

UNIVERSIDAD AUTONOMA DEL ESTADO DE HIDALGO INSTITUTO DE CIENCIAS BÁSICAS E INGENIERÍA DOCTORADO EN CIENCIAS AMBIENTALES

TESIS

DESINFECCIÓN CONVENCIONAL Y SECUENCIAL CON NaCIO Y PAA DE CEPAS AISLADAS DE UNA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES

Para obtener el título de Doctora

PRESENTA

I.Q. Dulce Brigite Ocampo Rodríguez

Directora

Dra. Claudia Coronel Olivares

Comité tutorial Dra. Gabriela Alejandra Vázquez Rodríguez Dra. Sylvia Martínez Hernández Dra. María del Refugio González Sandoval

Pachuca de Soto, Hgo., México., Junio 2024

Universidad Autónoma del Estado de Hidalgo Instituto de Ciencias Básicas e Ingeniería School of Engineering and Basic Sciences

Mineral de la Reforma, Hgo. a 30 de mayo de 2024

Número de control: ICBI-D/697/2024 **Asunto:** Autorización de impresión de tesis.

MTRA. OJUKY DEL ROCÍO ISLAS MALDONADO DIRECTORA DE ADMINISTRACIÓN ESCOLAR DE LA UAEH

Por este conducto le comunico que el comité revisor asignado a la **I.Q. Dulce Brigite Ocampo Rodríguez**, alumna del Doctorado en Ciencias Ambientales (Directo) con número de cuenta 415662, autoriza la impresión del proyecto de tesis titulado **"Desinfección convencional y secuencial con NaCIO y PAA de cepas aisladas de una planta de tratamiento de aguas residuales"** en virtud de que se han efectuado las revisiones y correcciones pertinentes.

A continuación, se registran las firmas de conformidad de los integrantes del comité revisor.

- PRESIDENTE Dra. Gabriela Alejandra Vázquez Rodríguez
- SECRETARIO Dra. Ma. del Refugio González Sandoval
- 1^{er} VOCAL Dra. Claudia Coronel Olivares
- 2^{do} VOCAL Dra. Sylvia Martínez Hernández

Sin otro particular, reitero a Usted la seguridad de mi atenta consideración.

Atentamente "Amor, Orden \$O ALGO Dr. Otilio Arturo Aceredo Sandoval Director **e**/CB Siudad del Gonogimiento, Carretera Pachuca-Tulancingo Kpr. 4.5 Colonia Carboneras, Mineral de la Reforma, Hidalgo, México. C.P. 42184

Teléfono: 771 71 720 00 Ext. 40001 direccion_icbi@uaeh.edu.mx, acevedo@uaeh.edu.mx

CRG/NAL

laeh.edu.mx

Esta tesis se realizó en el Área Académica de Química de la Universidad Autónoma del Estado de Hidalgo, bajo la dirección de la Dra. Claudia Coronel Olivares. La estudiante tuvo beca del CONAHCYT (Consejo Nacional de Ciencia y Tecnología): 737045.

La investigación de esta tesis generó las siguientes publicaciones:

- Ocampo-Rodríguez, D.B., Vázquez-Rodríguez, G.A., Martínez-Hernández, S., Iturbe-Acosta, U., y Coronel-Olivares, C. (2022). Desinfección del agua: una revisión a los tratamientos convencionales y avanzados con cloro y ácido peracético. *Ingeniería del Agua*, 26(3), 185-204. <u>https://doi.org/10.4995/ia.2022.17651</u>
- Ocampo-Rodríguez, D.B., Vázquez-Rodríguez, G.A., Rodríguez, J.A., González Sandoval, M.d.R., Iturbe-Acosta, U., Martínez Hernández, S. y Coronel-Olivares, C. (2023). Kinetic Models of Disinfection with Sodium Hypochlorite and Peracetic Acid of Bacteria Isolated from the Effluent of a WWTP. *Water*, 15, 2019. <u>https://doi.org/10.3390/w15112019</u>

Los resultados de esta investigación fueron presentados en los siguientes congresos (ver

Anexo VII):

- "Desinfección consecutiva de cepas de *Bacillus subtilis* aisladas de una planta de tratamiento de aguas residuales", XV Aniversario del Programa de Doctorado en Ciencias Ambientales realizado en Mineral de la Reforma, Hidalgo, el 21 de noviembre de 2019.
- "Diversity of chlorine-resistant bacteria isolated from disinfected wastewater", 13rd INTERNATIONAL SYMPOSIUM ON BIOSAFETY AND BIOSECURITY, realizado de forma virtual el 10 de noviembre del 2021.
- "Cinéticas de inactivación con hipoclorito de sodio de diferentes formas biológicas de bacterias aisladas del efluente de una PTAR y de una cepa certificada de *Bacillus subtilis*", 6th Conference IWA YOUNG WATER PROFESSIONALS Mexico 2022 realizado en Culiacán, Sinaloa, México del 25 al 27 de mayo del 2022.
- "Modelos cinéticos de desinfección con hipoclorito de sodio de cepas de diversas especies de *Bacillus* aisladas de una PTAR", XLIII Encuentro Nacional de la Academia Mexicana de Investigación y Docencia en Ingeniería Química A.C. realizado en Puerto Vallarta, Jalisco, del 23 al 26 de agosto de 2022.
- "Cinéticas de inactivación de endosporas de Bacillus subtilis con ácido peracético", 4° Seminario Virtual Diáspora Hídrica 2023, 7 de septiembre de 2023.

ÍND	ICE DE T	ABLAS	VI				
ÍND	NDICE DE FIGURASVII						
ACF	ACRÓNIMOSIX						
RES	UMEN		XI				
ABS	TRACT		XII				
1.	INTROD	UCCIÓN	1				
2.	DESINFI	ECCIÓN DEL AGUA	2				
2.	1. Des	infección convencional	4				
	2.1.1.	Desinfección con cloro	5				
	2.1.1.1	. Mecanismo de descomposición	5				
	2.1.1.2	Cloraminas	6				
	2.1.1.3	. Mecanismo de desinfección	7				
	2.1.1.4	Formación de subproductos	12				
	2.1.2.	Desinfección con ácido peracético	14				
	2.1.2.1	. Mecanismo de descomposición	14				
	2.1.2.2	. Mecanismo de desinfección					
	2.1.2.3	Formación de subproductos					
2.	2. Des	infección avanzada					
	2.2.1.	Desinfección simultánea					
	2.2.2.	Desinfección secuencial	22				
3.	PLANTE	AMIENTO DEL PROBLEMA	27				
4.	JUSTIFICACIÓN						
5.	OBJETIV	VOS					

CONTENIDO

5	.1.	Obje	etivo general	29
5	.2.	Obje	etivos específicos	29
6.	MO	DEL	OS CINÉTICOS DE DESINFECCIÓN CON NaClO Y PAA DE BA	ACTERIAS
AIS	LADA	AS D	EL EFLUENTE DE UNA PTAR	
6	.1.	Met	odología	33
	6.1.1	1.	Muestreo y caracterización del efluente	33
	6.1.2	2.	Aislamiento, caracterización e identificación de cepas	34
	6.1.3	3.	Obtención de células vegetativas	34
	6.1.4	4.	Obtención de endosporas	35
	6.1.5	5.	Cinéticas de inactivación	35
	6.	.1.5.1	. Células vegetativas	36
	6.	.1.5.2	. Endosporas	37
	6.	.1.5.3	. Modelos cinéticos	37
	6.	1.5.4	Análisis estadístico	38
6	.2.	Res	ultados y discusión	38
	6.2.1	1.	Caracterización del efluente	
	6.2.2	2.	Aislamiento, caracterización e identificación de cepas	
	6.2.3	3.	Cinéticas de inactivación	43
	6.2.4	4.	Modelos cinéticos	
	6.2.5	5.	Análisis estadístico	53
7.	CIN	ÉTIC	CAS DE DESINFECCIÓN SECUENCIAL CON NaClO Y	PAA EN
ENI	DOSF	PORA	AS DE DIVERSAS ESPECIES DE <i>Bacillus</i> AISLADAS DE UNA F	YTAR 55
7	.1.	Met	odología	58
	7.1.1	1.	Aislamiento, caracterización e identificación de cepas	58
	7.1.2	2.	Obtención de endosporas	59

7.1.3. Cinéticas de desinfección	59
7.1.3.1. Desinfección convencional	60
7.1.3.1.1. Modelos cinéticos	61
7.1.3.1.2. Análisis estadístico	61
7.1.3.2. Desinfección secuencial	61
7.1.3.2.1. Análisis estadístico	62
7.2. Resultados y discusión	62
7.2.1. Aislamiento, caracterización e identificación de las cepas	62
7.2.2. Cinéticas de inactivación	72
7.2.2.1. Desinfección convencional con NaClO o PAA	72
7.2.2.1.1. Modelos cinéticos de desinfección	77
7.2.2.1.2. Análisis estadístico	84
7.2.2.2. Desinfección secuencial NaClO – PAA	84
7.2.2.2.1. Análisis estadístico	87
8. CONCLUSIONES	89
9. PERSPECTIVAS	91
10. REFERENCIAS	92
ANEXOS	.110
Anexo I. Medios de cultivo	.110
Anexo II. Determinación de la concentración de NaClO y PAA por yodometría	.119
Determinación de la concentración de NaClO	.119
Determinación de la concentración de PAA	.121
Anexo III. Ensayos de desinfección de la cepa certificada de <i>B. subtilis</i> con NaC PAA	lO y. 124:
Desinfección de células vegetativas de <i>B. subtilis</i> (CDBB-10009) con NaClO	.124

Desinfección de endosporas de <i>B. subtilis</i> (CDBB-1009) con PAA125
Anexo IV. Ensayo de desinfección de <i>B. subtilis</i> (aislada) con PAA127
Anexo V. Conteo general de UFC de los ensayos de desinfección convencional de tres
cepas
Anexo VI. Conteo general de UFC de los ensayos de desinfección convencional y
secuencial de endosporas de diversas especies del género Bacillus136
Anexo VII. Constancias de eventos científicos154

ÍNDICE DE TABLAS

Tabla 2.1 Inactivación de microorganismos con cloro y sus derivados
Tabla 2.2 Empleo de hipoclorito de sodio en biopelículas bacterianas. 11
Tabla 2.3 Uso del cloro y derivados para la eliminación de ARG. 12
Tabla 2.4 Inactivación de microorganismos mediante ácido peracético. 17
Tabla 2.5 Uso de ácido peracético para inactivar ARG y biopelículas bacterianas18
Tabla 2.6 Inactivación de microorganismos por tratamientos de desinfección
simultánea20
Tabla 2.7 Inactivación de microorganismos por el tratamiento UV-Cl. 24
Tabla 2.8 Inactivación de microorganismos por el tratamiento Cl-UV24
Tabla 2.9 inactivación de microorganismos por el tratamiento UV-PAA
Tabla 6.1 Caracterización fisicoquímica del efluente de la PTAR
Tabla 6.2 Morfología colonial en placa de las cepas aisladas de una PTAR
Tabla 6.3 Crecimiento en medio líquido de las cepas aisladas de una PTAR
Tabla 6.4 Pruebas bioquímicas y tinciones de las cepas aisladas de una PTAR41
Tabla 6.5 Resultados de la identificación a nivel especie de las cepas aisladas de una
PTAR
Tabla 6.6 Resultados de la desinfección con NaClO y PAA (T= 25 °C, pH 7.5) de las
bacterias aisladas45
Tabla 6.7 Modelos cinéticos de la desinfección de las bacterias aisladas con NaClO y
PAA de mayor ajuste
Tabla 7.1 Morfología colonial en placa de las cepas aisladas de una PTAR63
Tabla 7.2 Crecimiento en líquido de las cepas aisladas de una PTAR 63
Tabla 7.3 Forma celular, tinciones y pruebas bioquímicas y tinciones de las cepas
aisladas de un PTAR64
Tabla 7.4 Resultados de la identificación a nivel especie de las cepas aisladas de una
PTAR
Tabla 7.5 Resultados de la desinfección de endosporas de diversas especies de Bacillus
aisladas de una PTAR
Tabla 7.6 Modelos cinéticos de la desinfección de endosporas de diversas especies de
Bacillus con NaClO
Tabla 7.7 Modelos cinéticos de la desinfección de endosporas de diversas especies de
Bacillus con PAA
Tabla 7.8 Unidades de inactivación de la desinfección convencional y secuencial de
endosporas de diversas especies de Bacillus aisladas con NaClO y PAA

ÍNDICE DE FIGURAS

Figura 6.1	Curvas de inactivación microbiana. Modificada de Gyürék y Finch, 199	8. 32
Figura 6.2 P PAA	roceso de desinfección de células vegetativas o endosporas con NaClO	0 36
Figura 6.3 M	Iorfología colonial en AN (izq.) y tinción Gram de <i>S. pasteuri</i> aislada (der	:.). 42
Figura 6.4 M (der.)	Aorfología colonial en AN (izq.) y tinción Gram de <i>K. pneumoniae</i> aislad	da 42
Figura 6.5 M subtilis aislada	Iorfología colonial en AN (izq.) , tinción Gram (centro) y endosporas de a (der.).	<i>B</i> . 43
Figura 6.6 (aisladas y end	Cloro residual de la desinfección de células vegetativas de las bacteria dosporas de <i>B. subtilis</i> con NaClO	as 14
Figura 6.7 I aisladas y end	PAA residual de la desinfección de células vegetativas de las bacteria dosporas de <i>B. subtilis</i> con PAA	as 14
Figura 6.8 In de <i>B. subtilis</i> c	nactivación de células vegetativas de las bacterias aisladas y endosporto con NaClO	as 48
Figura 6.9 In subtilis con PA	nactivación de células vegetativas de las bacterias aisladas y endosporas AA.	<i>B</i> . 49
Figura 6.10 Figura 6.11	Inactivación de <i>K. pneumoniae</i> con NaClO (15 mg/L) Inactivación de endosporas de <i>B. subtilis</i> con NaClO a) 15 mg/L y	51 b)
30 mg/L Figura 6.12	Inactivación de <i>S. pasteuri</i> con PAA 5 mg/L.	51 52
Figura 6.13 Figura 6.14	Inactivación de <i>K. pneumoniae</i> con PAA a)5 mg/L, b)15 mg/L Inactivación de endosporas de <i>B. subtilis</i> con PAA a) 5 mg/L, b)15 mg/	52 L.
Figura 6.15	Análisis estadístico de (a) <i>K. pneumoniae</i> y (b) endosporas <i>B. subtilis</i> (b) co	53 57
NaClO.		54
Figura 6.16 <i>B. subtilis</i> con	Análisis estadístico de (a) <i>S. pasteuri</i> , (b) K. <i>pneumoniae</i> y (c) endosporas o PAA	de 54
Figura 7.1 F NaClO-PAA (2	Proceso de desinfección de endosporas con NaClO o PAA y secuenci Fuente: Propia)	al 30
Figura 7.2 M. B. amyloliquef	Iorfología colonial en AN (izq.), tinción Gram (centro) y de endosporas o faciens spp. plantarum (der.) (1EB7)	1e 37
Figura 7.3 M. B. licheniformi	Iorfología colonial en AN (izq.), tinción Gram (centro) y de endosporas o <i>is</i> (der.) (1EB8)	1e 37
Figura 7.4 M B. atrophaeus	Iorfología colonial en AN (izq.), tinción Gram (centro) y de endosporas ((der.) (1EB11)	de 57
Figura 7.5 M B. atrophaeus	Iorfología colonial en AN (izq.), tinción Gram (centro) y de endosporas o (der.) (1EM12)	1e 58

Figura 7.6 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de
<i>B. atrophaeus</i> (der.) (1EM13)68
Figura 7.7 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de
B. amyloliquefaciens spp. plantarum (der.) (1EB14)
Figura 7.8 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de
<i>B. subtilis</i> (der.) (3EM1)69
Figura 7.9 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de
B. amyloliquefaciens (der.) (3EM2)
Figura 7.10 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de
<i>B. subtilis</i> (der.) (3EM3)
Figura 7.11 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de
<i>B. subtilis</i> (der.) (3EM4)
Figura 7.12 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de
B. amyloliquefaciens (der.) (4EL2)
Figura 7.13 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de
B. amyloliquefaciens aislada (der.) (4EP7)70
Figura 7.14 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de
B. amyloliquefaciens (der.) (4EE8)
Figura 7.15 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de
B. amyloliquefaciens (der.) (5EL1)
Figura 7.16 Morfología colonial en AN (izq), tinción Gram (centro) y de endosporas de
<i>B. amyloliquefaciens</i> (der.) (5EL6)71
Figura 7.17 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de
<i>B. subtilis</i> (der.) (5EE7)
Figura 7.18 Cloro residual de la desinfección de endosporas con NaClO de diversas
especies de <i>Bacillus</i> aisladas. ^a : cepa certificada
Figura 7.19 PAA residual de la desinfección de endosporas con PAA de diversas
especies de <i>Bacillus</i> aisladas. ^a : cepa certificada
Figura 7.20 Curvas de inactivación de endosporas de diversas especies de <i>Bacillus</i>
aisladas con NaClO
Figura 7.21 Curvas de inactivación de endosporas de diversas especies de Bacillus
aisladas con PAA
Figura 7.22 Modelos cineticos de la desinfección de endosporas con NaCIO a) B.
licheniformis, b) B. atrophaeus, c) B. amyloliquefaciens spp. plantarum, d) B.
amyloliquefaciens, e) B. subtilis (reportado por Ocampo-Rodriguez et al., 2023) y f) B.
<i>subtilis</i> (CDBB-1009)
Figura 7.23 Modelos cineticos de la desinfección de endosporas con PAA a) <i>B.</i>
incremijormis, D) B. atrophaeus, C) B. amyloliquefaciens spp. plantarum, d) B.
amyloliquejaciens, e) B. suotilis y I) B. suotilis (CDBB-1009)
rigura 1.24 Curvas de inactivación de la desinfección secuencial de endosporas con
NaCIO-PAA

ACRÓNIMOS

AN	Agar nutritivo
AOP	Procesos de oxidación avanzada (por sus siglas en inglés)
AR	Agua residual
ARB	Bacterias resistentes a antibióticos (por sus siglas en inglés)
ARG	Genes con resistencia a antibióticos (por sus siglas en inglés)
ART	Agua residual tratada
С	Citrato
CE	Conductividad eléctrica
CN	Caldo nutritivo
CRB	Bacterias resistentes al cloro (por sus siglas en inglés)
СТ	Catalasa
DA	Desaminación de lisina
DBP	Subproductos de desinfección (por sus siglas en inglés)
DCAcAm	Dicloroacetamida
DE	Descarboxilación de lisina
DPD	Sulfato de N, N-dietil-p-fenilendiamina
EPS	Sustancias poliméricas extracelulares (por sus siglas en inglés)
GInaFiT	Geeraerd and Van Impe Inactivation Model Fitting Tool
HA	Hidrólisis de almidón
HAA	Ácidos haloacéticos (por sus siglas en inglés)
HAcAm	Haloacetamidas (por sus siglas en inglés)
HAN	Haloacetonitrilos (por sus siglas en inglés)
НС	Hidrólisis de caseína
НК	Halocentonas (por sus siglas en inglés)
HNM	Halonitrometanos (por sus siglas en inglés)
нс	Producción de H ₂ S

Ι	Indol
LG	Licuefacción de gelatina
MSC	Concentración mínima esporicida (por sus siglas en inglés)
NaClO	Hipoclorito de sodio
NCBI	National Center for Biotechnology Information
N-DBP	Subproductos de desinfección nitrogenados
OD	Oxígeno disuelto
ORP	Potencial de óxido reducción
PAA	Ácido peracético
PTAR	Planta de tratamiento de aguas residuales
RM	Rojo de metilo
SDT	Sólidos totales disueltos
TCNM	Tricloronitrometano
TE	Tinción de endosporas
THM	Trihalometanos
TS	Tolerancia a sal
UFC	Unidades Formadoras de colonias
UI	Unidades de Inactivación
USEPA	Agencia de Protección Ambiental de los EE. UU (por sus siglas inglés)
VP	Voges-Proskauer
VRL	Valores de reducción logarítmica
WHO	Organización Mundial de la Salud (por sus siglas en inglés)

en

RESUMEN

La desinfección es un tratamiento que permite reutilizar el agua residual, el cual nos permite asegurar la calidad microbiológica del agua. Sin embargo, la exposición constante de microorganismos patógenos a la cloración ha provocado su resistencia y adaptación, por tanto, se pueden encontrar presentes en los efluentes de las plantas de tratamiento de las aguas residuales (PTAR), esto implica un riesgo a la salud humana y daño a los ecosistemas.

El alcance del presente trabajo incluye el muestreo y caracterización del efluente de una PTAR y a partir de este, el aislamiento, caracterización e identificación de cepas con resistencia a la cloración. Dichas cepas fueron sometidas a tratamientos de desinfección, mediante el empleo de hipoclorito de sodio (NaClO) y ácido peracético (PAA). Con estos resultados se obtuvieron los modelos cinéticos que describen su inactivación. Por último, las cepas que presentaron la formación de endosporas fueron sometidas a un proceso de desinfección secuencial, en el cual se empleó NaClO seguido de PAA. A partir de la remoción de endosporas tanto con el tratamiento convencional como el secuencial, se obtuvieron los valores sinérgicos con el fin de evaluar la eficiencia de este último tratamiento.

Las cepas aisladas consideradas como resistentes a la cloración pertenecen a las especies de *Staphylococcus pasteuri, Klebsiella pneumoniae, Bacillus licheniformis, Bacillus atrophaeus, Bacillus amyloliquefaciens* spp. *plantarum, Bacillus amyloliquefaciens* y *Bacillus subtilis.* Las cinéticas de desinfección con NaClO y PAA mostraron la inactivación completa de *S. pasteuri.* La cepa de *K. pneumoniae* resultó ser más resistente al PAA que al NaClO, contrario a la inactivación de las endosporas de *B. subtilis.* Las curvas de inactivación obtenidas mostraron una tendencia cóncava y lineal con efecto de cola, las cuales se describen con el modelo de Weibull y Geeraerd, respectivamente.

Las cinéticas de desinfección de endosporas de diversas especies de *Bacillus* demuestran que el PAA es un desinfectante alterno a la cloración. Además, el aumento en la concentración de NaClO y PAA mejora la inactivación de dichas estructuras de resistencia. El modelo que mejor se ajusta a las cinéticas de desinfección de endosporas fue el de Geeraerd, con lo que se demuestra que existen endosporas que resisten el efecto de ambos desinfectantes.

El proceso de desinfección secuencial resultó en valores sinérgicos negativos, aunque mostró un aumento en las inactivaciones respecto a un tratamiento convencional. Este incremento indica que el proceso puede ser una alternativa para la eliminación de bacterias remanentes que se encuentran después de un tratamiento de cloración en las PTAR.

ABSTRACT

Disinfection is a treatment that allows the reuse of wastewater, ensuring the microbiological quality of the water. However, the constant exposure of pathogenic microorganisms to chlorination has led to their resistance and adaptation. Therefore, they can be found in the effluents of wastewater treatment plants (WWTPs), which implies a risk to human health, and damage to ecosystems.

This study involves the sampling and characterization of the effluent from a WWTP, followed by the isolation, characterization, and identification of strains resistant to chlorination. These strains were subjected to disinfection treatment using sodium hypochlorite (NaClO) and peracetic acid (PAA). These results allowed to obtain kinetic models describing their inactivation. Finally, strains forming endospores underwent a sequential disinfection process using NaClO followed by PAA to enhance their inactivation. From the removal of endospores using both conventional and sequential treatment, synergistic values were obtained in order to evaluate the efficiency of the final treatment.

Isolated strains resistant to chlorination belong to the species *Staphylococcus pasteuri*, *Klebsiella pneumoniae*, *Bacillus licheniformis*, *Bacillus atrophaeus*, *Bacillus amyloliquefaciens* spp. *plantarum*, *Bacillus amyloliquefaciens*, and *Bacillus subtilis*. Disinfection kinetics with NaClO and PAA showed complete inactivation of S. *pasteuri*. *K. pneumoniae* strain proved more resistant to PAA than NaClO, contrary to the inactivation of *B. subtilis* endospores. The obtained inactivation curves showed a concave and linear trend with a tail effect, described by the Weibull and Geeraerd models, respectively.

Disinfection kinetics of *Bacillus* endospores demonstrate that PAA is an alternative disinfectant to chlorination. Furthermore, an increase in NaClO and PAA concentration improves the inactivation of these resistance structures. The Geeraerd model best fits the disinfection kinetics of endospores, indicating the existence of endospores resistant to the effects of both disinfectants.

The sequential disinfection process resulted in negative synergistic values, although it showed increased inactivation compared to conventional treatment. This increase suggests that the process could be an alternative for the elimination of remaining bacteria post-chlorination in wastewater treatment plants.

1. INTRODUCCIÓN

El agua es un derecho humano indispensable para la vida, por lo que los seres humanos deben disponer de un suministro que sea suficiente, inocuo y de fácil acceso (Dinka, 2018). Las actividades antropogénicas han provocado la contaminación gradual del agua, mediante la presencia de componentes químicos, físicos o biológicos, lo que provoca que la calidad del agua se deteriore convirtiéndola en agua residual (AR) (Schweitzer y Noblet, 2018). Por otra parte, la presencia de microorganismos patógenos como bacterias, protistas, hongos, helmintos y virus representan una contaminación microbiana que es una amenaza importante debido a que afecta a todo tipo de organismos incluyendo a los seres humanos, ya sea como brotes epidemiológicos o casos aislados (Aghalari *et al.*, 2020).

