creación.
Mediante el Decreto de Creación el Ejecutivo Federal, en cumplimiento al artículo Décimo Primero notorio de la Ley, oró esta Comisión. El artículo Primero del Decreto precisamente dispone la creación de Comisión como órgano administrativo desconcentrado de la Secretaría, con autonomía técnica y operativa, e tiene las atribuciones que el propio Decreto le confiere, con el objeto de regular y promover el desarrollo ciente de las telecomunicaciones.

Por otro lado, el Reglamento Interior de la Secretaría en su artículo 37 Bis, fracción XI, dispone que corresponde a la Comisión administrar el espectro radioeléctrico y promover su uso eficiente, así como elaborar y mantener actualizado el Cuadro Nacional de Atribución de Frecuencias.

Mas aún, conforme al artículo Segundo, fracción VIII del Decreto de Creación, la Comisión tiene atribuciones para administrar el espectro radioeléctrico y promover su uso eficiente, y elaborar y mantener actualizado el Cuadro Nacional de Atribución de Frecuencias.

SEGUNDO.- Acuerdo Secretarial. El Acuerdo Secretarial establece en su artículo transitorio Segundo siguiente:

"La banda de frecuencias del espectro radioeléctrico de uso libre 5,725 a 5,850 MHz, sólo podrá ser utilizada a partir de la fecha en que la Comisión, conforme a las atribuciones que establece el artículo 37 bis fracción I del Reglamento Interior de la Secretaría de Comunicaciones y Transportes, expida las condiciones técnicas de operación que aseguren su uso eficiente y adecuada administración, mismas que deberán considerar los aspectos especificados para esta banda en el Apéndice del presente Acuerdo, para lo cual contará con un plazo no mayor de 30 días naturales a partir de la fecha de publicación del presente Acuerdo."

El Apéndice del Acuerdo Secretarial titulado “Condiciones de Operación” establece:

1. "Banda 5,725-5,850 MHz.

2. Esta banda de frecuencias sólo podrá ser utilizada a partir de la fecha en que la Comisión, conforme a las atribuciones que establece el artículo 37 bis fracción I del Reglamento Interior de la Secretaría de Comunicaciones y Transportes, expida las condiciones técnicas de operación que aseguren su uso eficiente y adecuada administración, mismas que deberán considerar los siguientes aspectos:

 1. Prevenir interferencias perjudiciales.
 2. Prevenir la saturación del espectro radioeléctrico.
 3. Asegurar la convivencia de dispositivos, sistemas y servicios de telecomunicaciones.
 4. Permitir la utilización de cualquier tipo de antena.
 5. Permitir el uso de repetidores."

TERCERO.- Resoluciones previas emitidas por el Pleno. En el ejercicio de sus atribuciones en materia administración del espectro radioeléctrico esta Comisión emitió las tres resoluciones descritas en los incisos II, III y IV de la presente Resolución para que, entre otros, se clasificaran diversas bandas como uso libre. Dichas resoluciones contienen los antecedentes y consideraciones sobre los cuales se basó esta misión para establecer las condiciones técnicas de operación de las diferentes bandas de frecuencia que no estaban clasificadas como uso libre. Estas condiciones técnicas de operación tienen como objeto permitir la reducción de nuevas tecnologías al palo, facilitar el uso de modernas aplicaciones de tecnologías inerentes, reducir cualquier posibilidad de interferencias perjudiciales, asegurar la convivencia de dispositivos e interoperabilidad de redes públicas de telecomunicaciones así como permitir a disposición de espectro suficiente para su uso libre por el público en general sin necesidad de obtener una concesión, misión o registro, según lo prevé la Ley.

La Comisión considera que por razones expuestas en las resoluciones citadas en el párrafo anterior y que no tiene objeto de dar certidumbre jurídica para la toma de decisiones informadas y responsables, es preciso explicitar las condiciones técnicas de operación para la banda de frecuencias 5725-5850 MHz que fue resuelta por el Pleno en las resoluciones citadas, dando así cumplimiento a lo indicado en el artículo anexatorio Segundo del Acuerdo Secretarial.
RESOLUTIVOS

PRIMERO. Se expiden las condiciones técnicas para la operación de la banda de 5725 a 5850 MHz como banda de uso libre, de conformidad con lo que a continuación se indica:

Los sistemas, dispositivos o productos deberán ser homologados en términos del artículo 3 fracción V de la Ley Federal de Telecomunicaciones y demás disposiciones regulatorias y administrativas aplicables, y su uso debe realizarse en los términos y condiciones técnicas y operativas descritas a continuación.

Los sistemas, dispositivos o productos deberán sujetarse a las características técnicas indicadas en las Normas Oficiales Mexicanas que les apliquen o en su ausencia a las otras normas o recomendaciones previstas en el Reglamento de Telecomunicaciones de 1999 en su artículo 142, mismas que serán indicadas por la Comisión Federal de Telecomunicaciones.

Los estaciones no provocarán interferencia perjudicial a estaciones cuyo usuario cuente con un permiso o concesión, ni reclamarán protección contra interferencia perjudicial proveniente de estas últimas.

Aun cuando el equipo se encuentre debidamente homologado, en casos de interferencias perjudiciales a estaciones cuyo usuario cuente con permiso o concesión, el usuario deberá cesar la operación de los equipos hasta que se elimine la interferencia perjudicial.

Las estaciones y equipos no recibirán protección contra interferencia proveniente de otras estaciones y equipos que operen de conformidad con la presente resolución.

Estas bandas no podrán ser utilizadas para la operación de enlaces transfronterizos.

La potencia máxima de transmisión entregada a las antenas de los sistemas de radiocomunicación no deberá exceder de 1 W, pudiéndose utilizar antenas de transmisión con ganancia direccional máxima de 6 dBi, de manera que se obtenga una Potencia Isotrópica Radiada Equivalente (PIRE) máxima de 4 W. La densidad de PIRE no deberá exceder de 200 mW/MHz en cualquier banda de 1 MHz.

Si se utilizan antenas de ganancia direccional mayor a 6 dBi, la potencia total de entrada a las mismas y la correspondiente densidad de potencia, deberán ser reducidas en la misma cantidad que la ganancia direccional exceda de 6 dBi.

Emisión fuera de banda: Todos los emisiones dentro de un rango de 10 MHz fuera de loo extremo inferior y superior de la banda, no deberá exceder una densidad de PIRE de -17dBm/MHz, para frecuencias a partir de 10 MHz fuera de esos rangos, las emisiones no deberán de exceder una densidad de PIRE de -27dBm/MHz.

SEGUNDO. Se instruye a la Coordinación General de Consulta Jurídica a que lleve a cabo los procedimientos necesarios para la publicación de la presente Resolución en el Diario Oficial de la Federación, incluyendo aquellos que deban realizarse ante la Comisión Federal de Mejora Regulatoria.

(R.- 229031)