El AR es uno de los principales medios de transmisión de microorganismos causantes de enfermedades (Fernández–Alba *et al.*, 2013), es necesario que pase por diferentes tratamientos, los cuales modifican sus propiedades químicas, físicas y biológicas que aseguran una buena calidad para su uso (Crini y Lichtfouse, 2019). Al tratamiento de eliminación de microorganismos patógenos se le conoce como desinfección y es uno de los más importantes debido a su papel crítico en la protección de la salud pública y ambiental (Odonkor y Ampofo, 2013; Saxena *et al.*, 2015).

En la presente investigación se evaluó la eficiencia de dos desinfectantes mediante cinéticas de inactivación de diversas especies que presentan resistencia a la cloración. En el apartado dos se presenta una revisión bibliográfica que abarca los tratamientos de desinfección convencionales con NaClO, PAA, y su combinación con radiación UV obteniendo así tratamientos avanzados de desinfección. A continuación, en el apartado tres se presenta el planteamiento del problema, seguido por la justificación (apartado cuatro) en los cuales se describen el enfoque que tuvo la presente investigación. En el apartado cinco se describen los objetivos que se plantearon. En los apartados seis y siete los resultados de esta investigación se presentan cada uno con sus antecedentes, metodología, resultados y discusión. En el apartado seis se presentan los resultados de las cinéticas de inactivación con NaClO y PAA aplicados de manera independiente de

tres cepas aisladas con diferentes características celulares, además, de una cepa certificada. En el apartado siete se presentan los resultados de las cinéticas y sus modelos de inactivación de endosporas de diversas especies de *Bacillus* con ambos desinfectantes. Finalmente, se evaluó un tratamiento de desinfección secuencial, es decir, la aplicación de un primer desinfectante (NaClO) seguido de PAA para obtener valores de reducción logarítmica y reconocer si hay valores sinérgicos. El documento concluye con las conclusiones generales y perspectivas de esta investigación.

2. DESINFECCIÓN DEL AGUA

El proceso de desinfección del agua tiene como objetivo eliminar o inactivar microorganismos patógenos presentes en el AR. Este tratamiento asegura la buena calidad microbiológica del agua, protege la salud pública y el ambiente, lo que permite que el AR se reúse para el riego en áreas públicas, cultivos o recarga de acuíferos (Valero *et al.*, 2015; Henao *et al.*, 2018a). Para estos fines, en las PTAR se emplea una diversidad de desinfectantes químicos o físicos como el cloro (Cl₂), el ozono (O₃), dióxido de cloro (ClO₂), ácido peracético (C₂H₄O₃), permanganato de potasio (KMnO₄) o la radiación UV. El desinfectante más usado en el mundo es el cloro y sus derivados por su fácil manejo y bajo costo (Chhetri *et al.*, 2018; Quartaroli *et al.*, 2018; Zhong *et al.*, 2019; Ragazzo *et al.*, 2020).

La eficiencia de un proceso de desinfección se mide a través de la reducción o eliminación de microorganismos indicadores presentes en el agua. Esto permite comparar el empleo de distintos desinfectantes o el efecto de los cambios en los parámetros del proceso como el pH o la temperatura. La Agencia de Protección al Ambiente de Estados Unidos recomienda a *Escherichia coli* y *Enterococcus* spp. como indicadores bacterianos de contaminación fecal (Collivignarelli *et al.*, 2018). Sin embargo, se ha demostrado la resistencia a la desinfección en algunas formas biológicas de microorganismos; entre estas podemos mencionar a los quistes y ooquistes de protistas, esporas de hongos y endosporas bacterianas (Kong *et al.*, 2021). Además, destacan las bacterias resistentes al cloro (CRB por las siglas en inglés de chlorine

resistant bacteria), principalmente de los géneros *Mycobacterium, Bacillus, Legionella, Pseudomonas* y *Sphingomonas* (Luo *et al.*, 2021). Asimismo, el uso de antibióticos se ha incrementado de manera exponencial en los últimos años, por lo que también existen bacterias resistentes a antibióticos (ARB por las siglas en inglés de antibiotic resistant bacteria) o que presentan en su DNA genes de resistencia a antibióticos (ARG por las siglas en inglés de antibiotic resistance genes). Estos genes pueden conferirse a otras bacterias por los procesos de transformación o transducción (Zhuang *et al.*, 2015; Furukawa *et al.*, 2017). Así, es claro que una diversidad de microorganismos patógenos está sobreviviendo cada vez más a los procesos de desinfección del agua residual.

Por otro lado, los desinfectantes empleados comúnmente como el cloro y sus derivados reaccionan con materia orgánica e inorgánica e incluso con contaminantes emergentes, y dan como resultado subproductos de desinfección (DBP por las siglas en inglés de disinfection by-products) (Collivignarelli *et al.*, 2018), los cuales son adversos para la salud de las personas y difíciles de eliminar debido a su variación química, biológica y física (Drogui y Daghrir, 2015; Wawryk *et al.*, 2020).

En los efluentes de las PTAR se encuentran contaminantes emergentes tales como los CRB, ARB, ARG, DBP, productos de cuidado personal, pesticidas y metales pesados, debido a que no son eliminados por los tratamientos convencionales empleados hasta el momento. El agua residual tratada (ART) es uno de los vehículos más importantes para que estos contaminantes lleguen a los ecosistemas acuáticos, lo que ha propiciado la búsqueda de nuevas tecnologías que sean de bajo costo, que aseguren la buena calidad microbiológica del agua y no generen subproductos tóxicos e indeseables. Entre estas se mencionan el uso del PAA como un desinfectante alternativo (Kibbee y Örmeci, 2020) y los procesos de oxidación avanzada (AOP, por las siglas en inglés de advanced oxydation processes), que emplean un desinfectante químico con radiación UV de manera simultánea o secuencial y han demostrado ser eficientes para eliminar algunos contaminantes emergentes y asegurar la buena calidad microbiológica del efluente (Chhetri *et al.*, 2018; Campo *et al.*, 2020; Wawryk *et al.*, 2020).

2.1. Desinfección convencional

Desde hace aproximadamente 35 años se han empleado distintos desinfectantes para la eliminación de microorganismos patógenos en el agua. Estos se dividen en cuatro grupos:

1) Químicos: aplicación de oxidantes fuertes

2) Térmicos: aumento o disminución de temperatura hasta hervir o congelar

3) Saturación: uso de metales no ferrosos que poseen acción bactericida, como plata o cobre.

4) Físicos: aplicación de radiación UV, ultrasonido o radiación ionizante.

Para seleccionar el método más adecuado es necesario considerar las características del AR, la calidad que se espera tras el tratamiento, su toxicidad, la posible formación de subproductos y el costo del proceso (Gryshko y Lugovskoy, 2015; Gitis y Hankins, 2018).

El rendimiento de la desinfección se rige por la exposición efectiva al desinfectante, lo cual se indica con el valor de C·t, que es un parámetro operativo para regular la inactivación de los microorganismos (Li *et al.*, 2016). C·t es el producto de la concentración residual del desinfectante por el tiempo en contacto con el agua, y permite describir las cinéticas de desinfección (Manoli *et al.*, 2019). Se han propuesto tablas de C·t para diseñar los procesos de desinfección química, en las que normalmente se expresan los valores para el 99% (2 log) y 99.99% (4 log) de inactivación de bacterias y virus debidas a cada desinfectante (Collivignarelli *et al.*, 2018). Lo ideal es que el desinfectante logre esta reducción con tiempos de contacto entre 15 a 30 minutos (McFadden *et al.*, 2017). Sin embargo, esta reducción también se ve afectada por variaciones de flujo diurnas, el clima y otros factores asociados a la operación de las PTAR (Manoli *et al.*, 2019). Además, la inactivación de los microorganismos también depende del grupo taxonómico al que pertenezca y al tipo de desinfectante (Li *et al.*, *et al.*, 2019).

2016). La eficiencia de remoción de microorganismos se puede expresar mediante la ecuación 2.1.

$$-\log(N_t/N_0) = k \int_0^T C dt$$
(2.1)

Donde *k* es la constante de tasa de inactivación de un desinfectante, *C* es la concentración del desinfectante en el tiempo *t* y N_t/N_0 es la relación entre la concentración microbiana restante en el tiempo *t* y la concentración microbiana inicial (Li *et al.*, 2017; McFadden *et al.*, 2017; Manoli *et al.*, 2019). Se han propuesto otros modelos cinéticos para describir la desinfección, con el fin de predecir su eficiencia bajo diferentes condiciones operativas; entre estos podemos mencionar al modelo de Hom y su modificación, o los propuestos por Selleck, Geeraerd, entre otros (Valero *et al.*, 2015).

2.1.1. Desinfección con cloro

El cloro y sus derivados se utilizan como desinfectantes en más de dos tercios del planeta y ocupan el primer lugar en el tratamiento de agua (Luongo *et al.*, 2020). Este grupo incluye al cloro gas (Cl₂), soluciones de hipoclorito de sodio (NaClO), cloraminas (NH₂Cl), dióxido de cloro (ClO₂) y compuestos líquidos o sólidos de cloro (Ersoy *et al.*, 2019). Suelen seleccionarse por su bajo costo, fácil implementación, baja inversión inicial en el proceso y costo de operaciones. Además, de su gran rango de inactivación de patógenos, proveen protección a los ecosistemas y la salud humana, así como un efecto residual (Destiani y Templeton, 2019). Entre sus aplicaciones podemos mencionar que el NaClO se usa en el lavado, limpieza y tratamiento de textiles, acondicionamiento de agua industrial, alimentos, productos de madera, piscina, estanques, potabilización, sistemas de distribución, instrumentos médicos, entre otros. Por otra parte, ClO₂, al ser un oxidante fuerte, se ha empleado en la industria alimentaria, y en la desinfección de agua potable y residual (Kampf, 2018a; Ofori *et al.*, 2018).

2.1.1.1. Mecanismo de descomposición

En el agua, el Cl_2 se disuelve y se hidroliza a ácido hipocloroso (HOCl) (Ecuación 2.2); posteriormente, este se ioniza para producir un ion hipoclorito (OCl⁻) (Ecuación 2.3).

Ambos son antimicrobianos fuertes y el cloro libre representa la suma de estos. La proporción de estas formas depende del pH de la solución: el HOCl es la forma predominante en el rango de pH 4-6, mientras que la especie OCl⁻ predomina en rango de pH 8.5-10. La estabilidad del Cl₂ como desinfectante se mantiene por dos años a 4 °C y su concentración disminuye al 50% a 24 °C (Dang *et al.*, 2016; Collivignarelli *et al.*, 2018; Kampf, 2018a).

$$Cl_2 + H_2O \leftrightarrow H^+ + Cl^+ + HOCl$$
 (2.2)

$$HOCl \leftrightarrow H^+ + OCl^- \tag{2.3}$$

La demanda de cloro es la fracción del cloro que entra en contacto con el agua y reacciona con materiales inorgánicos, naturales y algunos metales, lo que disminuye su potencial para desinfectar; el resto, conocido como cloro total, es la suma del cloro combinado (desinfectante débil) y el cloro libre (inactiva microorganismos patógenos) (Mazhar *et al.*, 2020).

2.1.1.2. Cloraminas

Las cloraminas son una opción como desinfectante secundario debido a que son más estables, no son tan reactivas con compuestos orgánicos y ayudan a controlar las biopelículas. Para desinfectar el agua se utilizan concentraciones de 1 a 4 mg/L, con un residual de 0.5 mg/L (EPA, 1999). El cloro reacciona con materia orgánica e inorgánica disuelta en el AR (How *et al.*, 2017), y forma diversos productos, entre los que se encuentran las cloraminas inorgánicas; estas se producen a partir de la reacción entre especies de cloro y amoníaco en solución acuosa (cloraminación) para formar la monocloramina (NH₂Cl), dicloramina (NHCl₂) y tricloroamina (NCl₃) (Kinani *et al.*, 2012), en series de reacciones (Ecuaciones 2.4 – 2.6) (Wolfe *et al.*, 1984).

$$HOCl + NH_3 \leftrightarrow NH_2Cl + H_2O$$
 (2.4)

$$HOCl + NH_2Cl \leftrightarrow NHCl_2 + H_2O \tag{2.5}$$

 $HOCl + NHCl_2 \leftrightarrow NCl_3 + H_2O \tag{2.6}$

La cloraminación depende del pH y de la relación másica de cloro a nitrógeno. El pH óptimo para la formación de NH₂Cl, NHCl₂ y NCl₃ es de 7.5 a 9, 4 a 6 y <4, respectivamente. Además, la relación masa Cl/N óptima para la formación de NH₂Cl es de 3:1 a 5:1 y de 5:1 a 7.6:1 para la NHCl₂, mientras que la NCl₃ se produce a proporciones más altas (Kinani *et al.*, 2012). En general, cuando el pH decrece, la relación Cl/N aumenta (Wolfe *et al.*, 1984).

2.1.1.3. Mecanismo de desinfección

El cloro libre afecta a las células mediante el daño a las membranas, interrumpe sus funciones y afecta el DNA; en las biopelículas se absorbe y elimina a las bacterias interiores. El HOCl degrada las proteínas y destruye las enzimas que participan en el metabolismo de los carbohidratos mediante la oxidación de grupos sulfhídricos (Ersoy *et al.*, 2019; Ziemba *et al.*, 2019). El ClO₂, por otra parte, actúa mediante la oxidación selectiva; al difundirse a través de las membranas celulares, daña el sistema enzimático o interrumpe la síntesis de proteínas, aumenta su permeabilidad celular y provoca la liberación de componentes vitales, lo que termina en la muerte celular (Ofori *et al.*, 2018; Collivignarelli *et al.*, 2018).

Distintas investigaciones han empleado el Cl_2 , NaClO y ClO_2 para reducir o inactivar microorganismos indicadores, en su mayoría reportados en valores de reducción logarítmica (VRL); estos resultados sirven como referencia para verificar la eficiencia de nuevos procesos desinfectantes que se deseen probar para el tratamiento de agua, así como para la eliminación de biopelículas y ARG. En las tablas 2.1 - 2.3 se presentan los resultados de experimentos de inactivación de bacterias, protistas, virus, biopelículas y ARG mediante el empleo en diferentes concentraciones de los desinfectantes mencionados. En lo general, los ensayos realizados por los autores referidos en las tablas varían en el tipo de agua, procedente ya sea de una PTAR o soluciones *buffer*.

La resistencia de las biopelículas se debe a la baja difusión del desinfectante en las mismas debido a la matriz de las sustancias poliméricas extracelulares (EPS por las siglas en inglés de *extracellular polymeric substances*) que protegen las capas más profundas de las células (Köse y Yapar, 2017; Lin *et al.*, 2017). De acuerdo con los datos

recabados, las concentraciones usadas en el AR para inactivar bacterias varían de 5 a 30 mg/L, con tiempos de contacto de 10 a 30 minutos y con VRL de 3 a 7. Por otra parte, en los ensayos en donde se utilizan soluciones *buffer* o sintéticas, se emplean concentraciones de 1 a 25 mg/L con tiempos de contacto de 1 a 25 minutos y logran VRL de 1 a 8. Es evidente que las características fisicoquímicas del agua, como el pH, sólidos suspendidos, sólidos disueltos totales, demanda biológica de oxígeno y demanda química de oxígeno, modifican la eficacia del proceso de desinfección y, por lo tanto, es necesario monitorearlas y controlarlas.

	Agua		R	С	Т	$\mathbf{Cl_r}$	C∙t	
Desinfectante	0	Microorganismo						Referencia
	Solución		log	mg/L	min	mg/L	mg [.] min/L	
Cl ₂	buffer	Escherichia coliª (nfxB)	1.7	25	15	NR	NR	Zhang <i>et al.</i> , 2019
Cl ₂	AR	Cryptosporidium ^c	4.82	5	120	NR	NR	
Cl_2	AR	Giardia lamblia ^c	4.87	0.5	60	NR	NR	Adeyemo et al., 2019
Cl ₂	AR	Bacteriófago MS2 ^d	0.31	10	5	0.21	1.05	
Cl_2	AR	Norovirus humano ^d (HuNoV)	0.31	10	5	0.21	1.05	Kingolov, et al. 2017
Cl_2	AR	Enterococcus faeciumª (van A)	7.09	10	10	NR	NR	Kingsiey <i>et al.</i> , 2017
Cl_2	buffer	Enterococcus faecium ^a (van A)	7.85	3	3	NR	NR	
Cl ₂	Sintética	Enterococcus sp.ª	3.2	4	30	2	60	
Cl_2	Sintética	Enterococcus sp.ª	7.5	65	3	26	78	Valero <i>et al.</i> , 2015
Cl ₂	AR	Escherichia coli ^a MDR	4.9	1	15	NR	NR	Fiorentino et al., 2015
ClO ₂	Desionizada	Enterococcus faecalis ^a	8	10	20	NR	NR	Ersoy <i>et al.</i> , 2019
ClO ₂	buffer	Pseudomonas aeruginosaª	5	5	60	NR	NR	
ClO ₂	buffer	Staphylococcus aureus ^a	6	5	60	NR	NR	
ClO ₂	buffer	Escherichia coliª	5	2	1	0.6	0.6	Mon et al. 2017
ClO ₂	buffer	Penicillium sp. ^b	5	2	1	1.1	1.1	wen <i>et al.</i> , 2017
ClO ₂	buffer	<i>Trichoderma</i> sp. ^b	3	2	1	1.1	1.1	
ClO ₂	buffer	Cladosporium sp. ^b	1	2	1	1	1	

 Tabla 2.1 Inactivación de microorganismos con cloro y sus derivados.

R: reducción; C: concentración; T: tiempo de contacto; Cl_r: cloro residual; C·t: dosis; AR: agua residual; *buffer*: solución de fosfato; NR: no reportado; a: bacteria; ^b: hongo; ^c: protista; ^d: virus.

	Agua		R	с	Т	Cl_r	C∙t	
Desinfectante	o Solución	Microorganismo	log	mg/L	min	mg/L	mg [.] min/L	- Referencia
ClO ₂	AR	Escherichia coli ^a	5	5	10	NR	NR	
ClO ₂	AR	Staphylococcus aureus ^a	5	5	10	NR	NR	
ClO ₂	AR	Pseudomonas aeruginosaª	5	5	10	NR	NR	
ClO ₂	AR	Staphylococcus aureus subsp. aureus ^a	5	5	10	NR	NR	
ClO ₂	AR	Bacillus subtilis subespecies ^a	3	5	10	NR	NR	
ClO ₂	AR	Listeria monocytogenes ^a	5	5	10	NR	NR	Ma <i>et al.</i> , 2017
ClO ₂	AR	Acinetobacter baumanniiª	5	5	10	NR	NR	
ClO ₂	AR	Salmonella enterica subespecies ^a	5	5	10	NR	NR	
ClO ₂	AR	Klebsiella pneumoniaeª	5	5	10	NR	NR	
ClO ₂	AR	Penicillium funiculosum ^b	2	20	10	NR	NR	
ClO ₂	AR	Candida albicans ^b	5	20	10	NR	NR	
NaClO	Desionizada	Enterococcus faecalis ^a	8	10	20	NR	NR	Ersoy <i>et al.</i> , 2017
NaClO	AR	Coliformes totales ^a	5	15	30	5.93	177.9	Quantanali et al. 2019
NaClO	AR	Escherichia coli ^a	5	15	30	5.93	177.9	Quartaroli <i>et al.</i> , 2018
NaClO	NR	Escherichia coliª	3 a 6	1-500	5 a 30	NR	NR	
NaClO	NR	Enterococcus faecalis ^a	>5	25-55	1 a 20	NR	NR	Kompf 2019-
NaClO	NR	Pseudomonas aeruginosaª	1 a >5	1-500	1 a 30	NR	NR	Kampi, 2010a
NaClO	NR	Staphylococcus aureus ^a	1 a 8	1-500	1 a 30	NR	NR	

Tabla 2.1 Inactivación de microorganismos con cloro y sus derivados (continuación).

R: reducción; C: concentración; T: tiempo de contacto; Cl_r: cloro residual; C·t: dosis; AR: agua residual; *buffer*: solución de fosfato; NR: no reportado; ^a: bacteria; ^b: hongo; ^c: protista; ^d: virus.

	Agua		R	С	Т	Clr	C∙t	
Desinfectante	o Solución	Microorganismo _	log	mg/L	min	mg/L	mg [.] min/L	Referencia
NaClO	AR	Bacteriófago MS2 ^b	5	NR	NR	NR	3	Ikehata <i>et al</i> ., 2018
NaClO	AR	ARB (tetraciclina y sulfametoxazol)	3 a 4	32	30	NR	NR	Zheng <i>et al.</i> , 2017
NaClO	Río	Escherichia coli ^a	6	1	2.5	NR	NR	Miranda <i>et al.</i> , 2016
NH ₂ Cl	AR	Norovirus murino ^d	1.9	1	10	<1	NR	Dunkin <i>et al.</i> , 2017

Tabla 2.1 Inactivación de microorganismos con cloro y sus derivados (continuación).

R: reducción; C: concentración; T: tiempo de contacto; Cl_r: cloro residual; C·t: dosis; AR: agua residual; *buffer*: solución de fosfato; NR: no reportado; ^a: bacteria; ^b: hongo; ^c: protista; ^d: virus.

Tabla 2.2 Empleo de hipoclorito de sodio en biopelículas bacterianas.

Bacteria	% Remoción	Concentración	Referencia	
	/*	mg/L	min	
Klebsiella sp.		10	30	
Pseudomonas sp.	Daño on la sustancia	10	30	Lin <i>et al</i> 2017
Flavobacterium sp.	polimérica extracelular	10	30	
Sphingomonas sp.	p on one of the door and	10	30	
Pseudomonas aeruginosa	83.6	1·10 ⁴	30	Köse y Yapar, 2017

Desinfectante	Ασιια	Gen	Reducción Concentración		Tiempo	Referencia	
2	inguu		log	mg/L	min	nererenenu	
Cl.	<i>buffer</i> de	$mnh(\Lambda)$	3.6	5	30		
	fosfatos	трп(А)	5.0	5	50	Destiani y Templeton,	
Cla	<i>buffer</i> de		5	30	2019		
	fosfatos	5011	5.0	5	50		
NaClO	AR	tetQ	2	8	30	7 heng <i>et al</i> 2017	
NaClO	AR	sul1	4	16	30		
NaClO	AR	<i>tet</i> G	3.24	160	120	Zhuang $at al = 2015$	
NaClO	AR	sul1	3.16	160	120	Zitualig <i>et ut.</i> , 2013	

Tabla 2.3 Uso del cloro y derivados para la eliminación de ARG.

AR: agua residual.

2.1.1.4. Formación de subproductos

Las reacciones del cloro con los compuestos orgánicos presentes en el agua, tales como ácidos fúlvicos y ácidos húmicos, dan como resultado DBP. Estos contribuyen a la toxicidad del agua y pueden tener efectos adversos en la biota de los cuerpos donde se recibe el agua o se reúsa, y están asociados con enfermedades como el cáncer. La formación de estos compuestos depende de la cantidad de materia orgánica, las concentraciones empleadas, el tiempo de contacto, el pH y la temperatura del agua (Collivignarelli *et al.*, 2018; Kozari *et al.*, 2020).

Se han identificado más de 600 DBP que se forman durante la cloración y cloraminación, entre los cuales podemos mencionar: trihalometanos (THM), ácidos haloacéticos (HAA), compuestos de yodo como: el yodato (IO₃⁻) y bromo como: monobromamina (NH₂Br) bromocloramina (NHClBr) y dibromamina (NHBr₂), clorito (ClO₂⁻), clorato (ClO₃⁻), clorofenoles, hidratos de carbono (HC), haloacetonitrilos (HAN) como: dicloroacetonitrilo (DCAN), tricloroacetonitrilo (TCAN), bromocloroacetonitrilo (BCAN), y dibromoacetonitrilo (DBAN); haloacetamidas (HAcAm), dicloroacetamida (DCAcAm), tricloroacetamida (TCAcAm), distintos alofuranos, halocetonas (HK), 1,1-dicloropropanona (DCP), 1,1,1-tricloropropano (TCP), halonitrometanos (HNM), tricloronitrometano (TCNM), N-nitroso-dimetilamina (NDMA), 1,1-dicloroacetonitrilo (DCAN), cloropicrina (CCl₃NO₂), y 1,1,1-tricloropropano (TCP), entre otros (Henao *et*

al., 2018b). Su ocurrencia en el agua depende de los sistemas de tratamiento, el pH, carbono orgánico total, cloro libre residual, así como del desinfectante. Solamente algunos de estos compuestos se encuentran regulados en ciertos países (Collivignarelli *et al.*, 2018; Gilca *et al.*, 2020).

Las cloraminas orgánicas (N-cloraminas) son un subproducto de las reacciones del cloro libre con compuestos nitrogenados o carbono orgánico disuelto (Lee y Westerhoff, 2009) favorecidas a valores altos de pH; se refieren comúnmente a compuestos orgánicos halogenados que incluyen a las N-cloraminas, N-cloraminoácidos, Ncloraldiminas y N-cloramidas (estas no tienen actividad bactericida) (How *et al.*, 2017).

El cloro reacciona con materia orgánica e inorgánica disuelta en el agua residual (How *et al.*, 2017) y forma diversos productos, entre los que se encuentran las cloraminas inorgánicas; estas se producen a partir de la reacción entre especies de cloro y amoníaco en solución acuosa (cloraminación) para formar la monocloramina (NH₂Cl), dicloramina (NHCl₂) y tricloroamina (NCl₃) (Kinani *et al.*, 2012)

Cuando se usan cloraminas como desinfectante se forman HAN, HAcAm y NDMA, que suelen ser más tóxicos que los THM y HAA; La NH_2Cl reacciona con Br^- o ácido hipobromoso, para dar lugar a NH_2Br , NHClBr y $NHBr_2$. Asimismo, el ClO_2 puede reaccionar con compuestos fenólicos y formar quinonas, cloroquinonas y DBP inorgánicos como ClO_2^- y ClO_3^- (Drogui y Daghrir, 2015).

Los DBP se acumulan en los sistemas acuáticos, por lo que hoy se buscan tratamientos de desinfección que sean más amigables con el ambiente y que generen concentraciones menores de subproductos. Por una parte, es difícil sustituir a corto plazo el equipo necesario para el cambio de desinfectante; por otra parte, los DBP se pueden eliminar con técnicas como ósmosis inversa, intercambio iónico o adsorción, aunque lo más común es remover la materia orgánica y carbono orgánico total antes de la cloración mediante el empleo de filtros con carbón activado granular o el uso de intercambiadores de iones magnéticos (Zou y Tang., 2019; Mazhar *et al.*, 2020).

2.1.2. Desinfección con ácido peracético

El PAA se considera una alternativa a los procesos de desinfección que comúnmente emplean el Cl_2 o el ClO_2 , ya que es menos tóxico y tiene mejor efecto antimicrobiano. Lo anterior asegura la buena calidad microbiológica del agua, cuida el ambiente y protege la vida acuática (Zhang *et al.*, 2019; Luongo *et al.*, 2020).

El PAA se ha aplicado en la desinfección de AR y agua pluvial en el norte de América y Europa en los últimos 30 años, y en países como Sudáfrica, Italia y los EE. UU. se ha adaptado como un desinfectante emergente (Hassaballah *et al.*, 2020; Ragazzo *et al.*, 2020; Zhang *et al.*, 2020). Tiene un alto espectro de eficiencia contra bacterias, endosporas, virus, hongos y quistes de protistas, biopelículas y disminuye ARG (da Silva *et al.*, 2020). Es un agente oxidante fuerte que limita la formación de subproductos, de bajo costo y fácil instalación (Kibbee y Örmeci, 2020).

Comercialmente se puede encontrar de 5-40% en equilibrio con el ácido acético, peróxido de hidrógeno y agua. A partir del 2016 la Comisión Europea aprobó su uso para la higiene humana, como desinfectantes, alguicidas y alimentos. Además, se utiliza en la desinfección industrial, procesos de alimentación, esterilización de instrumentos médicos, bebidas, medicina, farmacéuticos y textiles (Henao *et al.*, 2018b; Kampf, 2018b).

2.1.2.1. Mecanismo de descomposición

El PAA se puede descomponer al reaccionar con metales de transición, sólidos en suspensión o disueltos y materia orgánica, lo cual puede ocurrir mediante tres mecanismos:

- 1) Protonación
- 2) Reacción espontánea en un rango de pH 5.0 10.2
- 3) Hidrólisis

El primero se refiere a que la estructura del PAA es estable y ocurre una protonación, a continuación, se reorganiza para formar un carbocatión que es atacado por el PAA dando lugar a un intermediario activo y en consecuencia a la liberación de protones

para formar el ácido acético y oxígeno. El segundo mecanismo comprende el ataque del anión peracético al PAA para formar un intermediario activo que posteriormente se descompone para formar ion acetato, O_2 e H⁺. Cuando el pH es menor a 8.2, el PAA se descompone espontáneamente en oxígeno reactivo, pero cuando es mayor a 8.2, la forma ionizada del PAA (CH₃CO₃⁻) produce los iones peracetato y acetato, que tienen mínima capacidad de desinfección (Garg *et al.*, 2016; da Silva *et al.*, 2020). Por último, la hidrólisis consta de cinco pasos: primero sucede una protonación en el oxígeno del carbonilo de la molécula de PAA, seguida de una resonancia que forma un carbocatión y finalmente se producen tres ataques del medio de reacción, que dan como resultado ácido acético y peróxido de hidrógeno (Garg *et al.*, 2016; da Silva *et al.*, 2020). Cuando se descompone el PAA provoca un aumento en la demanda química de oxígeno o carbono orgánico total debido a la formación de ácido acético (Collivignarelli *et al.*, 2018).

El residual del PAA se puede determinar mediante diferentes métodos entre los cuales se puede mencionar la espectrofotometría (que emplea sulfato de N, N-dietil-p-fenilendiamina (DPD) y catalasa para concentraciones de 0.1 a 5 mg/L de PAA), titulación cerimétrica/yodométrica (para concentraciones de 0.5 a 10 mg/L de PAA y con adicción de catalasa para concentraciones de 1 y 5 mg/L de PAA), así como el uso de cromatografía, potenciometría y voltamperometría para concentraciones muy bajas (Luukkonen y Pehkonen, 2017).

2.1.2.2. Mecanismo de desinfección

El PAA tiene un gran potencial bactericida: daña y altera la permeabilidad de la membrana y pared celular de los microorganismos, oxida las estructuras celulares o componentes que tienen doble enlace carbono-carbono, libera radicales hidroxilo que es una especie letal para las bacterias, oxida los enlaces sulfhidrilo y disulfuro que se encuentran en las proteínas y enzimas, desnaturaliza las proteínas y otros metabolitos e inactiva las enzimas catalasa, β -galactosidasa y peroxidasa (Muniesa *et al.*, 2019; Zhang, *et al.*, 2019; Campo *et al.*, 2020).

Para desinfectar el AR, el PAA se emplea en concentraciones de 0.6 a 10 mg/L durante 10 a 60 minutos (Luukkonen y Pehkonen, 2017). Se ha propuesto que un C·t de 20 a 40 mg·min/L logra la inactivación de 3 log (99.99%), con lo que cumple el estándar de $5 \cdot 10^3$ CFU/100 mL de *E. coli* establecido en Italia (Collivignarelli *et al.*, 2017). Se ha empleado en estudios principalmente contra microorganismos indicadores de la calidad del agua, como se observa en la tabla 2.4. En la tabla 2.5 se muestran las concentraciones utilizadas para biopelículas y ARG.

Se pueden emplear concentraciones de 1 a 10 mg/L durante 1 a 60 minutos, que resultan en VRL de 1 a 7, como se observa en la tabla 4. No obstante, es necesario confirmar la eficacia de este desinfectante hacia una mayor diversidad de microorganismos típicos del AR y ART, tales como los formadores de endosporas o quistes. Algunos autores reportan valores C·t, los cuales permiten la comparación con las cinéticas de otros desinfectantes. En las tablas 2.4 y 2.5 se puede observar que los valores de C·t se obtuvieron, a partir del producto de la concentración inicial del desinfectante, por lo que es importante homologar el uso y obtención de los valores de C·t para que permitan comparar la eficiencia de distintos desinfectantes.

Los factores que influyen en el proceso de desinfección con PAA son el contenido de materia orgánica, las demandas química y biológica de oxígeno, salinidad, dureza, carbono orgánico total, conductividad, pH, dosis y tiempo de contacto (Zhang *et al.*, 2020). En particular, los sólidos en suspensión (tamaño de 10 a 100 micrómetros) afectan el proceso de desinfección con PAA de dos maneras: 1) al consumir el PAA, que implica una disminución en la concentración y dosis para inactivar bacterias y 2) al proteger las bacterias frente a la acción del desinfectante (Henao *et al.*, 2018a).

Agua o Solución	Microorganismos	Reducción Concentración Tiempo		Tiempo	C∙t	Referencia
nguu o bolución	Microorganismos	log	mg/L	min	mg [.] min/L	
buffer	Escherichia coliª (nfxB)	8	8	15	NR	Zhang <i>et al.</i> , 2019
AR	Escherichia coli ^a	6	3	NR	80	Compose $d = 2020$
AR	<i>Escherichia coli</i> ª (Amp ^r)	6	4 NR 55		55	
Dura	Piscirickettsia salmonis ^a	8.56	10	1	NR	Muniesa et al., 2019
AR	Heterótrofasª	3.1	12	60	NR	Chhetri et al., 2018
AR	Escherichia coli ^a	7	2	10	20	McFadden et al., 2017
AR	Norovirus murino ^b	1.2	1.5	30	NR	Dunkin <i>et al.</i> , 2017
AR	Coliformes totales ^a	3	2	19	NR	Block et al. 2015
AR	Enterococcus sp.ª	3	1.5	19	NR	BIOCK <i>et al.</i> , 2015
AR	Escherichia coli ^a	3	40-50	30	3.9	Collivignarelli et al., 2017
AR	Escherichia coliª	3.2	2	30	NR	Come et al. 2010
AR	Coliformes fecales ^a	2.5	2	30	NR	Garg <i>et al</i> ., 2016
AR	Escherichia coliª	2.4	1.5	10	15	Luuldropon y Dohlropon 2017
AR	Coliformes totales ^a	2.6	2	15	30	Luukkonen y Penkonen, 2017

Tabla 2.4 Inactivación de microorganismos mediante ácido peracético.

C·t: dosis; AR: agua residual; NR: no reportado; ^a: bacterias; ^b: virus.

Agua o	Gen /	Reducción Concentración T		Tiempo	C∙t	Referencia	
Solución	Biopelícula	log	mg/L	min	mg [.] min/L		
AR	tetG	0.62 ± 0.56	5	5 a 10	25 a 50	Eramo <i>et al</i> 2017	
AR	sul1	1.6 ± 0.08	5	5 a 10	25 a 50		
huffor	Pseudomonas	Evita	ND	NP	1 1.104	Zhang <i>et al.</i> , 2018	
oujjer	aeruginosa	formación	INIX	INIX	1.4 10		
huffor	Pseudomonas	63%	0.30%	30	ND	Köse v Vapar 2017	
oujjer	aeruginosa	0370	0.5070	50	INIX	Kose y Tapai, 2017	

Tabla 2.5 Uso de ácido peracético para inactivar ARG y biopelículas bacterianas.

AR: agua residual; *buffer*: solución de fosfatos; NR: no reportado.

2.1.2.3. Formación de subproductos

El PAA está clasificado como no cancerígeno por la Agencia Internacional para la Investigación del Cáncer (IARC), la Agencia de Protección Ambiental de los EE. UU. (USEPA) y el Programa Nacional de Toxicología Estadounidense (NTP). Se ha demostrado que es menos tóxico que el cloro cuando se emplea como indicador a *Dugesia tigrina*, con valores de CL₅₀ de 3.16 mg/L (Macêdo *et al.*, 2019), y a *Daphnia magna*, con una concentración efectiva media (EC₅₀) de 0.78 mg/L y una concentración letal media (CL₅₀) entre 0.15 y 1.1 mg/L tras 48 horas de exposición (Chhetri *et al.*, 2019). Los DBP reportados a partir del PAA son epóxidos, compuestos halogenados, ácidos carboxílicos, aldehídos y cetonas. En algunos estudios se ha observado que, en altas concentraciones, los haluros del AR promueven la formación de compuestos halogenados, debido a que se oxidan formando ácidos hipohalosos, que reaccionan con la materia orgánica (Luukkonen y Pehkonen, 2017; Henao *et al.*, 2018b).

2.2. Desinfección avanzada

La desinfección secuencial y simultánea es la combinación de desinfectantes que promueven la mejora en la inactivación de microorganismos y que tienen efectos sinérgicos que disminuyen las dosis necesarias y el tiempo de contacto (Beber de Souza *et al.*, 2015; Medeiros y Daniel, 2015; Destiani y Templeton, 2019). El sinergismo en este tipo de desinfección se puede determinar mediante la ecuación 2.7.

$$Sinergismo = Lr - (Lr_1 + Lr_2)$$
(2.7)

Donde: Lr es la reducción de los microorganismos en unidades logarítmicas después de la desinfección secuencial; Lr₁ es la reducción individual en unidades logarítmicas de los microorganismos debido al efecto primer desinfectante y Lr₂ es la reducción individual en unidades logarítmicas de los microorganismos debido al segundo desinfectante. Cuando el resultado es positivo existe sinergismo, mientras que un valor negativo representa un efecto antagónico. Un valor de cero indica que la eficiencia del tratamiento combinado es la misma que la suma de los tratamientos individuales; es decir, que no hay sinergia de ninguna manera (Li *et al.*, 2017; Destiani y Templeton, 2019).

2.2.1. Desinfección simultánea

La aplicación simultánea de UV/Cl tiene efectos sinérgicos en la inactivación de bacterias coliformes y remoción de ARG, debido a que los radicales 'OH oxidan la membrana o las paredes celulares. Posteriormente la facilidad de difusión del cloro en la célula favorece la inactivación de las enzimas y provoca daño en los componentes intracelulares (Li *et al.*, 2018).

Por otra parte, en el tratamiento simultáneo donde el PAA es irradiado con UV produce gran cantidad de radicales libres y especies reactivas de oxígeno, como el radical hidroxilo (•OH). Estas especies degradan los contaminantes orgánicos y tienen el potencial de aumentar los VRL, mediante el daño directo de ácidos nucleicos y un estrés oxidativo; además, la acción sinérgica de los desinfectantes es una ventaja en los procesos de desinfección (Ao *et al.*, 2021; Hassaballah *et al.*, 2020; Hollman *et al.*, 2020). En la tabla 2.6 se presentan procesos de desinfección simultánea que emplean cloro o PAA en combinación con radiación UV, así como los VRL obtenidos por cada uno. Para homogenizar los resultados se calculó el sinergismo a partir de la ecuación 2.7, con los datos recabados.

Desinfectante		UV		Cl o PAA		UV/Cl o PAA				
Proceso	Agua o	Microorganismo	С	R	С	R	R	Т	Sinergismo	Referencia
Solución	Solución	Wilcioorganishio	mJ/cm ² log		mg/L	log	log s			
	٨D	Endosporas de	125	2		0.1	4	280	0.0	
07701	AI	Bacillus subtilis ^a	(265nm)	5	7	0.1	4	200	0.9	$L_{i} \neq \pi L_{i} = 20.19$
	4.D	Endosporas de	125	0	4	0.1	0.0	200	1 5	L1 et al., 2018
UV/CI AR	Bacillus subtilis ^a	(280nm)	2	4	0.1	3.0	280	1.5		
UV/Cl	buffer	Adenovirus ^b	50 (254nm)	3.2	0.15	3.5	4	40	-2.7	Rattanakul <i>et al</i> ., 2015
	Eachariahia aalia TDP	20	6.25	20	7.29	7.15	200	6 5		
	1 00	Escherichia coll' I KB	20	± 0.39	20	± 0.04	± 0.27	200	-0.5	Phattarapattamawong <i>et al.</i> , 2021
07/01	UV/CI buffer		20	5.54	20	7.35	7.34	000		
	Escherichia coliª AMRB	20	± 0.13	20	± 0.05	± 0.06	280	-5.5		
ΙΙΛ/ΡΛΛ	٨D	Escharichia coli ^a	0.04 ^c	0.5	Q	0.5	6	120	5	
07/174	AI	Escherichia con	(254nm)	0.5	0	0.5	0	120	5	
	۸D	Entero oo gaya durana	0.04 ^c	0.0	o	1	6	120	4.0	Zhang at $al = 2020$
UV/FAA AR	AK	Emerococcus aurans	(254nm)	0.0	δ Ι		0	120	4.2	Zilalig <i>et ül.</i> , 2020
ΙΙΛ/ΡΔΔ	٨R	Staphylococcus	0.04 ^c	1.8	8	2 1	64	6.4 120	2 5	
UV/IAA	AI	<i>epidermidis</i> ^a	(254nm)	1.0	0	4.1	0.4	120	2.0	

Table 2	6	Inactivoo	ión do	migroor	aniamoa	nor	tratamiantas	do	dogint	foggión	aimultánac	
Tapla 2		macuvac	ion de	microor	gamismos	por	tratamientos	ue	uesiin	leccion	Sinuitanea	ι.

C: concentración; R: reducción; T: tiempo de contacto; AR: agua residual; a: bacterias; b: virus; c: concentración en mJ/s·cm².

Desinfectante			UV Cl o PAA		PAA	UV/Cl	o PAA			
Proceso	Agua o	Microorganismo	С	R	С	R	R	Т	Sinergismo	Referencia
1100050	Solución	Wilefoorganishio	mJ/cm ²	log	mg/L	log	log	S		Referencia
UV/PAA	AR	Escherichia coli ^a	20 (254nm)	5	1.5	2	5	900	-2	Kibbee & Örmeci,
UV/PAA	AR	Coxsackievirus ^b	20 (254nm)	4	3	0.3	6	900	1.7	2020
UV/PAA	AR	Escherichia coliª	20	3.5	20 ^d	3.3	1.13	120	-5.67	Murray <i>et al.</i> , 2016
UV/PAA	buffer	Escherichia coliª	0.04 ^c (254nm)	2	9	1.5	5.2	180	1.7	Sun <i>et al</i> ., 2018

Tabla 2.6 Inactivación de microorganismos por tratamientos de desinfección simultánea (continuación)

C: concentración; R: reducción; T: tiempo de contacto; AR: agua residual; ^a: bacterias; ^b: virus; ^c: concentración en mJ/s⁻cm²; ^d: valor de C·t en mg⁻min/L.

El sinergismo en la desinfección reduce la concentración de contaminantes emergentes, ya que la formación de radicales hidroxilo mediante fotólisis del Cl_2 o del PAA contribuye tanto a la inactivación de microorganismos, como a la oxidación de contaminantes.

La inactivación de microorganismos patógenos, con y sin ARG, se debe a que el primer desinfectante daña la pared y las membranas, lo que ocasiona que la difusión del segundo afecte las funciones intracelulares. En la tabla 2.6, se observa que el aumento en la concentración de alguno de los dos desinfectantes o el aumento en la inactivación no asegura el sinergismo, dado que este se logra a concentración y tiempo de contacto menores. Los valores negativos del sinergismo pueden deberse a tres escenarios:

1) La remoción microbiana no aumenta con el empleo de ambos desinfectantes.

2) La mayor inactivación de microorganismos puede lograrse solo mediante el empleo de uno de los desinfectantes empleados.

3) No existe una gran diferencia entre la suma de las desinfecciones individuales en comparación con la desinfección simultánea.

Las concentraciones sinérgicas en la desinfección simultánea varían por cada especie de microorganismo; estas se encuentran entre los rangos de 1 a 10 mg/L de PAA, 1 a 50 mg/L de cloro, en combinación con UV de 20 a 125 mJ/cm², las cuales suelen ser menores a comparación con las utilizadas en las PTAR. Los mejores valores sinérgicos los obtuvieron Zhang *et al.* (2020) para *E. coli, Enterococcus durans* y *Staphylococcus epidermidis*, lo que demuestra que a concentraciones bajas de ambos desinfectantes se puede obtener una mejor sinergia.

2.2.2. Desinfección secuencial

La aplicación de radiación UV seguida de cloro o viceversa, para el tratamiento de agua residual tiene como resultado un efecto sinérgico, lo que mejora la calidad microbiológica del agua y la asegura durante su distribución (Destiani y Templeton, 2019). En las tablas 2.7 y 2.8 se incluyen los VRL de diversos microorganismos
empleando el proceso UV-Cl y Cl-UV, respectivamente; los valores de sinergismo se obtuvieron a partir de la ecuación 2.7.

La aplicación de UV seguida de PAA o viceversa, es una opción para la eliminación de microorganismos patógenos y contaminantes en el agua. Su empleo busca reducir las dosis de desinfectante, el tiempo de contacto y costos en una PTAR (Caí *et al.*, 2017). En la tabla 2.9 se detallan los procesos de desinfección secuencial (ensayos en AR) y la comparación entre valores sinérgicos obtenidos a partir de la ecuación 2.7.

En su mayoría, los tratamientos de desinfección secuencial no reportan un efecto sinérgico; esto se debe a que algunos microorganismos como los coliformes totales y fecales pueden ser más sensibles a radiación UV. La desinfección secuencial PAA-UV es viable para CRB y ARB. En el caso de virus, se observa que a altas concentraciones de radiación UV y bajas concentraciones de cloro o PAA se puede obtener un efecto sinérgico. Las concentraciones empleadas varían para cada especie de microorganismo; estas se reportan en los rangos de 1 a 10 mg/L de PAA, de 1 a 20 mg/L de cloro y de 20 a 200 mJ/cm² de radiación UV. Los mejores valores de sinergia para el proceso UV-Cl fueron reportados por Zyara et al. (2016) para la inactivación del virus MS2; mientras que para el proceso Cl-UV, lo obtuvieron Mounaouer y Abdennaceur (2016) para E. coli y P. aeruginosa. Sin embargo, destaca que en la mayoría de los procesos PAA-UV no se observó sinergia entre estos desinfectantes, con excepción de los tratamientos aplicados por Garg et al. (2018) para E. coli y Weng et al. (2018) y Beber de Souza et al. (2015), para colifagos. Aún faltan estudios que demuestren si este proceso elimina contaminantes emergentes y si se forman subproductos que permita la comparación de este proceso con la desinfección simultánea.

	Proceso		UV			Cl			UV-Cl		
Agua o	0 (NC)	С	Т	R	С	Т	R	R	Т	o	Referencia
solución	Gen/Microorganismo	mJ/cm ²	min	log	mg/L	min	log	log	min	Sinergismo	
buffer	<i>tet</i> (A) ^a	200	24	0.7	2	15	1.2	2.5	39	0.6	
buffer	mph(A) ^a	200	24	0.4	2	15	1.7	2.7	39	0.6	Destiani y
buffer	sul1ª	200	24	0.8	2	15	1.5	2.2	39	-0.1	Templeton, 2019
buffer	bla-them ^a	200	24	1.2	2	15	1.7	3	39	0.1	
buffer	Tubifex tubifex ^b	40	4.5	0	20) e	2	1.9	5-45	-	Nie <i>et al</i> ., 2017
Grifo	MS2 ^c	222	1.8	0.09	1	10	1.7	3.63	11.8	1.84	Zyara <i>et al</i> ., 2016
AR	tetX ^a	249.5	1	0.58	30	30	1.5	2.16	31	0.08	Zhang <i>et al.</i> , 2015

Tabla 2.7 Inactivación de microorganismos por el tratamiento UV-Cl.

C: dosis; T: tiempo de contacto; R: reducción; AR: agua residual; ^a: gen; ^b: gusano de fango; ^c: virus.

Tabla 2.8 Inactivación de microorganismos por el tratamiento Cl-UV.

			-									
P	roceso		UV			Cl Cl-UV						
Agua o	Ъ <i>И</i> :	С	Т	R	С	Т	R	R	Т	0:	Referencia	
solución	Microorganismo	mJ/cm ²	min	log	mg/L	min	log	log	min	- Sinergismo		
Grifo	Colifagosª	22	1.8	0.06 a 6.44	0.1	10	0.15 a 6.27	4.52 a 10.7	11.8	-	Zyara <i>et al.</i> , 2016	
AR	Escherichia coli ^b	6.1°	NR	4.6	10	10	4.6	4.6	NR	-4.6		
AR	Coliformes totales ^b	6.1°	NR	4.7	10	10	3.7	5.7	NR	-2.7	Medeiros y Daniel, 2015	
AR	Clostridium perfringens ^b	6.1°	NR	1.83	20	20	1.18	4.43	NR	1.42		
AR	Escherichia coli ^b	6 ^d	0.06	NR	5	30	2.99	4.62	30.06	1.63	N	
AR	Pseudomonas aeruginosa ^b	6 ^d	0.06	NR	5	30	2.25	3.58	30.06	1.33	Abdennaceur, 2016	

C: concentración; T: tiempo de contacto; R: reducción; AR: agua residual; a: virus; b: bacterias.

Proceso		UV			PAA			PAA-UV		_	
Ndiene engenieme -	С	Т	R	С	Т	R	R	Т	- Cin angiore a	Referencia	
	mJ/cm ²	min	log	mg/L	min	log	log	min	Sinergismo		
Escherichia coliª	89	NR	2.4	2	20	1.5	3.3	NR	-0.6		
Coliformes fecales ^a	89	NR	2.2	2	20	1.8	3.6	NR	-0.4	Garg <i>et al.</i> ,	
Escherichia coli ^a	41	NR	1.8	1.5	20	1	3.3	NR	0.5	2018	
Coliformes fecales ^a	41	NR	1.6	1.5	20	1.1	2.7	NR	0		
Colifagos MS2 ^b	20	NR	1	10	120	1	2.2	NR	0.2	Weng <i>et al.</i> .	
Norovirus humano ^b	20	NR	4	10	120	5.1	5.1	NR	-4	2018	
Coliformes fecales ^a	30°	NR	NR	2	22.5	1.1±0.84	1.5±1	24.9	NR		
Escherichia coliª	30 ^c	NR	NR	2	22.5	1.1±1.1	1.3±1	24.9	NR	Hassaballah	
Enterococcus sp.ª	30 ^c	NR	NR	2	22.5	0.98±0.76	1.3±0.8	24.9	NR	<i>et al.</i> , 2019	
Colifago somático ^b	30 ^f	NR	NR	2	22.5	0.60±0.42	1.4±0.41	24.9	NR		

Tabla 2.9 Inactivación de microorganismos por el tratamiento UV-PAA

C: concentración; T: tiempo de contacto; R: reducción; ^a: bacterias; ^b: virus; ^c: mW/cm².

Proceso		UV			PAA			PAA-UV		
D <i>G</i> ¹	С	Т	R	С	Т	R	R	Т	0	Referencia
Microorganismo	mJ/cm ²	min	log	mg/L	min	log	log	min	Sinergismo	
Escherichia coliª	14.7	0.8	1.5	2	10	3.2	3.6	10.8	-1.1	
<i>Enterococcus</i> sp.ª	14.7	0.8	1.2	2	10	0.53	1.6	10.8	-0.13	Hassaballah <i>et al.</i> , 2020
Colifagos ^b	14.7	0.8	2.4	2	10	1	2.7	10.8	-0.7	
Escherichia coliª	187.74	1.5	3.44	4	10	1.93	4.04	11.5	-1.33	Beber de
Coliformes totales ^a	187.74	1.5	1.76	4	10	1.56	3.31	11.5	-0.01	Souza <i>et al.</i> , 2015
Colifagos ^b	187.74	1.5	1.49	4	10	0.1	2.49	11.5	0.9	

Tabla 2.9 Inactivación de microorganismos por el tratamiento UV-PAA (Continuación).

C: concentración; T: tiempo de contacto; R: reducción ^a: bacterias; ^b: virus.

3. PLANTEAMIENTO DEL PROBLEMA

El ART se destina para reabastecer a la población, a los sectores agrícola e industrial, por tanto, es necesario que pase por un tratamiento de desinfección, el cual tiene como objetivo eliminar microorganismos patógenos y asegurar la calidad microbiológica del agua. En las PTAR la cloración es el tratamiento más común. Sin embargo, la exposición constante de los microorganismos al cloro y sus derivados ha resultado en la resistencia, presencia y proliferación de estos en el ART, lo que representa una mala calidad y un riesgo biológico potencial para los seres humanos que se encuentren en contacto con la misma.

Los microorganismos que se encuentran presentes en el ART son aquellos que presentan resistencia pasiva o activa a los desinfectantes por medio de mutaciones, adaptación o adquisición de material genético de otras especies, por lo que un tratamiento convencional de desinfección en las PTAR ya no es suficiente para garantizar la calidad microbiológica del agua.

Es necesario desarrollar e implementar procesos que mejoren la eficacia en la remoción de microorganismos patógenos presentes en el ART, entre estos se puede mencionar a la desinfección secuencial, que consiste en el empleo de dos o más desinfectantes. En la bibliografía los procesos consisten frecuentemente en la combinación de radiación UV con cloro de manera simultánea o secuencial. Sin embargo, esto resulta en un aumento en los costos de implementación, aunado a estas investigaciones, es importante resaltar que utilizan cepas certificadas de *E. coli, Pseudomonas* spp., coliformes fecales y totales, que son microorganismos comúnmente utilizados como indicadores de calidad del agua. Además, se desconoce el impacto toxicológico de los subproductos de desinfección con este proceso.

Lo anterior conlleva a desarrollar un proceso de desinfección secuencial que permita mejorar la inactivación de los microorganismos remanentes en el ART, que sea fácil de implementar, disminuya los costos de operación, considere las características fisicoquímicas de las AR, la formación de subproductos y los microorganismos que presenten resistencia a la cloración o con resistencia a antibióticos.

4. JUSTIFICACIÓN

En los últimos años se ha reportado la presencia de microorganismos en el ART después de un proceso de desinfección convencional. Tal es el caso de bacterias que comúnmente pertenecen al grupo de CRB, cuyos géneros son: *Mycobacterium, Legionella, Pseudomonas, Sphingomonas, Bacillus, Staphylococcus, Clostridium y Enterococcus.* Algunas especies de estos géneros suelen ser bacterias patógenas, por ejemplo, *Bacillus cereus, Bacillus anthracis y Bacillus thuringiensis.* Estas se encuentran comúnmente en los lodos activados de las PTAR, se caracterizan por ser formadoras de endosporas, las cuales presentan resistencia a una variedad de químicos y protección ante los agentes oxidantes como lo son los desinfectantes químicos, comúnmente empleados en una PTAR.

Por otra parte, el PAA, es un compuesto químico alterno al cloro y sus derivados. Se ha demostrado que su uso es altamente eficiente para eliminar patógenos y a su vez disminuir la formación de subproductos no deseados. Cuando se incorpora a un tren de tratamiento después de la desinfección con NaClO, se logra un proceso de desinfección secuencial, que representa una alternativa para la eliminación de CRB. Además, su implementación implica una modificación menor a las PTAR, debido a su origen químico.

El diseño y la implementación de un tratamiento de desinfección considera las cinéticas de inactivación, la formación de subproductos, la demanda y consumo del desinfectante, además, del diseño del reactor. De acuerdo con lo anterior, la presente investigación pretende mejorar la calidad del agua residual tratada mediante un proceso de desinfección consecutiva de endosporas de CRB pertenecientes al género *Bacillus* spp. y sus modelos cinéticos que permitan su implementación como alternativa a los tratamientos convencionales.

5. OBJETIVOS

5.1.Objetivo general

Evaluar el efecto de la desinfección convencional y secuencial con hipoclorito de sodio y ácido peracético en cepas aisladas de una planta de tratamiento de aguas residuales que emplea cloro gas, mediante la comparación de cinéticas de inactivación y sus modelos para mejorar la calidad del agua tratada.

5.2. Objetivos específicos

- Aislar e identificar cepas provenientes del efluente de una planta de tratamiento mediante técnicas tradicionales, bioquímicas y moleculares para validar la eficiencia de remoción en el efluente.
- Realizar ensayos de desinfección convencional con hipoclorito de sodio y ácido peracético de las cepas aisladas para determinar la remoción de células vegetativas o estructuras de resistencia ante estos desinfectantes.
- Obtener el modelo cinético de desinfección convencional de mejor ajuste a partir de las curvas de inactivación para descubrir el tratamiento de desinfección de bacterias aisladas y sus estructuras de resistencias.
- Comparar las cinéticas de inactivación del hipoclorito de sodio vs ácido peracético mediante pruebas estadísticas para determinar su potencial aplicación en la desinfección del agua.
- Llevar a cabo una desinfección secuencial de las endosporas de las cepas aisladas mediante el empleo de hipoclorito de sodio y ácido peracético para comparar sus cinéticas de inactivación respecto a los tratamientos convencionales.

6. MODELOS CINÉTICOS DE DESINFECCIÓN CON NaCIO Y PAA DE BACTERIAS AISLADAS DEL EFLUENTE DE UNA PTAR

La desinfección tiene como objetivo la remoción de una diversidad de patógenos presentes en el agua, así como sus diferentes formas biológicas (quistes, ooquistes, esporas o endosporas, según sea el caso), lo que permite proteger a los seres vivos y el medio ambiente (Collivignarelli *et al.*, 2018; Collivignarelli *et al.*, 2021). Los tratamientos de desinfección en las PTAR permiten hacer reúso directo del agua tratada en acuicultura, recarga de acuíferos, llenado de lagos, canales artificiales recreativos, fuentes de ornato, lavado de vehículos, riego de parques y jardines, o bien uso indirecto mediante el riego de camellones, campos de golf, hidrantes de sistemas contra incendio, barreras hidráulicas de seguridad y panteones, entre otros (DOF, 2022; Umar, 2022).

El cloro y sus derivados se utilizan en más de dos tercios de las PTAR del mundo, ya que son capaces de inactivar una serie de microorganismos presentes en el AR, así como degradar contaminantes orgánicos (Luongo *et al.*, 2020). Además, la cloración es un tratamiento de baja inversión, costo y de fácil gestión (Collivignarelli *et al.*, 2021). En particular, el NaClO es un oxidante fuerte, con amplio espectro antimicrobiano (Köhler *et al.*, 2018). Para su formación el cloro se disuelve y se hidroliza a ácido hipocloroso, el cual degrada las proteínas y enzimas que participan en el metabolismo de los carbohidratos mediante la oxidación de grupos sulfhídricos (Ersoy *et al.*, 2019; Ziemba *et al.*, 2019). Además, daña los componentes celulares como las paredes y membranas, interrumpe sus funciones y afecta el DNA (Luo *et al.*, 2021).

Las concentraciones de este desinfectante utilizadas en las PTAR para la desinfección del AR varían de 5 a 30 mg/L, con tiempos de contacto de uno a 30 minutos, con lo que se obtiene hasta 7 VRL (Ocampo-Rodríguez *et al.*, 2022; Umar, 2022). Sin embargo, la concentración y el tiempo de contacto dependen del tipo de microorganismos que se desea inactivar. Kampf (2018a) ha reportado concentraciones de 4 mg/L para *Staphylococcus aureus* y de 25,000 mg/L para *Enterococcus faecalis*, pero en el caso de biopelículas se necesitan concentraciones mayores a los 65,000 mg/L. Destiani y Templeton (2019) han aplicado concentraciones >20 mg/L para la eliminación de ARG (*sul*1, *tet*G, *int*11, *tet*X), aunque existen estudios con concentraciones hasta los 40 mg/L (Umar, 2022).

Por otro lado, el PAA es un desinfectante con un alto espectro de actividad antimicrobiana, es eficiente contra bacterias, virus, hongos y esporas (Kitis, 2004; Kampf, 2018b). Recientemente, se ha propuesto como un desinfectante alterno a los basados en cloro debido a que no genera subproductos carcinogénicos e incluso se ha empleado en la industria (Henao et al., 2018b). Además, es menos tóxico para animales y plantas acuáticas, se puede implementar fácilmente y es rentable (Sun et al., 2018; Hassaballah et al., 2020). EL PAA interrumpe la función quimiosmótica de la célula, mediante la ruptura o dislocación de las paredes celulares que alteran las lipoproteínas de la membrana citoplasmática y los sistemas de transporte (Campo et al., 2020). Tanto las concentraciones como los tiempos de contacto varían en función del tren de tratamiento. En efluentes secundarios se requieren de 0.6 - 10 mg/L, con tiempos de 10 a 60 minutos, y para efluentes terciarios se usan concentraciones de 1.5 - 15 mg/L, con exposición de 10 a 36 minutos (Luukkonen y Pehkonen, 2017). Sin embargo, se requieren tiempos de contacto mayores para inactivar virus y protistas (Hassaballah et al., 2020), ya que los C·t reportados en efluentes primarios y secundarios llegan hasta los 3,000 mg· min/L (Kitis, 2004).

Por una parte, para evaluar el diseño del sistema de desinfección y, por ende, el rendimiento, tanto la tasa de inactivación microbiológica como los modelos cinéticos son elementos importantes, que permiten explicar cómo se consume el desinfectante durante el tiempo de contacto (Gyürék y Finch, 1998). Existe una variedad de modelos cinéticos; sin embargo, no todos permiten explicar las desviaciones que se observan en las curvas de inactivación (Figura 6.1). Las curvas pueden ser lineales (A), con fenómenos de fase "lag" (shoulder) (B) o cola (tailing-off) (C). En ocasiones la combinación de los anteriores da como resultado curvas sigmoidales (D) (Gyürék y Finch, 1998). Los modelos más utilizados para describir la variedad de curvas de inactivación son: Chick (Chick, 1908); Chick-Watson (Watson, 1908); retraso de Chick-Watson (Rennecker *et al.*, 1999); Hom y su modificación (Hom, 1972); Selleck (Selleck

et al., 1978), Geeraerd (Geeraerd *et al.*, 2000) y Weibull (Mafart *et al.*, 2002). Es importante mencionar que la validación adecuada de un modelo requiere que pueda predecir correctamente los datos de inactivación con el desinfectante empleado en diferentes condiciones (Peleg, 2021).

Figura 6.1 Curvas de inactivación microbiana. Modificada de Gyürék y Finch, 1998.

Los tratamientos de desinfección son diseñados usando el valor de C·t (exposición al desinfectante), que está basado en las cinéticas de inactivación de Chick-Watson (Gyürék y Finch, 1998). El C·t determina la eficiencia del proceso y es ideal para interpretar las cinéticas de desinfección y obtener valores unificados para comparar las remociones de los microorganismos (Li *et al.*, 2018; Manoli *et al.*, 2019).

Actualmente, las PTAR se enfrentan a nuevos retos debido a que se ha demostrado la resistencia a la desinfección en algunas formas biológicas, por ejemplo, quistes y ooquistes de protistas, esporas de hongos, así como endosporas de bacterias (Kong *et al.*, 2021). La exposición continua de las bacterias a los desinfectantes selecciona las adaptaciones y la tolerancia que presentan a estos. Dichos mecanismos adaptativos reducen la eficacia de los desinfectantes y suponen una grave amenaza para la salud humana y los ecosistemas (Tong *et al.*, 2021). Existen diversos trabajos en relación con las CRB, que son aquellas que logran sobrevivir o permanecen viables ante el cloro residual y altas concentraciones de cloro (Wang *et al.*, 2019; Luo *et al.*, 2021). Entre los

géneros de CRB más reportados se encuentran Mycobacterium, Legionella, Pseudomonas, Sphingomonas, Bacillus, Staphylococcus, Clostridium y Enterococcus (Luo et al., 2021). Algunos estudios informan que la desinfección con cloro conduce a la liberación y proliferación de la resistencia a antibióticos en los cuerpos receptores, lo que aumenta la diversidad de bacterias resistentes a estos (Campo et al., 2020). Por tanto, la cloración puede inducir la liberación de genes de resistencia a antibióticos de las células dañadas (Luo et al., 2021; Umar, 2022). Se ha estudiado el empleo de PAA y los derivados del cloro, comúnmente para inactivar indicadores de la calidad del agua, como son E. coli, (Garg et al., 2016; Collivignarelli et al., 2017; McFadden et al., 2017; Hassaballah et al., 2020; Ragazzo et al., 2020), coliformes fecales y totales (Freitas et al., 2021), Enterococcus spp. (Koivunen y Heinonen-Tanski, 2005; Dang et al., 2016; Ersoy et al., 2019; Hassaballah et al., 2020), Salmonella spp., Campylobacter (Koivunen y Heinonen-Tanski, 2005; Bonetta et al., 2021), algunos colifagos y virus (Koivunen y Heinonen-Tanski, 2005; Dunkin et al., 2017; Hassaballah et al., 2020); incluso ARG (Eramo et al., 2017, Ocampo-Rodríguez et al., 2022). En su mayoría, en estos estudios se utilizan cepas certificadas. Es evidente que hacen falta estudios de cepas aisladas del ambiente, que por lo regular muestran resultados diferentes a las cepas certificadas.

6.1.Metodología

6.1.1. Muestreo y caracterización del efluente

Se realizaron cinco muestreos del efluente terciario tratado con cloro gas de una PTAR ubicada en Pachuca de Soto (Hidalgo, México) de agosto 2019 a febrero 2020. Esta planta utiliza un proceso de lodos activados y recibe un caudal de 100 L/s. Las muestras se tomaron en recipientes de polipropileno previamente esterilizados de 1 L de capacidad con tiosulfato de sodio al 10% p/v (MEYER[™], México) para neutralizar el cloro. Mediante el uso del medidor multiparamétrico HANNA HI 9828 (Woonsocket, USA) se determinaron *in situ* los siguientes parámetros: pH, potencial de óxido reducción (ORP), oxígeno disuelto (OD), conductividad eléctrica (CE), sólidos totales disueltos (SDT) y salinidad. Además, se midió el cloro residual libre, mediante la técnica de DPD con el kit analizador de cloro libre y pH de la marca La Motte[™] (Chestertown,

USA). Las muestras se trasladaron al laboratorio de investigación del área académica de Química de la Universidad Autónoma del Estado de Hidalgo, en hielera y refrigerantes.

6.1.2. Aislamiento, caracterización e identificación de cepas

A partir de las muestras del efluente se realizaron diluciones decimales seriadas. Se sembraron por extensión en placa en agar CM (Atlas, 2010). Las cajas se incubaron a 37 °C, durante 24 horas. Se aislaron distintas unidades formadoras de colonias (UFC) identificadas con una clave conformada por el número de muestreo, seguida de la letra E (efluente), la inicial del cultivo proveniente y el número consecutivo de cepa. Los cultivos puros de estas UFC se caracterizaron de acuerdo con su morfología colonial en medio sólido (agar nutritivo, AN) Después, se realizaron tinciones de Gram y de endosporas (TE), además de las siguientes pruebas bioquímicas: citrato (C), hidrólisis de caseína (HC), tolerancia a sal (6.5% y 10%) (TS), Voges-Proskauer (VP), rojo de metilo (RM), indol (I), producción de H₂S (HS), descarboxilación de lisina (DE), desaminación de lisina (DA), hidrólisis de almidón (HA), licuefacción de gelatina (LG) y catalasa (CT) (Vos *et al.*, 2009). En el **Anexo I** se describen los medios utilizados para las pruebas bioquímicas. La cepa certificada B. subtilis (CDBB-1009) se usó como control. La identificación a nivel de especie se realizó con el equipo de Bruker Daltonik MALDI Biotyper™ (Billerica, USA), en la Universidad Autónoma Metropolitana, para el cual se usaron cultivos con menos de 24 horas de incubación en AN. La identificación taxonómica corresponde a los nombres asignados por el código NCBI (National Center for Biotechnology Information) (Schoch et al., 2020).

6.1.3. Obtención de células vegetativas

Dos de las cepas aisladas se activaron en 4 mL de CN estéril y se incubaron a 37 °C durante 24 h. Posteriormente, se realizó el lavado de células con solución salina isotónica 0.85% de NaCl por triplicado y se resuspendieron en 5 mL de la misma solución. Tanto la viabilidad como la cantidad de las células (UFC/mL) se analizó mediante la siembra por el método de Miles y Misra (Miles y Misra, 1938).

6.1.4. Obtención de endosporas

La suspensión de endosporas de una de las cepas aisladas fue preparada de acuerdo con Rochelle *et al.* (2010), para lo cual se activó en 10 mL CN durante 24 horas a 37 °C. Se agregaron 5 mL de este cultivo al medio de esporulación (50 mL) (ver **Anexo I**) mismo que se incubó por cinco días a 37 °C y 125 rpm. Posteriormente, se centrifugó a 3500 rpm por 25 minutos y se realizó el lavado de endosporas en buffer de fosfatos (KH₂PO₄, 0.3 mM; MgCl₂ 2 mM; pH 7.2), por triplicado. El botón final se resuspendió en 10 mL de buffer de fosfatos; este se calentó a 80 °C, por 10 min, con el fin de eliminar células vegetativas (Li *et al.*, 2018). La viabilidad y cantidad de endosporas (Miles y Misra, 1938).

6.1.5. Cinéticas de inactivación

Todas las soluciones empleadas se prepararon con agua destilada (libre de cloro). El NaClO (Alfa y Omega, CDMX) y el PAA (ACIDEX[®] CDMX) fueron estandarizados por yodometría (APHA, 2012; Cavallini *et al.*, 2013). En el **Anexo II** se encuentra la descripción del método. El tiosulfato de sodio (MEYER®, México) se preparó al 10% (p/v). En la figura 6.2 se muestra de manera general el diagrama del proceso de desinfección llevado a cabo para células vegetativas y endosporas de cepas aisladas del efluente de una PTAR.

Figura 6.2 Proceso de desinfección de células vegetativas o endosporas con NaClO o PAA. (Fuente: Elaboración propia).

6.1.5.1. Células vegetativas

Los ensayos de inactivación de dos cepas aisladas se realizaron por separado en matraces Erlenmeyer con 150 mL de agua esterilizada, se inocularon con 5 mL de la solución de células vegetativas, y posteriormente se ajustó el pH a 7.5, se colocaron en agitación orbital (125 rpm) y a temperatura ambiente. Las concentraciones de los desinfectantes fueron 15 y 30 mg/L para el NaClO y 5 y 15 mg/L para el PAA. Se tomaron alícuotas de 11 mL a diferentes tiempos de contacto (0, 5, 10, 15 y 30 min) y se añadió tiosulfato de sodio para detener la acción de los desinfectantes (Adeyemo *et al.*, 2019). El cloro libre y el PAA residual fueron medidos por el método colorimétrico DPD 4500-Cl G, a 515 y 530 nm, respectivamente (APHA, 2012; Henao *et al.*, 2018a). En el **Anexo II** se muestran las curvas de calibración obtenidas. Para obtener valores unificados que permitieran comparar las remociones de microorganismos, se obtuvieron los valores de C·t. Para el análisis microbiológico se realizaron diluciones decimales seriadas (10⁻¹-10⁻¹²), de las cuales se sembraron 100 μ L de las tres últimas

diluciones por extensión en placa en AN, por duplicado. Las cajas se incubaron a 37 °C, durante 24 horas y se realizó el conteo de UFC, los resultados se expresan como UFC/mL. Con estos datos se obtuvieron los valores de reducción total reportados como unidades de inactivación, UI (log N/N₀, donde: N₀ es el número de UFC/mL al inicio del ensayo y N es el número de UFC/mL al tiempo de contacto). En el **Anexo III** se encuentran los ensayos de desinfección de células vegetativas de la cepa certificada *B. subtilis* (CDBB-1009) con 30 mg/L de NaClO, este ensayo no forma parte de este capítulo, debido a que sirvió como referencia para demostrar la resistencia de las endosporas ante el NaClO. Sin embargo, la cepa certificada *B. subtilis* (CDBB-1009) se usó como control positivo.

6.1.5.2. Endosporas

Los ensayos de inactivación de endosporas de una de las cepas aisladas se realizaron en las mismas condiciones que las células vegetativas, aunque se emplearon diferentes tiempos de contacto (0, 10, 20, 30, 45, 60, 100 minutos). Del mismo modo que en el apartado anterior, se obtuvieron los valores de C·t, así como las unidades de inactivación (log N/N₀). En el **Anexo III** se muestran los ensayos de desinfección de endosporas de la cepa certificada *B. subtilis* (CDBB-1009) con 5 y 15 mg/L de PAA y en el **Anexo IV** se encuentra un ensayo de desinfección de endosporas de una de las cepas aisladas con 25 mg/L de PAA. Estos ensayos no forman parte de este capítulo debido a que sirvieron como referencia para seleccionar las dosis adecuadas para los ensayos posteriores de desinfección.

6.1.5.3. Modelos cinéticos

Para cada cepa, se graficó el log de las UFC/mL vs. el tiempo de contacto. A partir de las curvas obtenidas, se evaluaron los modelos de: Chick (6.1) (regresión lineal) (Chick, 1908), Weibull (6.2) (Mafart *et al.*, 2002) y Geeraerd (6.3) (lineal con cola) (Geeraerd *et al.*, 2000).

$$\mathbf{N}_{t} = \mathbf{N}_{0} \cdot e^{(-\mathrm{Kmax} * t)} \tag{6.1}$$

$$N_t = (N_0 - N_{res}) \cdot e^{(-K_{max} * t)} + N_{res}$$
 (6.2)

$$Log (N_t/N_o) = (-t/\Delta)^p$$
 (6.3)

Donde: N_t: número de microorganismos en el tiempo t; N₀: número de microorganismos en el tiempo 0; K_{max}: constante de letalidad (min⁻¹); N_{res}: número de microorganismos resistentes; Δ : constante cinética (tiempo de reducción decimal); p: constante cinética (curvas cóncavas hacia arriba, p<1; hacia abajo, p>1).

Posteriormente, se seleccionó el modelo de mejor ajuste. Los modelos y parámetros cinéticos de cada cepa se obtuvieron a partir la herramienta Solver y el complemento GInaFiT versión1.6 (Geeraerd and Van Impe Inactivation Model Fitting Tool) del programa Microsoft® Office Excel® (Geeraerd *et al.*, 2005).

6.1.5.4. Análisis estadístico

Para la comparación de las concentraciones utilizadas de cada desinfectante, se realizó un análisis de Kolmogorov-Smirnov para comprobar la distribución de los datos. Después, se realizó una prueba de t-Student, con 95% de confianza, con la finalidad de establecer diferencias significativas entre las medias de las inactivaciones alcanzadas con las concentraciones utilizadas de cada desinfectante; para dicho análisis se utilizó el programa SigmaStat 3.5. (Witzenhausen, Germany).

6.2. Resultados y discusión

6.2.1. Caracterización del efluente

Los valores medios y las desviaciones estándar de los parámetros fisicoquímicos del efluente terciario se muestran en la tabla 6.1. El cloro libre residual promedio fue inferior a 2 mg/L. Los valores medios de temperatura, pH, SST y DQO cumplen con los límites máximos permisibles estipulados para descarga en los cuerpos de agua nacionales (DOF, 2022).

Parámetro	Valor	Desviación estándar (n=5)
Т (°С)	20.78	1.71
рН	7.54	0.57
ORP	128.04	102
OD (mg/L)	15.75	26
CE (µS/cm)	1833.8	94.1
SDT (mg/L)	916.8	46.8
Salinidad (PSU)	0.934	0.05
SST (mg/L) ^a	13.6	6.07
DQO (mg/L) ^a	31.604	9.96
DBO (mg/L)ª	16.908	4.42

Tabla 6.1 Caracter	ización	fisicoq	uímica	del	efluente	de	la	PTAR
--------------------	---------	---------	--------	-----	----------	----	----	------

ORP: potencial de óxido reducción; OD: oxígeno disuelto; CE: conductividad eléctrica; SDT: sólidos totales disueltos; SST: solidos suspendidos totales; DQO: demanda química de oxígeno; DBO: demanda bioquímica de oxígeno. a: valores reportados por la PTAR.

6.2.2. Aislamiento, caracterización e identificación de cepas

Se aislaron tres cepas de diferente morfología colonial. La caracterización en medio sólido y líquido se describe en las tablas 6.2 y 6.3.

Tabla 6.2	Morfología	colonial en	placa de las ce	epas aisladas	de una PTAR
Cepa	Forma	Borde	Elevación	Color	Textura

1EB9	Circular	Entero	Plana	Amarilla	Butirosa
1EB10	Circular	Entero	Gota	Blanca	Butirosa
5EE7	Concéntrica	Ondulado	Umbonada	Blanca	Viscosa

Tabla 6.3 Crecimiento en medio líquido de las cepas aisladas de una PTAR

Сера	Crecimiento superficial	Opacidad	Sedimento	Cantidad del sedimento	
1EB9	Nulo	Mediana	Compacto	Escaso	
1EB10	Nulo	Persistente	Compacto	Abundante	
5EE7	Peliculado	Nulo	Granular	Abundante	

Por otra parte, los resultados de las tinciones, formas celulares y pruebas bioquímicas se encuentran en la tabla 6.4, de acuerdo con los resultados, se puede observar la diversidad de bacterias presentes en el efluente de la PTAR, y la variedad de su

metabolismo. De acuerdo con Vos *et al.*, (2009) la cepa 5EE7, es presuntiva del género *Bacillus* debido a que los resultados de las pruebas bioquímicas coinciden en su totalidad con la cepa certificada. A continuación, se muestran los resultados de la identificación a nivel especie por Maldi-Biotyper de dichas cepas (Tabla 6.5) La puntuación superior a 2 nos indica el nivel de confianza del resultado, por lo cual asegura el nombre del género y la especie.

Cepa	F	Gram	TE	С	нс	T (6.5%)	'S (10%)	VP	RM	I	HS	DE	DA	HA	LG	СТ
1EB9	Cocos	+	-	-	-	+	+	-	+	-	-	-	+	-	-	+
1EB10	Bacilos	-	-	+	+	+	-	+	+	-	-	-	-	-	-	+r
5EE7	Bacilos	+	+	+	+	+	+	+	-	-	-	-	-	+	+	+
B. subtilis ^a	Bacilos	+	+	+	+	+	+	+	-	-	-	-	-	+	+	+

F: forma celular; TE: tinción de endosporas; C: citrato; HC: hidrólisis de caseína; TS: tolerancia a sal; VP: Voges Proskauer; RM: rojo de metilo; I: indol; HS: producción de H_2S ; DE: descarboxilación de lisina; DA: desaminación de lisina; HA: hidrólisis de almidón; LG: licuefacción de gelatina; CT: catalasa, r: retardada. ^a: cepa certificada CDBB-1009.

Tabla 6.5 Resultados de la identificación a nivel especie de las cepas aisladas de una PTAR.

Сера	Nombre	Puntuación	Código NCBI
1EB9	Staphylococcus pasteuri	2.23	45972-Staphylococcus pasteuri DSM 10657 DSM
1EB10	Klebsiella pneumoniae	2.38	72407- Klebsiella pneumoniae ssp. pneumoniae 9295_1 CHB
5EE7	Bacillus subtilis	2.45	135461- <i>Bacillus subtilis</i> ssp. subtilis DSM 10T DSM

De acuerdo con Vos *et al.*, (2009), las bacterias de *S. pasteuri* son células con forma de cocos, con diámetro de $0.5 - 1.5 \mu$ m, Gram positivas, que se presentan solas, en pares o cúmulos. Su pared celular contiene peptidoglicano y ácido teicoico, y las colonias son usualmente amarillas. Las bacterias de *K. pneumoniae* son células con forma de bacilos rectos de 0.3-1.0 x 0.6- 6.0 μ m, Gram negativas, que se presentan individuales, en pares o cadenas cortas, que están rodeadas por una cápsula de polisacáridos de gran espesor. Por último, las bacterias de *B. subtilis* son células con formas de bacilos, con 0.7-0.8 x 2.0 - 3.0 μ m, Gram positivas, que se presentan solas o en pares. Su morfología colonial es variable, redondas a irregulares, con margen ondulado a fimbriante. Todos estos datos extraídos de la bibliografía concuerdan con los resultados obtenidos (Figuras 6.3-6.5).

Figura 6.3 Morfología colonial en AN (izq.) y tinción Gram de *S. pasteuri* aislada (der.). (Fuente: Propia)

Figura 6.4 Morfología colonial en AN (izq.) y tinción Gram de *K. pneumoniae* aislada (der.). (Fuente: Propia)

Figura 6.5 Morfología colonial en AN (izq.), tinción Gram (centro) y endosporas de *B. subtilis* aislada (der.). (Fuente: Propia)

En trabajos de caracterización microbiológica del agua no se ha reportado la presencia *S. pasteuri* en agua residual tratada. En cambio, *K. pneumoniae* ha sido reportada en agua potable (sistemas de distribución), residual, y ríos (Geldreich y Rice, 1987). Además, posee una cápsula capaz de proteger a la célula y se considera como una bacteria resistente a cefalosporinas (Vargas y Toro, 2010) y carbapenem (Serna-Galvis *et al.,* 2019). Es importante mencionar que *K. pneumoniae* es multirresistente a antibióticos, y un patógeno nosocomial frecuente, causante de infecciones con altas tasas de morbilidad y mortalidad (hasta el 50%) (Popa *et al.,* 2012). El género *Bacillus* ya ha sido reportado como resistente a la cloración (Paes *et al.,* 2012; Luo *et al.,* 2021).

6.2.3. Cinéticas de inactivación

La inactivación con NaClO de *S. pasteuri, K. pneumoniae* y *B. subtilis* inició con una concentración 1×10^{12} UFC/mL, 1×10^{10} UFC/mL y 1×10^{12} endosporas/mL, respectivamente, mientras que en los ensayos de inactivación con PAA estas concentraciones fueron 1×10^9 UFC/mL, 1×10^8 UFC/mL y 1×10^{11} endosporas/mL, respectivamente. En el **Anexo V** se encuentran el conteo general de UFC/mL o endosporas/mL, según corresponda. En la tabla 6.6 se resumen las unidades de inactivación total y los valores de C·t. De acuerdo con la bibliografía, los valores de C·t se reportan cuando se logra una inactivación de 4 log o el 99.99% de reducción (Ocampo-Rodríguez *et al.*, 2022). En el caso del NaClO los C·t que lograron esta inactivación de S. *pasteuri, K. pneumoniae* y *B. subtilis* fueron de 3, 7.13 y 418.74 mg·

min/L, con la concentración de 15 mg/L y con la concentración de 30 mg/L fueron de 3.32, 17.61 y 91.87 mg· min/L, respectivamente. Por otra parte, con el PAA los C·t para *S. pasteuri* y *B. subtilis* fueron de 20.13 y 99 mg· min/L con la concentración de 5 mg/L y con la concentración de 15 mg/L fueron de 91.37 y 287.31 mg· min/L, respectivamente. Para *K. pneumoniae* no se logró dicha reducción con ninguna concentración de PAA. En las figuras 6.6 y 6.7 se muestran los resultados del NaClO y PAA residual de los ensayos de desinfección.

Figura 6.6 Cloro residual de la desinfección de células vegetativas de las bacterias aisladas y endosporas de *B. subtilis* con NaClO.

Figura 6.7 PAA residual de la desinfección de células vegetativas de las bacterias aisladas y endosporas de *B. subtilis* con PAA.

Especie			S. pasteuri		K. pneumoniae			B. subtilis ^a			
Desinfectante	С	Т	UI	C∙t	Т	UI	C∙t	Т	UI	C∙t	
	mg/L	min	(log N/N ₀)	(mg·min/L)	min	(log N/N ₀)	(mg·min/L)	min	(log N/N ₀)	(mg·min/L)	
NaClO	15	10	-12.70	5.68	5	-5.12	7.13	100	-3.6	418.74	
					15	-8.25	40.50				
	30	F	-13.51	3.32	10	-4.65	17.61	45	-4.19	91.87	
		5			15	-9.12	26.78	100	-5.56	229.78	
PAA .	5	10	-4.3	20.13	30	-2.76	142.75	60	-4.48	132.00	
		30	-7.10	46.67			142.75	100	-4.53	220.00	
	15	10	-7.00	91.37	30	-3.31	338.32	45	-4.5	287.31	
		20	-9.23	173.59				100	-4.66	202.56	

Tabla 6.6 Resultados de la desinfección con NaClO	v PAA	$(T = 25^{\circ}C)$	pH 7.5) de las bacterias aisladas.
	y 1 1 11 1	(1 <u>20</u> C ,	p11 1.0	j uc lub bucteriub uibiuuub.

C: concentración; T: tiempo de contacto; UI: unidades de inactivación; C·t: dosis. ª: Endosporas.

Se han reportado VRL de diferentes especies de *Staphylococcus* inferiores a 6 log con PAA; sin embargo, con NaClO pueden variar de 4 a 6 log dependiendo de la especie (Sagripanti y Bonifacino, 1996). El uso del PAA se ha reportado para bacterias Gram positivas y negativas con concentraciones menores a los 11 mg/L, con las que se obtienen inactivaciones de hasta 5 log (Bridier *et al.*, 2011), lo cual concuerda con los resultados de inactivación obtenidos en esta investigación. Además, se observa que, en ambos desinfectantes, con las concentraciones mayores aumentaron las unidades de inactivación de *S. pasteuri* y para el NaClO el tiempo de contacto disminuyó, lo que resultó en valores menores de C·t.

Al ser *S. pasteuri* una especie de bacteria Gram positiva, se esperaría que mostrara mayor resistencia a los desinfectantes por las características de su pared celular (Mir *et al.*, 1997). Sin embargo, fue la especie que mostró mayor sensibilidad a estos, y en ambas concentraciones.

Por otra parte, K. pneumoniae mostró mayor sensibilidad al NaClO debido a que el cloro libre, interacciona con estructuras nucleófilas (hemas y porfirinas), proteínas (hierro y azufre), bases de purina y pirimidina, grupos sulfhidrilos, aminas y aminoácidos (Nizer et al., 2020). K. pneumoniae mostró mayor resistencia al PAA, como indican los altos valores de C·t. Esto se puede explicar debido a que las bacterias pueden desarrollar resistencia a los desinfectantes mediante catálisis enzimática, expresión de genes y bombas de eflujo que se usan para expulsar diversas sustancias tóxicas del interior de la célula (Jiménez y Rojas-Jiménez, 2020; Tong et al., 2021). Los genes qac son los más comunes que conducen a la tolerancia del desinfectante, ya que codifican la resistencia a cationes orgánicos con diferentes estructuras, como es el caso del gen qacE en K. pneumoniae, ubicado en el plásmido (pR751) (Tong et al., 2021). En otro estudio se ha demostrado que esta especie muestra resistencia a biguanidas (Bock et al., 2016), debido a que en las bacterias Gram negativas es más difícil que los agentes antibacterianos penetren en el interior de la bacteria por la estructura asimétrica de lipopolisacáridos en su membrana externa (Tong et al., 2021). Existe una gran variabilidad interespecífica de la resistencia a los desinfectantes y, en contra de la

creencia generalizada, las cepas Gram positivas no son necesariamente más resistentes que las Gram negativas (Bridier *et al.*, 2011).

De acuerdo con los resultados obtenidos, las endosporas de *B. subtilis* mostraron mayor resistencia al PAA, y para ambas concentraciones utilizadas se determinaron unidades de inactivación similares. La inactivación de endosporas de *B. subtilis* con derivados del cloro ha sido reportada en la literatura principalmente a diferentes concentraciones y pH. Por ejemplo, con la cepa B. subtilis (ATCC 6633) se ha logrado una inactivación de 3 log, con un C·t de 127 mg·min/L (pH. 5.6, cloro inicial de 2 mg/L) (Cho et al., 2003). Con esta misma cepa se han reportado reducciones de 1-2 log con valores de C·t de 467 a 671 mg·min/L (cloro gas: 0.5-1 mg/L, pH 7.2) (Choi et al., 2022). Para inactivar 2 log a pH 5.6 - 8.2 se reportan valores de C·t de 103 a 386 mg· min/L (Cho et al., 2006). Li et al., (2018), reportaron un C·t de 140 mg· min/L para inactivar 4.5 log de endosporas de esta cepa; esto demuestra que las cepas certificadas son más sensibles a los desinfectantes empleados que las cepas aisladas del medio. Además, está claro que el pH influye de manera directa en la inactivación de endosporas, debido a que el HOCl (pKa= 7.4) es más efectivo que el OCl⁻ (pKa= 7.22) (Drogui y Daghrir, 2015). Los C·t obtenidos con NaClO en este estudio entran en los rangos reportados. Sin embargo, el aumento de la concentración favorece la eliminación de las endosporas de cepas aisladas con valores de C·t menores.

Por otra parte, en estudios con cepas certificadas, a diferencia de lo que ocurrió con las cepas aisladas en este estudio, se ha demostrado que se necesitan al menos 300 mg/L de PAA para lograr inactivar 6 log de endosporas de una cepa de *B. subtilis* (PS533) (Setlow *et al.*, 2015) y en el caso de endosporas de *B. subtilis* subsp. *globigii* (ATCC 9372), con esta misma concentración se logra una inactivación de 3.5 log (Sagripanti y Bonifacino, 1996). En la literatura se ha presentado la Concentración Mínima Esporicida (MSC, por sus siglas en inglés) del PAA contra cepas de *Bacillus*, la cual varía entre 168 y 1344 mg/L (Alasri *et al.*, 1993). Tales concentraciones son altas en comparación con las empleadas en este estudio. También se ha demostrado la resistencia al PAA de una cepa de *B. subtilis* aislada de lavadoras desinfectadoras de endoscopios, debido a que la

célula está rodeada de sustancias exopoliméricas que desempeñan un papel protector al desactivar los agentes oxidantes (Martin *et al.*, 2008). La cepa de *B. subtilis* aislada de la PTAR también muestra resistencia a este desinfectante. Sin embargo, es necesario realizar ensayos con concentraciones más altas de PAA y estudios que midan el residual de PAA que nos permitan obtener valores de C·t y poder realizar las comparaciones con los resultados de este estudio.

6.2.4. Modelos cinéticos

En las figuras 6.8 y 6.9 se representa la inactivación de las células de *S. pasteuri* y *K. pneumoniae* y de las endosporas de *B. subtilis* con ambos desinfectantes. Para *S. pasteuri* se observan tendencias lineales y en el caso de *K. pneumoniae*, cóncavas. Las endosporas de *B. subtilis* muestran un efecto lineal seguido de un efecto de cola. Este efecto también se observó en los ensayos con el PAA, pero 15 minutos antes que en la inactivación con NaClO. A partir de estas observaciones se seleccionaron los modelos cinéticos que describen dichos efectos.

Figura 6.8 Inactivación de células vegetativas de las bacterias aisladas y endosporas de *B. subtilis* con NaClO.

Figura 6.9 Inactivación de células vegetativas de las bacterias aisladas y endosporas *B. subtilis* con PAA.

El complemento GInaFiT permite seleccionar un modelo cinético a partir de las curvas de inactivación obtenidas. En la tabla 6.7 se muestran los coeficientes cinéticos de los modelos probados para cada especie y concentraciones de ambos desinfectantes. Para seleccionar el modelo que mejor se ajusta se consideraron índices de calidad como el coeficiente de determinación (R²>0.9000).

De acuerdo con los ajustes a los modelos, se observa que el modelo de Chick no es el indicado para describir las inactivaciones de las cepas aisladas en este estudio, que son resistentes al cloro. Además, la evaluación a mayores tiempos de contacto nos permitió conocer el efecto de ambos desinfectantes en las especies de bacterias probadas.

En las figuras 6.10 – 6.14 se muestran los modelos ajustados con sus ecuaciones. Debido a la rápida inactivación de *S. pasteuri* con el NaClO (15 y 30 mg/L) y de *K. pneumoniae* con NaClO (30 mg/L), no se obtuvo un modelo cinético que pueda describir esta tendencia en estas concentraciones. Además, es necesario contar con al menos seis datos para obtener el modelo con el software GinaFit. La desinfección de *K. pneumoniae* con 15 mg/L de NaClO mostró una curva cóncava, por lo cual se describe con el modelo de Weibull, mientras que la de *B. subtilis* con 15 y 30 mg/L del mismo desinfectante se describe adecuadamente con los modelos de Weibull y Geeraerd, respectivamente.

				De	sinfección	con NaClO						
Modelo		Chick			Weibull				Geeraerd			
Especie	С	K _{max}	R ²	Δ	р	log (N ₀)	R ²	K _{max}	log (N _{res})	log (N ₀)	R ²	
K. pneumoniae	15	0.49	0.5839	0.04	0.32	10.35	0.9062	2.36	3.48	10.42	0.8705	
B. subtilis	15	0.08	0.8812	7.19	0.51	11.26	0.9866	0.13	7.74	10.97	0.9822	
	30	0.13	0.8543	10.32	0.77	11.61	0.9015	0.23	6.90	12.26	0.9783	
				D	esinfecció	n con PAA						
Modelo				Weibull				Geeraerd				
Modelo			Chick		W	/eibull			Ge	eraerd		
Especie	С	K _{max}	Chick R ²	Δ	w p	/eibull log (N ₀)	R ²	K _{max}	Ge log (N _{res})	eraerd log (N ₀)	R ²	
Modelo Especie S. pasteuri	C 5	K _{max} 0.58	Chick R ² 0.7853	Δ 0.48	p 0.51	7eibull log (N ₀) 9.49	R ² 0.8958	K _{max} 1.10	Ge log (N _{res}) 2.17	eraerd log (N ₀) 9.51	R ² 0.9930	
Modelo Especie S. pasteuri	C 5 5	K _{max} 0.58 0.18	Chick R ² 0.7853 0.8227	Δ 0.48 2.41	p 0.51 0.38	7eibull log (N ₀) 9.49 8.74	R ² 0.8958 0.9767	K _{max} 1.10 0.27	Ge log (N _{res}) 2.17 6.15	eraerd log (N ₀) 9.51 8.36	R ² 0.9930 0.8659	
Modelo Especie S. pasteuri K. pneumoniae	C 5 5 15	K _{max} 0.58 0.18 0.24	Chick R ² 0.7853 0.8227 0.6282	Δ 0.48 2.41 1.08	p 0.51 0.38 0.37	Zeibull log (№) 9.49 8.74 10.38	R ² 0.8958 0.9767 0.8436	K _{max} 1.10 0.27 0.78	Ge log (N _{res}) 2.17 6.15 7.27	eraerd log (N ₀) 9.51 8.36 10.72	R ² 0.9930 0.8659 0.9683	
Modelo Especie S. pasteuri K. pneumoniae	C 5 5 15 5	K _{max} 0.58 0.18 0.24 0.11	Chick R ² 0.7853 0.8227 0.6282 0.7090	Δ 0.48 2.41 1.08 2.45	p 0.51 0.38 0.37 0.46	log (N₀) 9.49 8.74 10.38 0.25	R ² 0.8958 0.9767 0.8436 0.8508	K _{max} 1.10 0.27 0.78 0.28	Ge log (N _{res}) 2.17 6.15 7.27 6.44	eraerd log (N₀) 9.51 8.36 10.72 11.31	R ² 0.9930 0.8659 0.9683 0.9858	

Tabla 6.7 Modelos cinéticos de la desinfección de las bacterias aisladas con NaClO y PAA de mayor ajuste.

C: concentración; K_{max} : constante de letalidad (min⁻¹); R^2 : coeficiente de determinación. Δ : constante cinética (tiempo de reducción decimal); p: constante cinética (curvas cóncavas hacia arriba, p<1; hacia abajo,p>1); N_0 : número inicial de microorganismos antes de la desinfección; N_{res} : número de microorganismos resistentes. En gris valor del coeficiente de determinación del modelo cinético con mejor ajuste.

Figura 6.10 Inactivación de K. pneumoniae con NaClO (15 mg/L).

Figura 6.11 Inactivación de endosporas de *B. subtilis* con NaClO a) 15 mg/L y b) 30 mg/L.

La inactivación con cloro de endosporas de *B. subtilis* de cepas certificadas se ha descrito con el modelo de retraso de Chick-Watson (Cho *et al.*, 2003; Larson y Mariñas, 2003; Cho *et al.*, 2006; Li *et al.*, 2018, Choi *et al.*, 2022), en estos ensayos se utilizaron concentraciones menores a los 10 mg/L de Cl₂, y el modelo se obtuvo por un gráfico de UI (log N/N₀) vs. C·t, en el que se observa un efecto de hombro seguido de una tendencia lineal, lo que es distinto a los que se presentan en este trabajo (Figuras 6.6 y

6.7). De acuerdo con Peleg (2021), estos modelos se basan en el ajuste de sus ecuaciones a los datos experimentales, más que en su capacidad para predecir patrones dinámicos de inactivación. Por otra parte, se ha demostrado que las cinéticas de inactivación pueden variar dependiendo de los medios de crecimiento a partir de los cuales se obtuvieron las endosporas (Aronson y Fitz-James, 1976; Leaper, 1984).

Figura 6.12 Inactivación de S. pasteuri con PAA 5 mg/L.

Figura 6.13 Inactivación de K. pneumoniae con PAA a)5 mg/L, b)15 mg/L.

Figura 6.14 Inactivación de endosporas de B. subtilis con PAA a) 5 mg/L, b)15 mg/L.

La desinfección con PAA de *S. pasteuri, K. pneumoniae* y *B. subtilis* se puede describir con el modelo de Geeraerd. Debido a la rápida inactivación de *S. pasteuri* con el PAA (15 mg/L) no se obtuvo un modelo cinético que pueda describir esta tendencia. Cabe señalar que, en la literatura no se han reportado cinéticas de inactivación de *S. pasteuri*, por lo cual el modelo propuesto en este trabajo sería el primero en describir su inactivación con el PAA. En el caso de *K. pneumoniae* se ha descrito la inactivación con radiación UV y H₂O₂ mediante el modelo de Geeraerd (Aguilar *et al.*, 2017).

Leggett y colaboradores (2016) presentaron la desinfección de endosporas de *B. subtilis* con PAA mediante el modelo de Weibull, mientras que su inactivación con el uso de luz pulsada se modeló con la ecuación de Geeraerd (Artíguez y de Marañon, 2015); en ambos estudios se empleó la herramienta de GInaFiT para obtener los modelos cinéticos. Sin embargo, las variaciones en las condiciones experimentales de los diferentes ensayos de inactivación dificultan la comparación exacta de la eficiencia de los desinfectantes y sus modelos de inactivación contra las endosporas de *B. subtilis* (Cho *et al.,* 2006).

6.2.5. Análisis estadístico

De acuerdo con la prueba de Kolmogorov-Smirnov, los datos presentaron una distribución normal. La prueba de t-Student indicó que no hay diferencias significativas

entre las concentraciones de NaClO para la eliminación de *K. pneumoniae* (t=0.404, gl=4, P=0.707) y *B. subtilis* (t=-0.0546, gl=12, P=0.957) (figura 6.15). De igual manera, la prueba de t-Student indicó que no hay diferencias significativas entre las concentraciones de PAA (figura 6.16) para *S. pasteuri* (t=0.743, gl=8, P=0.479, *K. pneumoniae* (t=-1.581, gl=10, P=0.145) y *B. subtilis* (t=0.0553, gl=12, P=0.957).

Figura 6.15 Análisis estadístico de (a) *K. pneumoniae* y (b) endosporas *B. subtilis* (b) con NaClO.

Figura 6.16 Análisis estadístico de (a) *S. pasteuri*, (b) K. *pneumoniae* y (c) endosporas de *B. subtilis* con PAA.

De acuerdo con el análisis estadístico las concentraciones bajas de NaClO (15 mg/L) y PAA (5 mg/L) no mostraron diferencias significativas en la inactivación de bacterias respecto a las concentraciones altas probadas. Cabe resaltar que los ensayos realizados en la presente investigación se ralizaron con agua destilada, aún así resultaría interesante que dichas dosis puedan ensayarse en las PTAR para conocer su relación con la materia orgánica presente y otros compuestos del AR.

CINÉTICAS DE DESINFECCIÓN SECUENCIAL CON NaCIO Y PAA EN ENDOSPORAS DE DIVERSAS ESPECIES DE Bacillus AISLADAS DE UNA PTAR.

La remoción de microorganismos patógenos presentes en el AR se realiza mediante la desinfección (Di Cesare *et al.*, 2020). Dicho tratamiento debe asegurar un bajo consumo del desinfectante, minimizar los costos de operación y así como evitar la formación de subproductos que tengan efectos adversos para organismos acuáticos y la salud humana (Li *et al.*, 2017).

Como ya se mencionó, la cloración es el tratamiento de desinfección más utilizado en las PTAR por su eficiente poder bactericida, bajos costos de inversión y operación, además de su fácil implementación. Sin embargo, existen reportes de la formación de subproductos tóxicos y cancerígenos mediante su uso (Destiani y Templeton, 2019; Di Cesare *et al.*, 2020). Igualmente, este tratamiento contribuye a la selección de CRB (Lautenschlager *et al.*, 2013).

De tal modo que, la cloración ha sido objeto de numerosas investigaciones y se utiliza como punto de referencia para evaluar la eficacia de nuevos métodos de desinfección y en la inactivación de microorganismos patógenos, biopelículas, ARB o ARG (Ocampo-Rodríguez *et al.*, 2022). La concentración del desinfectante, el tiempo de contacto empleado y las unidades de inactivación, suelen variar dependiendo de los microorganismos y las características fisicoquímicas del agua a tratar. Kampf, 2018a, reporta concentraciones de actividad bactericida del NaClO, de 1 mg/L para *E. faecalis* (ATCC 35550), con tiempo de contacto de 5 min y 1 min, respectivamente; también reporta el tiempo máximo de contacto de 60 min para *Staphylococcus enteritidis* con 200 mg/L de NaClO. Lin *et al.*, 2017 reportan el daño en la EPS de biopelículas de *Klebsiella* sp., *Pseudomonas* sp., *Flavobacterium* sp., *Sphingomonas* sp. con concentraciones de 10 mg/L de NaClO en 30 min de contacto. Para la eliminación de ARG Zheng *et al.*, (2017) emplean concentraciones de 8-16 mg/L de NaClO durante 30 min, para inactivar *tet*Q y *sul*1, que son genes de resistencia a antibióticos (tetraciclina y sulfonamida); por otra

parte, Zhuang *et al.*, (2015) utilizaron 160 mg/L durante 120 min, para *tet*G y *sul*1. En el caso de bacterias heterótrofas con resistencia a antibióticos, se necesitan altas concentraciones de cloro (Furukawa *et al.*, 2017) y al menos 30 mg/L para remover el 90% de *E. coli* (pB10) en aguas residuales (Oh *et al.*,2014). Sin embargo, Huang *et al.*, 2011 demostraron que con 5 mg/L de NaClO durante 10 min, no se observa la reactivación de ARB.

Por otra parte, desde la década de 1970, el PAA ha sido considerado como una alternativa a la cloración debido a su capacidad para evitar la formación de subproductos y ofrecer un amplio espectro antimicrobiano similar al cloro, a la vez que resulta económicamente viable. En 2012 la USEPA aprobó el uso del PAA en las PTAR (Ao et al., 2021). Existen varias revisiones acerca del empleo del PAA en el tratamiento de aguas residuales (Kitis, 2004; Cavanilli et al., 2012; Garg et al., 2016; Luukkonen y Pehkonene, 2017; Henao et al., 2018a; Ao et al., 2021). Kampf, 2018b reporta valores de actividad bactericida de soluciones y productos de PAA, de los cuales la concentración mínima utilizada es de 2.5mg/L para Aeromonas salmonicida (ATCC 14174) con un tiempo de contacto de 30 min y la máxima de 1600 mg/L para cepas clínicas aisladas de Acinetobacter anitratus, Enterococcus cloacae, K. pneumoniae, P. aeruginosa, E. faecalis y Staphylococcus aureus (ATCC 25923) con un tiempo de contacto de 3 min, aunque el tiempo máximo de contacto es de 30 min para la mayoría de las bacterias reportadas; es letal para bacterias, levaduras y virus con concentraciones cercanas a los 300 mg/L (Sagripanti y Bonifacino, 1996). Dunkin et al, 2017 emplearon el PAA para la inactivación de Norovirus murino y el bacteriófago MS2 con 69 mg·min/L y 1,254 mg·min/L de PAA, respectivamente. Para inactivar a *E. coli* con resistencia a la ampicilina se han reportado dosis de 55 mg·min/L de PAA (Campo et al., 2020). Eramo et al., 2017 utilizaron 5 mg/L durante 5-10 min para la inactivación de los genes tetG y sul1.

En los últimos años, se ha comprobado la resistencia a la desinfección en algunos microorganismos, como son quistes y ooquistes de protistas de vida libre, esporas de hongos y endosporas bacterianas (Kong *et al.*, 2021). Estos se encuentran presentes en los efluentes de las PTAR incluso cuando se han aplicado las concentraciones de

desinfectantes que cumplen con los límites recomendados por la Organización Mundial de la Salud (WHO) (0.5 mg/L de cloro residual) (Shekhawat *et al.*, 2021).

Además, la exposición constante de microorganismos patógenos a desinfectantes, ya sean químicos o físicos, dan lugar a una mayor capacidad de adaptación y tolerancia a estos agentes (Tong, *et al.*, 2021), lo que resulta en la proliferación de bacterias, presencia de genes multirresistentes a los desinfectantes, así como la pérdida de eficacia de los tratamientos de desinfección (Tong, *et al.*, 2021).

La resistencia bacteriana adquirida a los desinfectantes puede surgir por mutación o adquisición de material genético (Nuñez y Moretton, 2006), ambos procesos conllevan a la adaptación. Además, los genes de la resistencia se ubican en el nucleoide (*sugE (c), emrE, ydgE/ydgF* y *mdfA)*, o en los plásmidos (*qacA/B, qacC/D, qacE, qacF, qacG, qacH, qacJ, qacZ* y *sugE (p)*) (Tong, *et al.*, 2021).

Algunos microorganismos que presentan esta resistencia pertenecen al grupo de CRB, por citar algunos ejemplos, *Pseudomonas, Mycobacterium, Clostridium, Bacillus, Legionella* y *Sphingomonas* (Luo *et al.*, 2021). Khan *et al.*, 2016 sugieren que las bacterias tolerantes al cloro también pueden ser resistentes a antibióticos, además su presencia en sistemas de agua potable añade un riesgo a la resistencia a los diversos antibióticos.

Dentro de las nuevas tecnologías para resolver la presencia de CRB, ARB o ARG en los efluentes de las PTAR, se encuentra la desinfección secuencial, en la cual se utiliza un primer desinfectante para alcanzar la inactivación deseada, seguida de un segundo para inactivar los microorganismos remanentes y a su vez tener un residual para la distribución del agua (Cho *et al.*, 2011). La sinergia entre los desinfectantes empleados durante la desinfección secuencial debe obtener valores mayores de inactivación que la suma de las inactivaciones individuales (Beber de Souza *et al.*, 2015). Sin embargo, si esta suma arroja un valor negativo se considera antagonismo o si es cero indica que la eficiencia del tratamiento combinado es la misma que la suma de los tratamientos individuales (Li *et al.*, 2017; Destiani y Templeton, 2019).

Además, el efecto sinérgico de la desinfección secuencial permite disminuirlos tiempos de retención con lo cual se reducen los costos y minimiza la formación de subproductos (Jung *et al.*, 2008; Li *et al.*, 2017; Ye *et al.*, 2019).

La desinfección secuencial se ha reportado con diferentes desinfectantes químicos o físicos, por ejemplo, la cloración en dos pasos para inactivar *E. coli* (Li *et al.*, 2016), cloro seguido de cloraminas para la inactivación del bacteriófago MS2 (Furst *et al.*, 2018). CO₂ seguido de NaClO para la eliminación de algas (Ye *et al.*, 2019). Para la inactivación de quistes de *Cryptosporidium parvum* se ha empleado ozono seguido de cloro libre o monocloramina (Rennecker *et al.*, 1999; Driedger *et al.*, 2000; Corona-Vasquez *et al.*, 2002). También se puede incluir el empleo de cloro seguido de radiación UV para inactivar para *E. coli*, coliformes totales y fecales (Medeiros y Daniel, 2015; Shekhawat, *et al.*, 2021) *Giardia* spp. y *Clostridium perfringens* (Medeiros y Daniel, 2015); colifagos y MS2 (Zyara *et al.*, 2016), o viceversa, primero aplicar radiación UV seguida de cloro, par inactivar ARG *sul1, tetX, tetG, intI1* (Zhang *et al.*, 2015) y *tet(A), bla.TEMI, sul1, mph(A)* (Destiani y Templeton, 2019). Entre otros tratamientos Beber de Souza *et al.*, 2015, proponen la inactivación de *E. coli*, coliformes totales y colifagos mediante PAA-UV y con este mismo tratamiento Weng *et al.*, (2018) proponen la inactivación de colifagos MS2 y norovirus humano.

7.1.Metodología

El muestreo y caracterización del efluente se realizó de la misma manera descrita anteriormente en el apartado 6.1.1.

7.1.1. Aislamiento, caracterización e identificación de cepas

A partir de las muestras del efluente se realizaron diluciones decimales seriadas. Se sembraron por extensión en placa en los agares CM, Medio *Bacillus* ATCC 455, Luria-Bertani y MYP (en el **Anexo I** se detallan las fórmulas de los medios) (Atlas, 2010). Las cajas se incubaron a 37 °C, durante 24 horas. Se aislaron distintas UFC identificadas con una clave como se especificó anteriormente en el punto 6.1.2. Los cultivos puros de estas UFC se caracterizaron de acuerdo con su morfología colonial en medio sólido
(AN) y líquido (CN). Después, se realizaron tinciones de Gram y TE para su observación al microscopio. Además, para todas las cepas se determinaron las mismas pruebas bioquímicas que en el punto 6.1.2. Los medios de las pruebas bioquímicas se encuentran descritos en el **Anexo I** (Vos *et al.*, 2009). La cepa certificada *B. subtilis* (CDBB-1009) se usó como control de dichas pruebas. La identificación a nivel de especie se realizó con el equipo de Bruker Daltonik MALDI Biotyper™ (Billerica, USA), para el cual se usaron cultivos menores a 24 horas de incubación en AN (Oviaño *et al.*, 2019). La identificación taxonómica corresponde a los nombres asignados por el código NCBI (Schoch *et al.*, 2020)

7.1.2. Obtención de endosporas

La suspensión de endosporas de cada una de las cepas aisladas fue preparada de acuerdo con Rochelle *et al.* (2010), como se especifica en el punto 6.1.4 y en el **Anexo I** se describe la formula del medio. La viabilidad y cantidad de endosporas (endosporas/mL) se analizó por el método de Miles y Misra (Miles y Misra, 1938).

7.1.3. Cinéticas de desinfección

En la figura 7.1 se muestra de manera general el diagrama del proceso de desinfección llevado a cabo para endosporas de las cepas aisladas del efluente de una PTAR. Todas las soluciones empleadas se prepararon con agua destilada (libre de cloro). El NaClO (Alfa y Omega, Cd. México) y el PAA (ACIDEX® Cd. México) fueron estandarizados por yodometría (ver **Anexo II**) (APHA, 2012; Cavallini *et al.*, 2013). El tiosulfato de sodio (MEYER®, México) se preparó al 10% (p/v).

Figura 7.1 Proceso de desinfección de endosporas con NaClO o PAA y secuencial NaClO-PAA (Fuente: Propia).

7.1.3.1. Desinfección convencional

Los ensayos de inactivación de endosporas se realizaron por separado en matraces Erlenmeyer con 150 mL de agua esterilizada, se inocularon con 5 mL de la solución de endosporas, y posteriormente se ajustó el pH a 7.5, se colocaron en agitación orbital (125 rpm) y a temperatura ambiente. Las concentraciones de los desinfectantes fueron 30 mg/L para el NaClO y 300 mg/L para el PAA. Se tomaron alícuotas de 11 mL a diferentes tiempos de contacto (0, 10, 20, 30, 45, 60, 100 minutos) y se añadió tiosulfato de sodio para detener la acción de los desinfectantes (Adeyemo *et al.*, 2019). El cloro libre y el PAA residual fueron medidos por el método colorimétrico DPD 4500-Cl G, a 515 y 530 nm, respectivamente (en el **Anexo II** se encuentran las curvas de calibración) (APHA, 2012; Henao *et al.*, 2018a). Para obtener valores unificados que permitieran comparar las remociones de microorganismos, se obtuvieron los valores de C·t. Para el análisis microbiológico se realizaron diluciones decimales seriadas (10⁻¹-10⁻¹²), de las cuales se sembraron 100 µL de las tres últimas diluciones por extensión en placa en AN, por duplicado. Las cajas se incubaron a 37 °C, durante 24 horas y se realizó el conteo de UFC, los resultados se expresan como endosporas/mL. Con estos datos se obtuvieron los valores de reducción total reportados como UI (log N/N₀, donde: N₀ es el número de endosporas/mL al inicio del ensayo y N es el número de endosporas/mL para cada tiempo de contacto).

7.1.3.1.1. Modelos cinéticos

Para cada cepa, se graficó el log de las endosporas/mL *vs*. el tiempo de contacto. A partir de las curvas obtenidas, se evaluaron los modelos de: Chick (Ecuación 6.1) (Chick, 1908), Weibull (Ecuación 6.2) (Mafart *et al.*, 2002) y Geeraerd (Ecuación 6.3) (Geeraerd *et al.*, 2000).

Posteriormente, se seleccionó el modelo de mejor ajuste. Los modelos y parámetros cinéticos de cada cepa se obtuvieron a partir la herramienta Solver y el complemento GInaFiT versión1.6 del programa Microsoft[®] Office Excel[®] (Geeraerd *et al.*, 2005).

7.1.3.1.2. Análisis estadístico

La comparación de las concentraciones utilizadas de cada desinfectante se realizó mediante un análisis de Kolmogorov-Smirnov para comprobar la distribución de los datos. Después, se realizaron pruebas post hoc de comparaciones múltiples (HSD Tukey, DMS y subconjuntos homogéneos), con 95% de confianza, con la finalidad de establecer diferencias significativas entre las medias de las inactivaciones alcanzadas en los diferentes tiempos de cada desinfectante. Para dicho análisis se utilizó el programa IBM ® SPSS ® Statistics versión 22 (Chicago, USA). Después, se realizó una prueba de Mann-Whitney, con 95% de confianza, con la finalidad de establecer diferencias significativas entre las medias de las inactivaciones alcanzadas con prueba de Mann-Whitney, con 95% de confianza, con la finalidad de establecer diferencias significativas entre las medias de las inactivaciones alcanzadas con las concentraciones utilizadas de cada desinfectante; para dicho análisis se utilizó el programa SigmaStat 3.5. (Witzenhausen, Alemania).

7.1.3.2. Desinfección secuencial

Los ensayos de inactivación secuencial de endosporas se realizaron por separado en matraces Erlenmeyer con 150 mL de agua esterilizada, se inocularon con 5 mL de la

solución de endosporas, y posteriormente se ajustó el pH a 7.5, se colocaron en agitación orbital (125 rpm) y a temperatura ambiente. Se añadió 30 mg/L de NaClO (t= 0 min) y posteriormente 300 mg/L de PAA (60 min). Se tomaron alícuotas de 11 mL a diferentes tiempos de contacto (0, 15, 30, 45, 60, 75, 90, 105 y 120 minutos) y se añadió tiosulfato de sodio para detener la acción de los desinfectantes (Adeyemo *et al.*, 2019). El cloro libre y el PAA residual fueron medidos por el método colorimétrico DPD 4500-Cl G, a 515 y 530 nm, respectivamente (Ver **Anexo II**) (APHA, 2012; Henao *et al.*, 2018a). Del mismo modo que en la desinfección convencional, se obtuvieron los valores de C·t, así como las UI. Para medir la eficacia de la desinfección secuencial se determinó el valor del sinergismo mediante la ecuación 2.7

7.1.3.2.1. Análisis estadístico

Para la comparación de la inactivación de endosporas de la desinfección convencional y secuencial, se realizó un análisis de Kolmogorov-Smirnov para comprobar la distribución de los datos. Después, se realizaron pruebas post hoc de comparaciones múltiples (HSD Tukey, DMS y subconjuntos homogéneos), con 95% de confianza, con la finalidad de establecer diferencias significativas entre las medias de las inactivaciones alcanzadas con las concentraciones utilizadas de cada desinfectante; para dicho análisis se utilizó el programa IBM ® SPSS ® Statistics versión 22 (Chicago, USA).

7.2. Resultados y discusión

7.2.1. Aislamiento, caracterización e identificación de las cepas

Se aislaron 16 cepas de diferente morfología colonial. La caracterización en medio sólido y líquido se describe en las tablas 7.1 y 7.2. Por otra parte, los resultados de las tinciones, formas celulares y pruebas bioquímicas se encuentran en la tabla 7.3.

De acuerdo con los resultados, se puede observar la diversidad de bacterias formadoras de endosporas presentes en el efluente de la PTAR, y la variedad de su metabolismo. De acuerdo con Vos *et al.*, (2009) todas las cepas aisladas pertenecen al género *Bacillus*, además las cepas 1EM13, 3EM1, 3EM3, 3EM4, 5EL1 y 5EE7 son presuntivas de la especie *B. subtilis* debido a que los resultados de las pruebas bioquímicas coinciden en

su totalidad con la cepa certificada. A continuación, se muestran los resultados de la identificación a nivel especie por Maldi-Biotyper de dichas cepas (tabla 7.4). La puntuación superior a 2 nos indica el nivel de confianza del resultado, por lo cual asegura el nombre del género y la especie.

Сера	Forma	Borde	Elevación	Textura	Color
1EB7	Circular	Entero	Convexa	Viscosa	Blanca
1EB8	Irregular	Lobulado	Montañoso	Membranosa	Translúcida
1EB11	Circular	Entero	Elevada	Viscosa	Beige
1EM12	Circular	Entero	Elevada	Viscosa	Blanca
1EM13	Irregular	Entero	Elevada	Viscosa	Blanca
1EB14	Concéntrica	Entero	Convexa	Viscosa	Translúcida
3EM1	Circular	Entero	Convexa	Butirosa	Translúcida
3EM2	Concéntrica	Entero	Convexa	Viscosa	Translúcida
3EM3	Circular	Entero	Plana	Membranosa	Blanca
3EM4	Circular	Entero	Elevada	Butirosa	Blanca
4EL2	Circular	Entero	Convexa	Viscosa	Blanca
4EP7	Circular	Entero	Convexa	Viscosa	Translúcida
4EE8	Circular	Entero	Convexa	Viscosa	Translúcida
5EL1	Rizoide	Entero	Rugosa	Membranosa	Beige
5EL6	Circular	Entero	Elevada	Butirosa	Blanca
5EE7	Concéntrica	Irregular	Umbonada	Membranosa	Blanca

Tabla	7.1	Morfología	colonial	en	placa	de	las	cepas	aisladas	de	una	PTA	F
-------	-----	------------	----------	----	-------	----	-----	-------	----------	----	-----	-----	---

Tabla 7.2 Crecimiento en líquido de las cepas aisladas de una PTAR

Cepa	Crecimiento superficial	Opacidad	Sedimento	Cantidad del sedimento
1EB7	Anillado	Nulo	Nulo	Nulo
1EB8	Membranoso	Ligera	Nulo	Nulo
1EB11	Membranoso	Nulo	Grumoso	Abundante
1EM12	Peliculado	Transitorio	Compacto	Abundante
1EM13	Peliculado	Nulo	Granular	Escaso
1EB14	Nulo	Nulo	Grumoso	Ligero
3EM1	Peliculado	Nulo	Nulo	Nulo
3EM2	Peliculado	Nulo	Nulo	Nulo
3EM3	Nulo	Nulo	Compacto	Abundante
3EM4	Nulo	Nulo	Compacto	Ligero
4EL2	Membranoso	Nulo	Nulo	Nulo
4EP7	Peliculado	Nulo	Nulo	Nulo
4EE8	Floculento	Nulo	Nulo	Nulo
5EL1	Peliculado	Nulo	Nulo	Nulo
5EL6	Nulo	Ligera	Compacto	Abundante
5EE7	Peliculado	Nulo	Granular	Abundante

Cena F		Gram	тг	C	нс	T	S	VP	рM	Indol	цс	DF	ПА	н۸	LG	СТ
Сера	1	Grain	11	C	ne	6.5%	10%	VI	ICIVI		115	22	DII	1111	LO	CI
1EB7	Bacilos	+	+	+	-	+	+	-	-	-	-	-	-	+	+	+
1EB8	Bacilos	+	+	+	+	+	+	+	+	+	-	-	+	+	-	+
1EB11	Bacilos	+	+	+	+	+	+	+	-	-	-	-	+	+	+	+
1EM12	Bacilos	+	+	+	+	+	+	-	-	-	-	-	-	+	+	+
1EM13	Bacilos	+	+	+	+	+	+	+	-	-	-	-	-	+	+	+
1EB14	Bacilos	+	+	+	-	+	+	-	-	-	-	-	-	+	+	+
3EM1	Bacilos	+	+	+	+	+	+	+	-	-	-	-	-	+	+	+
3EM2	Bacilos	+	+	+	+	+	+	+	-	-	-	-	+	+	+	+
3EM3	Bacilos	+	+	+	+	+	+	+	-	-	-	-	-	+	+	+
3EM4	Bacilos	+	+	+	+	+	+	+	-	-	-	-	-	+	+	+
4EL2	Bacilos	+	+	+	+	+	+	-	-	+	-	-	-	+	+	+
4EP7	Bacilos	+	+	+	+	+	+	-	-	+	-	-	-	+	+	+
4EE8	Bacilos	+	+	+	+	+	+	-	-	-	-	-	+	+	+	+
5EL1	Bacilos	+	+	+	+	+	+	+	-	-	-	-	-	+	+	+
5EL6	Bacilos	+	+	+	-	+	+	-	-	-	-	-	-	-	+	+
5EE7	Bacilos	+	+	+	+	+	+	+	-	-	-	-	-	+	+	+
B. subtilis ^a	Bacilos	+	+	+	+	+	+	+	-	-	-	-	-	+	+	+

Tabla 7.3 Forma celular, tinciones y pruebas bioquímicas y tinciones de las cepas aisladas de un PTAR

F: forma celular; TE: tinción de endosporas; C: citrato; HC: hidrólisis de caseína; TS: tolerancia a sal; VP: Voges Proskauer; RM: rojo de metilo; I: indol; HS: producción de H₂S; DE: descarboxilación de lisina; DA: desaminación de lisina; HA: hidrólisis de almidón; LG: licuefacción de gelatina; CT: catalasa. ^a cepa certificada CDBB-1009.

Сера	Nombre	Puntuación	Código NCBI						
1507	Bacillus amyloliquefaciens ssp.	2.20	279145-Bacillus amyloliquefaciens spp. plantarum						
ILDI	plantarum	2.20	CICC 23985 b CICC						
1EB8	Bacillus licheniformis	2.09	1402-Bacillus licheniformis CICC 23972 CICC						
1EB11	Bacillus atrophaeus	2.41	1452-Bacillus atrophaeus DSM 675 DSM						
1EM12	Bacillus atrophaeus	2.45	1452-Bacillus atrophaeus DSM 675 DSM						
1EM13	Bacillus atrophaeus	2.48	1452-Bacillus atrophaeus DSM 5551 DSM						
1501/	Bacillus amyloliquefaciens ssp.	2.21	279145-Bacillus amyloliquefaciens spp. plantarum						
ICD14	plantarum	2.21	CICC 23985 b CICC						
3EM1	Bacillus subtilis	2.07	135461-Bacillus subtilis spp. subtilis DSM 10T DSM						
25142	Dacillus amulaliquefacione	2.26	1390-Bacillus amyloliquefaciens spp. amyloliquefaciens						
3EIVIZ	Bacilius amyloliquejaciens	2.20	CICC 10079 CICC						
3EM3	Bacillus subtilis	2.27	135461-Bacillus subtilis spp subtilis DSM 10T DSM						
3EM4	Bacillus subtilis	2.37	135461-Bacillus subtilis spp. subtilis DSM 10T DSM						
151.2	Dacillus amulaliquefacions	2 10	1390-Bacillus amyloliquefaciens spp. amyloliquefaciens						
4CLZ	Buchius amytoliquejaciens	2.10	CICC 10079 CICC						
4507	Dacillus amulaliquefacione	2.20	1390-Bacillus amyloliquefaciens spp. amyloliquefaciens						
4C <i>Г (</i>	Bacilius amyloliquejaciens	2.29	CICC 10075 CICC						
4660	Dacillus amulaliquefacione	0.00	1390-Bacillus amyloliquefaciens spp. amyloliquefaciens						
4660	Bacilius amyloliquejaciens	2.22	CICC 10079 CICC						
	Dacillus amulaliquefacione	0.04	1390-Bacillus amyloliquefaciens spp. amyloliquefaciens						
JELI	Bacilius amyloliquejaciens	2.24	CICC 10075 CICC						
FEI C		0.10	1390-Bacillus amyloliquefaciens spp. amyloliquefaciens						
JEL0	bacillus amyloliquejaciens	2.10	CICC 10075 CICC						
5EE7	Bacillus subtilis	2.54	135461-Bacillus subtilis spp. subtilis DSM 10T DSM						

Tabla 7.4 Resultados de la identificación a nivel especie de las cepas aisladas de una PTAR.

De acuerdo con Vos *et al.*, (2009), las bacterias de *B. amyloliquefaciens* son estrictamente aerobias, presentan células de 0.7-0.9 x 1.8-3.0 μ m, sus endosporas son elipsoidales ubicadas centrales, paracentrales o subterminales. *B. atrophaeus* son aerobias, presentan células de 0.5-1.0 x 2.0-4.0 μ m, sus endosporas son elipsoidales, ubicadas centrales o paracentrales, sus colonias pueden ser opacas, circulares con borde entero. *B. licheniformis* son anaerobias facultativas, presentan células de 0.6-0.8 x 1.5-3.0 μ m, sus endosporas son elipsoidales a cilíndricas, situadas central, paracentral o subterminal, presenta colonias de forma irregular con márgenes que varían de ondulada a filamentosa, se ha reportado ocasionalmente como un patógeno oportunista en humanos y animales. Por otra parte, *B. subtilis* es aerobia presenta células de 0.7-0.8 x 2.0-3.0 μ m, sus endosporas son elipsoidales a cilíndricas, que se encuentran en posición central, paracentral o subterminal, su morfología colonial varía entre cepas. En general sus colonias son redondas o irregulares, con margen undulado a filamentoso. Todos estos datos extraídos de la bibliografía concuerdan con los resultados obtenidos (Figuras 7.2-7.17).

Figura 7.2 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de B. amyloliquefaciens spp. plantarum (der.) (1EB7). (Fuente: Propia)

Figura 7.3 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de *B. licheniformis* (der.) (1EB8). (Fuente: Propia)

Figura 7.4 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de *B. atrophaeus* (der.) (1EB11). (Fuente: Propia)

Figura 7.5 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de B. atrophaeus (der.) (1EM12). (Fuente: Propia)

Figura 7.6 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de B. atrophaeus (der.) (1EM13). (Fuente: Propia)

Figura 7.7 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de *B. amyloliquefaciens* spp. *plantarum* (der.) (1EB14). (Fuente: Propia)

Figura 7.8 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de B. subtilis (der.) (3EM1). (Fuente: Propia)

Figura 7.9 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de B. amyloliquefaciens (der.) (3EM2). (Fuente: Propia)

Figura 7.10 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de B. subtilis (der.) (3EM3). (Fuente: Propia)

Figura 7.11 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de B. subtilis (der.) (3EM4). (Fuente: Propia)

Figura 7.12 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de B. amyloliquefaciens (der.) (4EL2). (Fuente: Propia)

Figura 7.13 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de B. amyloliquefaciens aislada (der.) (4EP7). (Fuente: Propia)

Figura 7.14 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de B. amyloliquefaciens (der.) (4EE8). (Fuente: Propia)

Figura 7.15 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de B. amyloliquefaciens (der.) (5EL1). (Fuente: Propia)

Figura 7.16 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de B. amyloliquefaciens (der.) (5EL6). (Fuente: Propia)

Figura 7.17 Morfología colonial en AN (izq.), tinción Gram (centro) y de endosporas de B. subtilis (der.) (5EE7). (Fuente: Propia)

El género *Bacillus* ya ha sido reportado como parte de CRB (Luo *et al.*, 2021), además la resistencia de las endosporas depende de la especie y las condiciones ambientales durante la esporulación (Jo *et al.*, 2019). La resistencia al cloro se ha reportado en diversas especies de *Bacillus*, las cuales han soportado concentraciones de hasta 5,000 mg/L en tanques de cloro (Paes *et al.*, 2012). Las endosporas son más resistentes al estrés expuesto por la radiación, sustancias químicas y el calor que las células vegetativas (Jo *et al.*, 2019). Asimismo, las endosporas de patógenos exhiben mejor viabilidad que otros microorganismos después de un proceso de desinfección (Ding *et al.*, 2019).

7.2.2. Cinéticas de inactivación

Para los ensayos de desinfección convencional y secuencial se seleccionó una cepa de cada una de las especies identificadas las cuales fueron *B. licheniformis* (1EB8), *B. atrophaeus* (1EM13), *B. amyloliquefaciens* spp. *plantarum* (1EB14), *B. amyloliquefaciens* (3EM2) y *B. subtilis* (5EE7). En el **Anexo VI** se encuentran el conteo general de endosporas/mL.

7.2.2.1. Desinfección convencional con NaClO o PAA

La inactivación con NaClO de *B. licheniformis, B. atrophaeus, B. amyloliquefaciens* spp. plantarum, *B. amyloliquefaciens, B. subtilis* y *B. subtilis* (CDBB-1009) iniciaron con una concentración de 1x10¹⁶, 1.9x10¹⁰, 1.6x10¹², 2.6x10¹², 1.6x10¹² y 3x10¹¹ endosporas/mL, respectivamente. Por otra parte, para la inactivación con PAA las concentraciones fueron 2.5x10¹², 1.5x10¹⁵, 3.2x10¹⁵, 4.6x10¹⁵, 2x10¹¹ y 2x10¹³ endosporas/mL respectivamente. En la tabla 7.5 se resumen las UI y los valores de C·t obtenidos de las cepas representantes de cada especie y en las figuras 7.18 y 7.19 se muestra el residual del NaClO y PAA. Las inactivaciones con estos desinfectantes muestran que en tan solo en 45 minutos se obtiene remociones del 99.99% (> 4 log), con valores bajos de C·t para el caso del NaClO. Sin embargo, para el PAA podemos observar altos valores de C·t, lo anterior se atribuye a las concentraciones empleadas, así como al hecho de que no existe un consumo total del desinfectante por las endosporas.

Figura 7.18 Cloro residual de la desinfección de endosporas con NaClO de diversas especies de *Bacillus* aisladas. ^a: cepa certificada.

Figura 7.19 PAA residual de la desinfección de endosporas con PAA de diversas especies de *Bacillus* aisladas. ^a: cepa certificada.

Сера	В	. lichen	iformis	B. atrophaeus		B. amyloliquefaciens ssp. plantarum		B. amyloliquefaciens		B. subtilis			B. subtilis ^a					
Desinfectante	Т	UI	C∙t	Т	UI	C∙t	Т	UI	C∙t	Т	UI	C∙t	Т	UI	C∙t	Т	UI	C∙t
NaClO	20	-5.00	4.48	45	-4.28	36.75	45	-4.52	61.61	45	-5.31	72.06	45 ^b	- 4.19 ^b	91.87 ^b	45	-5.48	83.59
(30 mg/L)	100	- 13.66	24.82	100	-5.50	70.46	100	-7.81	108.09	100	-6.74	132.11	100 ^b	- 5.56 ^b	229.78 ^b	150	-6.76	266.61
PAA	30	-4.4	4003.64	45	-4.34	4071.92	45	-5.88	4810.38	45	-4.86	3425.80	100	0.00		30	-5.30	4114.6
(300 mg/L) ₁	100	-5.8	9890.91	100	- 12.13	8151.28	80	-7.34	7977.44	100	-5.90	7535.90	100	-3.82	10204.55	60	-5.80	6167.7

Tabla 7.5 Resultados de la desinfección de endosporas de diversas especies de *Bacillus* aisladas de una PTAR.

T: tiempo (min); UI: Unidades de inactivación (log N/N₀); C·t: dosis (mg⁻min/L). ^{a:} cepa certificada CDBB-1009; ^{b:} valores reportados por Ocampo-Rodríguez *et al.*, 2023.

En la figura 7.20 se muestra las curvas de inactivación de las endosporas con NaClO, de acuerdo con los resultados las cepas aisladas de *B. atrophaeus* y *B. subtilis* mostraron mayor resistencia al NaClO, en comparación con la cepa certificada. También se observó que *B. licheniformis* mostró mayor sensibilidad al NaClO. Las endosporas de *B. subtilis* tienen dos capas de recubrimiento y una capa basal entre la capa interna y la corteza, dichas capas les aportan resistencia a los agentes oxidantes como el peróxido de hidrógeno (H₂O₂), el hipoclorito y el dióxido de sodio (Leggett *et al.*, 2012).

Figura 7.20 Curvas de inactivación de endosporas de diversas especies de *Bacillus* aisladas con NaClO

El estudio de la inactivación de endosporas de especies de *Bacillus* spp. ha sido poco reportado, por ejemplo, Cho *et al.*, (2003) han logrado inactivar 3 log con un C·t =127 mg·min/L (pH. 5.6, cloro inicial de 2 mg/L) de endosporas de *B. subtilis* (ATCC 6633). En otro estudio con esta misma cepa Cho *et al.*, (2006) lograron inactivar 2.4 log de endosporas de *B. subtilis* (ATCC 6633) con 3 mg/L de cloro libre y un C·t = 120 mg·min/L. Rice *et al.*, (2005) emplearon cloro libre (2 mg/L) para inactivar endosporas de *Bacillus* spp. a pH 7 y 23 °C alcanzando inactivaciones de 4 log de *B. anthracis* (Sterne 34F2), *B. cereus* (ATCC 7039), *B. thuringiensis* (ATCC 35646) con valores de C·t = 90, 82 y 132 mg·min/L, respectivamente. Estos resultados son similares a los obtenidos en este trabajo, en el caso de *B. subtilis* (aislada y certificada) aunque la concentración empleada es mayor. En la literatura la mayor reducción reportada para endosporas de *B. subtilis*

(ATCC 6633) fue de 4.5 log con Cl₂ (6 mg/L, pH 7.5, C·t:140 mg·min/L) por Li *et al.*, (2018) y con el uso de luz pulsada intensa (7.40 J/cm²) se inactivaron 7 log de endosporas *B. subtilis* (KCCM 11315) por Jo *et al.*, 2019. Los resultados de la inactivación en este trabajo demuestran que el aumento en la concentración de NaClO contribuye a una mayor inactivación (>5 log) de endosporas de diversas especies de *Bacillus* spp. con valores de C·t dentro de los rangos reportados y cuya concentración residual de cloro se encuentra dentro de lo estipulado en la normativa vigente en México, a excepción de *B. subtilis* (aislada). Sin embargo, aún faltan estudios que demuestren si existe una correlación en el aumento de subproductos.

Por otra parte, en la figura 7.21 se muestran las curvas de inactivación con PAA, en la cual se observa que *B. atrophaeus* mostró mayor sensibilidad al PAA y *B. subtilis* aislada presentó mayor resistencia. En la literatura, Khadre y Yusef, 2001 han evaluado el efecto del H_2O_2 (100,000 mg/L, t: 1 min, 22 °C) en endosporas de diversas especies de *Bacillus* obteniendo unidades de inactivación de 0.32 a 1.6 log y en el caso de *B. subtilis* (OSU494) se inactivó 0.32 log con las mismas condiciones; con una concentración de 90 mg/L de H_2O_2 se obtuvo la inactivación de 6.5 log de endosporas de *B. subtilis* (ATCC 6633) con un tiempo de contacto de seis horas (Malik *et al.*, 2013).

Figura 7.21 Curvas de inactivación de endosporas de diversas especies de *Bacillus* aisladas con PAA.

En la literatura ya se ha reportado la MSC del PAA para inactivar cepas de *Bacillus* spp., la cual varía de 168 a 1,344 mg/L (Alasri *et al*, 1993). El empleo de 300 mg/L de PAA para inactivar endosporas de *B. subtilis* (PS533) se ha reportado por Setlow *et al.*, 2015, quienes logran inactivar 6 log y con esta misma concentración Sagripanti y Bonifacino, 1996 lograron inactivar 3.5 log de endosporas de *B. subtilis* subsp. globigii (ATCC 9372). En este estudio, los resultados de la inactivación con PAA (300 mg/L) en las endosporas de Bacillus con respecto a estos dos últimos autores, muestran resultados similares de remoción. Sin embargo, los tiempos de inactivación obtenidos fueron menores. Además, es importante mencionar que en este estudio no se logró la remoción deseada (99.99% equivalente a 4 log) de B. subtilis aislada (3.82 log), a pesar de que aún existe desinfectante disponible en el medio (162.54 mg/L de PAA), anteriormente ya se han reportado inactivaciones > 4 log de esta misma cepa con concentración de 5 y 15 mg/L de PAA (Ocampo-Rodríguez, et al., 2023). Esta comparación nos indica que el incremento de concentración del desinfectante no aumenta la inactivación de las endosporas de las bacterias de esta especie. La resistencia a este desinfectante puede atribuirse a las capas que poseen las endosporas, entre las cuales destaca la proteína de la cubierta, la corteza, así como a la baja permeabilidad de la membrana interna (Setlow, 2016). En la literatura no se reportan concentraciones residuales de PAA en ensayos de desinfección. Además, las concentraciones empleadas para inactivar microorganismos indicadores de la calidad del agua son menores a los 12 mg/L (Ocampo-Rodríguez et al., 2022), la cual es una concentración baja en comparación a la utilizada en este estudio. Los valores de C·t demuestran la resistencia al desinfectante empleado, no obstante, su aplicación para la inactivación de endosporas con PAA es inverso a lo reportado.

7.2.2.1.1. Modelos cinéticos de desinfección

Los resultados experimentales de inactivación microbiana se graficaron individualmente y a partir de las curvas obtenidas se seleccionó el modelo cinético de desinfección de mejor ajuste. La inactivación de endosporas de *B. atrophaeus, B. amyloliquefaciens* spp. *plantarum, B. amyloliquefaciens, B. subtilis* y *B. subtilis* (CDBB-1009) con NaClO mostraron curvas con una tendencia lineal seguida de un efecto de cola a

partir de los 60 min y en el caso de B. licheniformis y B. amyloliquefaciens spp. plantarum se obtuvo una tendencia lineal. En cuanto a la inactivación con PAA también se observó esta tendencia, aunque el efecto cola apareció a los 45 min. De acuerdo con Artíguez y de Marañón, 2015 el efecto cola puede ser una consecuencia de la proximidad al nivel máximo de inactivación que se puede detectar o cuando existe una mayor densidad de poblaciones microbianas, por lo que se muestra esta fase de desaceleración. A partir de estas observaciones se seleccionaron los modelos cinéticos que describen dichos efectos, en las tablas 7.6 y 7.7 se muestran los parámetros cinéticos de los modelos probados para cada desinfectante. Posteriormente, se seleccionó el modelo de mayor ajuste ($R^2 > 0.9500$) para cada bacteria. En el caso de *B. licheniformis* y *B.* amyloliquefaciens spp. plantarum de acuerdo con manual de GInaFiT el modelo de Geeraerd no pude ser utilizado para los resultados experimentales ya que la curva obtenida carece de las características típicas de este ajuste. La desinfección de endosporas de B. atrophaeus, B. amyloliquefaciens, y B. subtilis (aislada y certificada) con NaClO se pueden describir con el modelo de Geeraerd, el cual proporciona la constante de letalidad, cuyos valores (0.22-0.29) no difieren mucho entre sí. Por otra parte, el valor de N_{res} obtenido indica que existen endosporas con resistencia a este desinfectante o en todo caso el nivel máximo de inactivación, B. subtilis aislada mostró mayor concentración de 6.9 log contrario a B. subtilis certificada que fue más sensible (4.76 log). En la figura 7.22 se muestran las curvas obtenidas a partir de los modelos que mejor se ajustaron.

El modelo de Weibull se ha aplicado ampliamente a la inactivación microbiana por diversos agentes oxidantes, aunque originalmente se formuló para predecir el tiempo de fallo de componentes mecánicos (Malik *et al.*, 2013). Las curvas de inactivación que se obtuvieron para *B. licheniformis* y *B. amyloliquefaciens* spp. *plantarum* se observaron lineales pero el modelo de Weibull fue el que mejor se ajustó, el valor de p nos indica que son curvas cóncavas hacia arriba o convexas para ambos casos.

Modelo	Ch	lick		We	eibull		Geeraerd					
Bacteria	K _{max}	R ²	Δ	р	log (N₀)	R ²	K _{max}	log (N _{res})	log (N₀)	R ²		
B. licheniformis	0.29	0.9647	3.45	0.76	15.86	0.9787	N/A	N/A	N/A	N/A		
B. atrophaeus	0.14	0.8788	10.59	0.80	10.13	0.9188	0.22	5.02	10.5	0.9806		
B. amyloliquefaciens spp. plantarum	0.19	0.9594	6.81	0.80	12.61	0.9732	N/A	N/A	N/A	N/A		
B. amyloliquefaciens	0.17	0.8655	3.5	0.61	12.76	0.9326	0.27	5.86	12.61	0.9943		
B. subtilis	0.13 ^b	11.45 ^b	10.32 ^b	$0.77^{\rm b}$	12.19 ^b	0.9015^{b}	0.23 ^b	6.9 ^b	12.19 ^b	0.9783 ^b		
B. subtilis ^a	0.11	0.6576	1.81	0.48	12.01	0.8174	0.29	4.76	12	0.9794		

Tabla 7.6 Modelos cinéticos de la desinfección de endosporas de diversas especies de Bacillus con NaClO.

 K_{max} : constante de letalidad (min⁻¹); R²: coeficiente de determinación; Δ: constante cinética (tiempo de reducción decimal); p: constante cinética (curvas cóncavas hacia arriba, p<1; hacia abajo, p>1); N₀: número inicial de microorganismos antes de la desinfección; N_{res}: número de microorganismos resistentes; N/A: el modelo no es aplicable para los datos experimentales. ^a: cepa certificada de CDBB-1009; ^b: resultados reportados por Ocampo-Rodríguez *et al.*, 2023. En gris valor del coeficiente de determinación del modelo cinético con mejor ajuste.

Modelo	с	hick			Weibull		Geeraerd					
Bacteria	K _{max}	R ²	Δ	р	log (N ₀)	R ²	K _{max}	log (N _{res})	log (N ₀)	R ²		
B. licheniformis	0.14	0.7721	1.69	0.47	12.65	0.9016	0.3	5.62	12.45	0.9830		
B. atrophaeus	0.21	0.9738	13.66	1.19	14.6	0.965	N/A	N/A	N/A	N/A		
B. amyloliquefaciens spp. plantarum	0.23	0.9454	5.11	0.76	15.64	0.9633	0.29	8.19	15.55	0.9930		
B. amyloliquefaciens	0.14	0.8325	2.67	0.53	15.94	0.9245	0.27	9.97	15.7	0.9588		
B. subtilis	0.09	0.7522	13.91	0.7	10.85	0.8268	0.22	7.45	11.61	0.9824		
B. subtilis ^a	0.23	0.8735	2.36	0.58	13.56	0.9374	0.43	7.69	13.41	0.9964		

Tabla 7.7 Modelos cinéticos de la desinfección de endosporas de diversas especies de Bacillus con PAA.

 K_{max} : constante de letalidad (min⁻¹); R²: coeficiente de determinación; Δ: constante cinética (tiempo de reducción decimal); p: constante cinética (curvas cóncavas hacia arriba, p<1; hacia abajo, p>1); N₀: número inicial de microorganismos antes de la desinfección; N_{res}: número de microorganismos resistentes; N/A: el modelo no es aplicable para los datos experimentales. ^a: cepa certificada de CDBB-1009; ^b: resultados reportados por Ocampo-Rodríguez *et al.*, 2023. En gris valor del coeficiente de determinación del modelo cinético con mejor ajuste.

b)

a)

Figura 7.22 Modelos cinéticos de la desinfección de endosporas con NaClO a) *B. licheniformis,* b) *B. atrophaeus,* c) *B. amyloliquefaciens* spp. *plantarum,* d) *B. amyloliquefaciens,* e) *B. subtilis* (reportado por Ocampo-Rodríguez *et al.,* 2023) y f) *B. subtilis* (CDBB-1009).

En la literatura el modelo cinético de la desinfección de endosporas de *B. subtilis* con cloro se ha ajustado con el modelo de retraso de Chick-Watson, el cual describe la existencia de una fase lag o de hombro seguida de un descenso lineal (Cho *et al.*, 2003; Larson y Mariñas, 2003; Cho *et al.*, 2006; Li *et al.*, 2018, Choi *et al.*, 2022).

En estos ensayos se emplearon concentraciones menores a los 10 mg/L de Cl₂, por lo cual el coeficiente de letalidad y el modelo, no se pueden comparar con el tratamiento de esta investigación, ya que las concentraciones triplican lo reportado por dichos autores. Además, la presencia o ausencia de un hombro en las curvas de inactivación pueden atribuirse a la resistencia celular, mientras que las más resistentes mostraron un hombro y por el contrario, está ausente en cepas más sensibles (Artíguez y de Marañón, 2015). Por otra parte, se ha demostrado que las cinéticas de inactivación pueden variar dependiendo de los medios de crecimiento a partir de los cuales se obtuvieron las endosporas (Aronson y Fitz-James, 1976; Leaper, 1984).

La desinfección de endosporas con PAA también se describen con el modelo de Geeraerd, a excepción de *B. atrophaeus* que se describe con el modelo de Chick, debido a su sensibilidad a este desinfectante. En la figura 7.23 se muestran las curvas de inactivación obtenidas por los modelos de mejor ajuste. El aumento en la concentración de endosporas resistentes con este tratamiento se debe a la concentración inicial con la que empezó el ensayo de inactivación. Lo anterior sugiere que la densidad microbiológica es un parámetro de importancia para obtener los modelos que describen la desinfección. Al igual que en la desinfección con NaClO las constantes de letalidad no difieren entre sí. La desinfección de endosporas de *B. subtilis* con PAA se ha descrito con el modelo de Weibull (Leggett *et al.*, 2016) y con el uso de luz pulsada se describe utilizaron la herramienta de GInaFiT para obtener los modelos cinéticos. Las variaciones de los diferentes ensayos de inactivación dificultan la comparación exacta de la eficiencia de los desinfectantes y los modelos cinéticos de inactivación contra las endosporas de *B. subtilis* (Cho, *et al.*, 2006).

Figura 7.23 Modelos cinéticos de la desinfección de endosporas con PAA a) *B. licheniformis*, b) *B. atrophaeus*, c) *B. amyloliquefaciens* spp. *plantarum*, d) *B. amyloliquefaciens*, e) *B. subtilis* y f) *B. subtilis* (CDBB-1009).

7.2.2.1.2. Análisis estadístico

De acuerdo con la prueba de Kolmogorov-Smirnov (P < 0.050), los datos presentaron una distribución no paramétrica. Las pruebas post hoc indican que hay diferencias significativas entre los tiempos de inactivación con NaClO a partir de los 20 minutos debido a que en la mayoría de las cepas se mostró el mayor número de VRL de ~ 2 log. En el caso del PAA, las pruebas indican que no hay diferencias significativas a partir de los 30 min, de tal modo que el tiempo de contacto se podría disminuir a dichos tiempos. Cabe señalar que esta prueba no refleja, la importancia de tener una eliminación por completa de endosporas, las cuales pueden proliferar después de estos tiempos de contacto. Por otra parte, se realizó la comparación entre estos dos tratamientos mediante una prueba de Mann-Whitney con el 95% de confianza, para los cuales se obtuvieron resultados diferentes en el caso de *B. licheniformis* (U=188, T=484, n=21, P=0.421), B. subtilis (aislada, U=203, T=469, n=21, P=0.669) y B. subtilis (certificada, U=274, T=398, n=21, P=0.182), no hay diferencias significativas entre la inactivación de NaClO o PAA. En el caso de B. atrophaeus (U=354, T=318, n=21, P≤0.001), B. amyloliquefaciens spp. plantarum (U=331, T=341, n=21, P=0.006) y B. amyloliquefaciens $(U=368.5, T=303.5, n=21, P \le 0.001)$, indican que, sí hay diferencias significativas entre la desinfección con NaClO y PAA, lo que evidencia que el PAA es más efectivo para inactivar endosporas de estas especies.

7.2.2.2. Desinfección secuencial NaClO – PAA

La desinfección secuencial de *B. licheniformis*, *B. atrophaeus*, *B. amyloliquefaciens* spp. *plantarum*, *B. amyloliquefaciens*, *B. subtilis* y *B. subtilis* (CDBB-1009) iniciaron con concentraciones de 3x10¹², 3.4x10¹⁴, 1.46x10¹³, 5.22x10¹⁴, 1x10¹³ y 7.50x10¹² endosporas/mL, respectivamente. La adición del segundo desinfectante (PAA) se realizó después del NaClO a los 60 min ya que corresponde al tiempo en el que se observó el efecto cola en las desinfecciones individuales. En la figura 7.24 se observan las curvas de inactivación y en la tabla 7.8 se resumen las unidades de inactivación obtenidas por la desinfección secuencial, así como el valor del sinergismo obtenido a partir de la ecuación 4. Durante la desinfección secuencial se puede observar un

aumento en las unidades de inactivación de endosporas para todas las especies de *Bacillus* de este estudio, esto se puede atribuir a que el NaClO daña las primeras capas de la endospora, permitiendo una difusión más rápida del PAA en la membrana interna y el núcleo de la endospora. Lo anterior concuerda con Cho *et al.*, 2006 quienes reportan que, en este tipo de desinfección, el segundo desinfectante atraviesa las capas de la endospora que ya ha sido dañada por el primer desinfectante, lo que conlleva a que el segundo desinfectante reaccione con los componentes vitales de la endospora. El PAA ejerce su actividad esporicida mediante el daño a las proteínas de la membrana interna (Leggett *et al.*, 2015). Además, se ha reportado que el H₂O₂ (componente del PAA) inactiva las enzimas del núcleo (Setlow, 2016), aunque no se sabe si estos daños interrumpen el proceso de germinación de las endosporas (Leggett *et al.*, 2015).

El estudio de la eliminación de endosporas por desinfección secuencial ha sido poco investigado; Cho *et al.*, 2006, probaron diferentes desinfectantes (ozono, dióxido de cloro, cloro libre y radiación UV) a diferentes pH (5.6 y 8.2). Dichos autores aseguran que la desinfección secuencial de dióxido de cloro (2 mg/L) seguida de cloro libre (3 mg/L) inactivó 2 log con un C·t: 28 mg·min/L, este tratamiento mostró mayor sinergia que la combinación de los otros desinfectantes mencionados. Por otra parte, Cho *et al.*, 2011 emplearon UV/H₂O₂ (21 mJ/cm², 0.60 nM) como primera desinfección seguida de cloro libre (0.15 mg/L) con lo que lograron inactivar 3.3 log de endosporas de *B. subtilis*.

Figura 7.24 Curvas de inactivación de la desinfección secuencial de endosporas con NaClO-PAA.

Otras investigaciones utilizan AOP para inactivar endosporas por ejemplo Li *et al.*, 2018 lograron inactivar ~4 log endosporas de *B. subtilis* con UV/Cl (15 mJ/cm², 4 mg/L). Jung *et al.*, 2008 demostraron que el empleo de ozono/UV (2 mg/L, 0.1 mW/cm²) presenta un mejor efecto sinérgico en la inactivación de endosporas de *B. subtilis* (3 log). Zhang *et al.*, 2014 emplearon UV/H₂O₂ (0.60 nM, 113 μ M/cm²) obteniendo así 4.13 log de inactivación de endosporas de *B. subtilis*. También se ha reportado el uso de UV/ peroxidisulfato (30 mJ/cm², 0.3 mM) (Sun *et al.*, 2016) o UV/persulfato para inactivar 4 log y 4.1 log de endosporas de *B. subtilis*, respectivamente (Sabeti *et al.*, 2017). Los resultados obtenidos en esta investigación con un proceso de desinfección secuencial de NaClO-PAA demuestran inactivaciones mayores incluso al compararlos con otros desfinfectantes, lo cual resulta un tratamiento con amplias aplicaciones, alternativo a la desinfección convencional para la eliminación de endosporas.

El sinergismo en este tratamiento está determinado por la capacidad del desinfectante primario para alterar las estructuras físicas y químicas de las capas de la endospora y facilitar el posterior transporte y actuación del desinfectante secundario (Cho *et al.*, 2006).

Desinfección		Conve	ncional		Secuencial					
Desinección	Na	iClO	F	PAA 🛛	NaClO-PAA					
Bacteria	Т	UI	Т	UI	Т	UI	Sinergismo			
B. licheniformis	60	-8.00	60	-6.09	120	-6.89	-7.20			
B. atrophaeus	60	-4.60	60	-6.58	120	-10.95	-0.23			
B. amyloliquefaciens spp. plantarum	60	-5.61	60	-7.03	120	-10.92	-1.72			
B. amyloliquefaciens	60	-6.15	60	-5.36	120	-13.24	1.73			
B. subtilis	60	-4.88	60	-3.90	120	-7.36	-1.42			
B. subtilis ^a	60	-6.48	60	-5.80	120	-11.88	-2.04			

Tabla 7.8 Unidades de inactivación de la desinfección convencional y secuencial de endosporas de diversas especies de *Bacillus* aisladas con NaClO y PAA.

T: tiempo (min); UI: Unidades de inactivación (log N/N_0); ^{a:} cepa certificada de *B. subtilis* CDBB-1009.

Los valores del sinergismo obtenidos en esta investigación fueron negativos, por tanto, estos resultados indican que existe un antagonismo entre los desinfectantes, debido a su naturaleza o por qué algunas endosporas son más sensibles a un desinfectante que a otro, lo que puede afectar la obtención del valor positivo del sinergismo (Ocampo-Rodríguez *et al.*, 2022). Por otra parte, las endosporas son resistentes a una diversidad de agentes oxidantes de tal modo que es posible que no se logre la difusión del PAA a la membrana interna y a los componentes vitales de esta. Cabe señalar que *B. amyloliquefaciens* fue la única cepa con la que se obtuvo un valor positivo de sinergismo. Las endosporas de esta especie tuvieron una respuesta similar con el NaClO y PAA usados independientemente, por lo que puede ser la razón de una mayor inactivación. Los resultados de la presente investigación no son contundentes para afirmar que la desinfección secuencial es considerada un tratamiento viable para el control de endosporas que no son eliminadas de manera efectiva por un proceso de desinfección convencional (Cho *et al.*, 2006)

7.2.2.2.1. Análisis estadístico

De acuerdo con la prueba de Kolmogorov-Smirnov (P < 0.050), los datos presentaron una distribución no paramétrica. Se realizó una prueba de Kruskal Wallis para todas las cepas, aunque esta demostró que no hubieran diferencias significativas entre los tres tratamientos de desinfección (H = 0.604, gl= 2; P = 0.739), se optó por realizar las pruebas post hoc (HSD Tukey, DMS y subconjuntos homogéneos), de las cuales se observó la existencia de diferencias significativas en la inactivación a los tiempos 60 y 100 min solo para *B. licheniformis* (P=0.000) y *B. subtilis* (aislada, P=0.000) por lo que el tratamiento de desinfección consecutiva es efectivo para estas especies, que es contrario a lo que nos indican los valores sinérgicos de -6.89 y -7.36 respectivamente. En los casos *de B. atrophaeus, B. amyloliquefaciens* spp. *plantarum, B. amyloliquefaciens* y *B. subtilis* (certificada) las pruebas mostraron que no hay diferencia significativa (P=1) entre los 60 min y 100 min, esto sugiere que para estas cepas un tratamiento consecutivo no aumenta la inactivación, al igual que en el caso anterior esto es contrario a lo que se interpreta con los valores sinérgicos. En la desinfección secuencial se obtuvo una mayor inactivación ~8 log por parte del primer desinfectante y con el segundo se obtuvo <4 log, es por esto por lo que en el análisis estadístico no existieron diferencias significativas entre los 60 min y 100 min, ya que solo considera como base los VRL obtenidos por el NaClO. Dicha información indica que el análisis estadístico no es herramienta para medir la eficiencia del tratamiento consecutivo.

8. CONCLUSIONES

En esta investigación, se aislaron diversas cepas del efluente de una PTAR, las cuales fueron identificadas morfológica, bioquímica y molecularmente. La identificación taxonómica resultante fue *S. pasteuri, K. pneumoniae* y en su mayoría especies del género *Bacillus*, mismas que son resistentes a la exposición al cloro gas propio de la desinfección de la PTAR. Estas bacterias pueden ser candidatas como nuevas indicadoras de la calidad microbiológica del agua. Es factible obtener una diversidad de microorganismos en los efluentes de las PTAR a pesar de llevar a cabo un proceso de desinfección, sobre todo de aquellas especies que presentan estructuras de resistencia, como lo son las endosporas de estas bacterias. Es necesario realizar ensayos de desinfección con cepas autóctonas de los cuerpos de agua y aisladas de estos medios, ya que en su mayoría se han utilizado cepas certificadas, las cuales responden de modo distinto a la desinfección. Las cepas autóctonas suelen mostrar mayor resistencia a los desinfectantes comúnmente empleados, tanto en su forma vegetativa como en endosporas cuando las forman.

Se realizaron ensayos de desinfección convencional con células vegetativas, así como de estructuras de resistencia. En estas cinéticas de inactivación *K. pneumoniae* mostró mayor resistencia al PAA que al NaClO, por el contrario, la inactivación de las endosporas de *B. subtilis*, resultó más efectivo el PAA con concentraciones menores. Los resultados de la desinfección convencional demuestran que un aumento en la concentración de los desinfectantes empleados comúnmente como el cloro, pueden mejorar la inactivación de microorganismos que presentan resistencia a este proceso, aunque hacen falta estudios acerca de la formación de subproductos al utilizar estas concentraciones.

Los modelos cinéticos obtenidos para la inactivación de *S. pasteuri, K. pneumoniae* y *B. subtilis* con NaClO y PAA mostraron curvas con tendencia cóncava y lineal con efecto de cola, respectivamente, las cuales se puede describir en su mayoría con el modelo de Weibull y Geeraerd.

El modelo que mejor explica la inactivación de endosporas de las cepas aisladas fue el de Geeraerd, ya que exhiben curvas de inactivación caracterizadas por una tendencia lineal seguidas de un efecto de cola, lo cual demuestra que existen endosporas que resisten el efecto del NaClO y PAA.

En el caso de la desinfección secuencial, se logró una mayor inactivación de las endosporas de las diversas especies de *Bacillus* aisladas y cepa certificada respecto a las cinéticas individuales para cada desinfectante a pesar de que no hubo sinergismo. Las cepas aisladas *B. atrophaeus* y *B. subtilis* mostraron mayor resistencia al NaClO contrario a *B. licheniformis* que mostró mayor sensibilidad. En general, los resultados de la inactivación con PAA de endosporas remueven el 99.99% con excepción de *B. subtilis* (aislada)

Este trabajo es pionero en desarrollar análisis de los efectos de la desinfección sobre diversas cepas aisladas de efluentes de las PTAR, por lo que es necesario contar con más datos de cepas silvestres en otras PTAR que permitan comparar los resultados con las cepas certificadas.

9. PERSPECTIVAS

La presente investigación permitió comprobar la presencia de bacterias formadoras de endosporas con resistencia a la cloración y su identificación en el efluente de una PTAR. Además, se realizaron las cinéticas de inactivación con el empleo de NaClO, PAA y de un proceso de desinfección secuencial (NaClO-PAA), las cuales se pueden considerar como la base de un tratamiento alterno a la cloración. Asimismo, se hizo el análisis comparativo con una cepa certificada de *B. subtilis*. Sin embargo, se recomienda realizar estas mismas cinéticas con el AR de la PTAR, considerando parámetros y características fisicoquímicas del AR, Es de suma importancia realizar las pruebas con el AR, ya que contiene materia orgánica con la que los desinfectantes pueden reaccionar y afectar la eficiencia de la inactivación. Asimismo, se requiere analizar los subproductos que se pueden generar después de un proceso de desinfección secuencial con NaClO seguido de PAA y verificar la toxicidad.

A pesar de que la mayoría de las bacterias aisladas son formadoras de endosporas, es importante realizar investigaciones con el objetivo de encontrar genes de resistencia a la cloración. También se sugiere llevar a cabo pruebas de resistencia a antibióticos, con el fin de comprobar la resistencia cruzada que pueda existir en estas bacterias.

En la literatura existe una diversidad de investigaciones respecto a los tratamientos de desinfección. Sin embrago, es necesario que las nuevas investigaciones se enfoquen en los microorganismos con resistencia a la cloración en forma de consorcios y den pauta para actualizar y renovar a los microorganismos indicadores de la calidad del agua.

Debido a la resistencia de los microorganismos a los desinfectantes, es recomendable sustituir los tratamientos convencionales por aquellos avanzados, tales como los simultáneos o secuenciales, para asegurar una mejor calidad microbiológica del agua.

10. REFERENCIAS

- Adeyemo, F.E., Singh, G., Reddy, P., Bux, F. y Stenström, T.A. (2019). Efficiency of chlorine and UV in the inactivation of *Cryptosporidium* and *Giardia* in wastewater. *PLOS ONE*, 14(5), e0216040. <u>https://doi.org/10.1371/journal.pone.0216040</u>
- Aghalari, Z., Dahms, HU., Sillanpää, M., Sosa-Hernandez, J.E. y Parra-Saldívar, R. (2020). Effectiveness of wastewater treatment systems in removing microbial agents: a systematic review. *Globalization and Health*, 16:13, 1-11. https://doi.org/10.1186/s12992-020-0546-y
- Aguilar, S., Rosado, D., Moreno-Andrés, J., Cartuche, L., Cruz, D., Acevedo-Merino, A. y Nebot, E. (2017). Inactivation of a wild isolated *Klebsiella pneumoniae* by photochemical processes: UV-C, UV-C/H₂O₂, and UV-C/H₂O₂/Fe³⁺. *Catalysis Today*, 313, 94-99. <u>https://doi.org/10.1016/j.cattod.2017.10.043</u>
- Alasri, A., Valverde, M., Roques, C., Michel, G., Cabassud, C. y Aptel, P. (1993). Sporicidal properties of peracetic acid and hydrogen peroxide, alone and in combination, in comparison with chlorine and formaldehyde for ultrafiltration membrane disinfection. *Canadian Journal of Microbiology*, 39(1), 52-60. https://doi.org/10.1139/m93-008
- Ao, X.W., Eloranta, J., Huang, C.H., Santoro, D., Sun, W.J., Lu, Z.D., y Li, C. (2021). Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. *Water research*, 188, 116479. <u>https://doi.org/10.1016/j.watres.2020.116479</u>
- American Public Health Association (APHA). (2012). Method 4500-CL: Standard Methods for the Examination of Water and Wastewater, 22nd ed. American Public Health Association: Washington, D.C., USA, 4-67.
- Aronson, A. y Fitz-James, P. (1976). Structure and Morphogenesis of the Bacterial Spore Coat. *Bacteriological Reviews*, 40(2), 360-402. <u>https://doi.org/10.1128/br.40.2.360-402.1976</u>
- Artíguez, M.L., y de Marañón, I.M. (2015). Inactivation of spores and vegetative cells of Bacillus subtilis and Geobacillus stearothermophilus by pulsed light. Innovative Food Science and Emerging Technologies, 28, 52-58. https://doi.org/10.1016/j.ifset.2015.01.001
- Atlas, R.M. (2010). Handbook of Microbiological Media. 4th ed. Taylor y Francis Group: Washington, D.C., USA, 428.
- Beber de Souza, J., Queiroz V.F., Jeranoski, R.F., Vidal, C.M.D S., y Cavallini, G.S. (2015). Water and wastewater disinfection with peracetic acid and UV radiation and using advanced oxidative process PAA/UV. *International Journal of Photoenergy*. <u>https://doi.org/10.1155/2015/860845</u>

- Block, P., Reimers, R. y Xu, Y. (2015). Use of peracetic acid as a wastewater disinfectant to eliminate the formation of chlorinated disinfection by-products and inhibit the activity of endocrine disrupting compounds. *Proceedings of the Water Environment Federation*, 2015(9), 528-535. <u>https://doi.org/10.2175/193864715819555328</u>
- Bock, L.J., Wand, M.E. y Sutton, J.M. (2016). Varying activity of chlorhexidine-based disinfectants against *Klebsiella pneumoniae* clinical isolates and adapted strains. *Journal of Hospital Infection*, 93(1), 1-7. https://doi.org/10.1016/j.jhin.2015.12.019
- Bonetta, S., Pignata, C., Bonetta, S., Amagliani, G., Brandi, G., Gilli, G. y Carraro, E. (2021). Comparison of UV, Peracetic Acid and Sodium Hypochlorite Treatment in the Disinfection of Urban Wastewater. *Pathogens*, 10, 182. <u>https://doi.org/10.3390/pathogens10020182</u>
- Bridier, A., Briandet, R., Thomas, V. y Dubois-Brissonnet, F. (2011). Comparative biocidal activity of peracetic acid, benzalkonium chloride, and orthophthalaldehyde on 77 bacterial strains. *Journal of Hospital Infection*, 78, 208-213. https://doi.org/10.1016/j.jhin.2011.03.014
- Cai, M., Sun, P., Zhang, L. y Huang, C.H. (2017). UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation. *Environmental Science and Technology*, 51(24), 14217-14224. <u>https://doi.org/10.1021/acs.est.7b04694</u>
- Campo, N., De Flora, C., Maffettone, R., Manoli, K., Sarathy, S., Santoro, D., Gonzalez-Olmos, R. y Auset, M. (2020). Inactivation kinetics of antibiotic-resistant *Escherichia coli* in secondary wastewater effluents by peracetic and performic acids. *Water Research*, 169, 115227. <u>https://doi.org/10.1016/j.watres.2019.115227</u>
- Cavallini, G.S., de Campos, S.X., Beber de Souza, J. y Vidal, A.M. (2013). Comparison of methodologies for determination of residual peracetic acid in wastewater disinfection. *International Journal of Environmental Analytical Chemistry*, 93(8), 906-918. <u>http://dx.doi.org/10.1080/03067319.2012.702274</u>
- Chhetri, R.K., Baun, A. y Andersen, H.R. (2019). Acute toxicity and risk evaluation of the CSO disinfectants performic acid, peracetic acid, chlorine dioxide and their by-products hydrogen peroxide and chlorite. *Science of the Total Environment*, 677, 1–8. <u>https://doi.org/10.1016/j.scitotenv.2019.04.350</u>
- Chhetri, R.K., Klupsch, E., Andersen, H.R. y Jensen, P.E. (2018). Treatment of Arctic wastewater by chemical coagulation, UV, and peracetic acid disinfection. *Environmental Science and Pollution Research*, 25(33), 32851-32859. https://doi.org/10.1007/s11356-017-8585-5
- Chick, H. An investigation of the laws of disinfection. (1908). *Journal of Hygiene*, 8(1), 92-158. <u>https://doi.org/10.1g017/S0022172400006987</u>

- Cho, M., Gandhi, V., Hwang, T.M., Lee, S., y Kim, J.H. (2011). Investigating synergism during sequential inactivation of MS-2 phage and *Bacillus subtilis* spores with UV/H₂O₂ followed by free chlorine. *Water Research*, 45(3), 1063-1070. <u>https://doi.org/10.1016/j.watres.2010.10.014</u>
- Cho, M., Kim, J.H. y Yoon, J. (2006). Investigating synergism during sequential inactivation of *Bacillus subtilis* spores with several disinfectants. *Water Research*, 40, 2911-2920. <u>https://doi.org/10.1016/j.watres.2006.05.042</u>
- Cho, M., Chung, H., y Yoon, J. (2003). Quantitative Evaluation of the synergistic sequential Inactivation of *Bacillus subtilis* Spores with Ozone Followed by Chlorine. *Environmental Science and Technology*, 37(10), 2134-2138. <u>https://doi.org/10.1021/es026135h</u>
- Choi, Y., Byun, S.H., Jang, H.J., Kim, S.E. y Choi, Y. (2022). Comparison of disinfectants for drinking water: chlorine gas vs. On-site generated chlorine. *Environmental Engineering Research*, 27(1), 200543. <u>http://dx.doi.org/10.4491/eer.2020.543</u>
- Collivignarelli, M.C., Abbá, A., Alloisio, G., Gozio, E. y Benigna, I. (2017). Disinfection in wastewater treatment plants: Evaluation of effectiveness and acute toxicity effects. *Sustainability*, 9(10), 1704. <u>https://doi.org/10.3390/su9101704</u>
- Collivignarelli, M.C., Abbá, A., Benigna, I., Sorlini, S. y Torretta, V. (2018). Overview of the main Disinfection Processes for Wastewater and Drinking water Treatment Plants. *Sustainability*, 10(1), 86. <u>https://doi.org/10.3390/su10010086</u>
- Collivignarelli, M.C., Abbá, A., Miino, M.C., Caccamo, F.F., Torretta, V., Rada, E.C. y Sorlini, S. (2021). Disinfection of wastewater by UV-Based Treatment for Reuse in a Circular Economy Perspective. Where are we at? *International Journal Environmental Research and Public Health*, 18(1), 77. <u>https://doi.org/10.3390/ijerph18010077</u>
- Corona-Vasquez, B., Samuelson, A., Rennecker, J. L., y Mariñas, B. J. (2002). Inactivation of *Cryptosporidium parvum* oocysts with ozone and free chlorine. *Water Research*, 36(16), 4053-4063. <u>https://doi.org/10.1016/S0043-1354(02)00092-1</u>
- Crini, G. y Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. *Environmental Chemistry Letters*, 17 (1), 145-155. https://doi.org/10.1007/s10311-018-0785-9
- da Silva, W.P., Carlos, T.D., Cavallini, G.S. y Pereira, D.H. (2020). Peracetic acid: Structural elucidation for applications in wastewater treatment. *Water Research*, 168, 115143. <u>https://doi.org/10.1016/j.watres.2019.115143</u>
- Dang, T.T., Imai, T., Le, T.V., Nguyen, D.K., Higuchi, T., Kanno, A., Yamamoto, K. y Sekine, M. (2016). Synergistic effect of pressurized carbon dioxide and sodium hypochlorite on the inactivation of *Enterococcus* sp. in seawater. *Water Research*, 106, 204-213. <u>https://doi.org/10.1016/j.watres.2016.10.003</u>
- Destiani, R., y Templeton, M. R. (2019). Chlorination and ultraviolet disinfection of antibiotic-resistant bacteria and antibiotic resistance genes in drinking water. *AIMS Environmental Science*, 6(3), 222-241. <u>https://doi.org/10.3934/environsci.2019.3.222</u>
- Di Cesare, A., Corno, G., Manaia, C. M., y Rizzo, L. (2020). Impact of disinfection processes on bacterial community in urban wastewater: should we rethink microbial assessment methods? *Journal of Environmental Chemical Engineering*, 8(5), 104393. <u>https://doi.org/10.1016/j.jece.2020.104393</u>
- Ding, W., Jin, W., Cao, C., Zhou, X., Wang, C., Jiang, Q., Huang, H., Tua, R., Hana, S. y y Wang, Q. (2019). Ozone disinfection of chlorine-resistant bacteria in drinking water. *Water Research*, 160, 339-349. <u>https://doi.org/10.1016/j.watres.2019.05.014</u>
- Dinka, M. O. (2018). Safe Drinking Water: Concepts, Benefits, Principles and Standards. In: Water Challenges of an Urbanizing Worl. *IntechOpen*, 163-182 <u>http://dx.doi.org/10.5772/intechopen.71352</u>
- Diario Oficial de la Federación (DOF). Norma Oficial Mexicana NOM-001-SEMARNAT-2022, Que establece los límites permisibles de contaminantes en las descargas de aguas residuales en cuerpos receptores propiedad de la nación. 11 de marzo de 2022. <u>https://www.dof.gob.mx/nota_detalle.php?codigo=5645374yfecha=11/03/20</u> 22#gsc.tab=0
- Diario Oficial de la Federación (DOF). Norma Oficial Mexicana NMX-K-281-NYCE-2018, Concentración de hipoclorito de sodio en solución-Método de prueba. 31 de agosto de 2018. <u>https://www.dof.gob.mx/nota_detalle.php?codigo=5539841&fecha=03/10/20</u> <u>18#gsc.tab=0</u>
- Diario Oficial de la Federación (DOF). Norma Oficial Mexicana NMX-AA-108-SCFI-2001, Calidad del agua – Determinación de cloro libre y cloro total – Método de prueba. 13 de agosto de 2001. <u>https://www.gob.mx/cms/uploads/attachment/file/166806/NMX-AA-108-SCFI-2001.pdf</u>
- Driedger, A. M., Rennecker, J. L., y Mariñas, B. J. (2000). Sequential inactivation of *Cryptosporidium parvum* oocysts with ozone and free chlorine. *Water Research*, 34(14), 3591-3597. <u>https://doi.org/10.1016/S0043-1354(00)00097-X</u>
- Drogui, P. y Daghrir, R. (2015). Chlorine for water disinfection: Properties, applications and health effects. In: CO2 Sequestration, Biofuels and Depollution. (E. Lichtfouse, J. Schwarzbauer, D. Robert, eds.). Springer International Publishing, Switzerland, 1-32. <u>https://doi.org/10.1007/978-3-319-11906-9_1</u>
- Dunkin, N., Weng, S., Schwab, K.J., McQuarrie, J., Bell, K., y Jacangelo, J.G. (2017). Comparative inactivation of murine norovirus and MS2 bacteriophage by

peracetic acid and monochloramine in municipal secondary wastewater effluent. *Environmental* Science y Technology, 51(5), 2972-2981. <u>https://doi.org/10.1021/acs.est.6b05529</u>

- Environmental Protection Agency (EPA). (1999). Alternative Disinfectants and Oxidants, Ozone Chemistry, Chapter 3.1. Environmental Protection Agency (EPA), 815-R-99-014. <u>https://www.epa.gov</u>
- Eramo, A., Medina, W.R.M., y Fahrenfeld, N.L. (2017). Peracetic acid disinfection kinetics for combined sewer overflows: indicator organisms, antibiotic resistance genes, and microbial community. *Environmental Science: Water Research y Technology*, 3(6), 1061-1072. <u>https://doi.org/10.1039/C7EW00184C</u>
- Ersoy, Z.G., Dinc, O., Cinar, B., Gedik, S.T. y Dimoglo, A. (2019). Comparative evaluation of disinfection mechanism of sodium hypochlorite, chlorine dioxide and electroactivated water on *Enterococcus faecalis*. *LWT Food Science and Technology*, 102, 205-213. https://doi.org/10.1016/j.lwt.2018.12.041
- Fernández-Alba A.R., Letón, G.P., Rosal, G.R., Dorado, V.M., Villar, F.S. y Sanz, G.J. (2013). Tratamientos Avanzados de aguas residuales industriales. Madrid: Círculo de innovación en tecnologías medio ambientales y energía. M-30985-2006.
 https://www.madrimasd.org/sites/default/files/informacionidi/biblioteca/pu blicacion/doc/VT/VT2 Tratamientos avanzados de aguas residuales indust

riales.pdf

- Fiorentino, A., Ferro, G., Alferez, M.C., Polo, L.M.I., Fernández, I.P., Rizzo, L. (2015). Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes. *Journal of Photochemistry and Photobiology B: Biology*, 148, 43-50. <u>https://doi.org/10.1016/j.jphotobiol.2015.03.029</u>
- Freitas, B.O., Leite, L.S. y Daniel, L.A. (2021). Chlorine and peracetic acid in decentralize wastewater treatment: Disinfection, oxidation and odor control. *Process Safety and Environmental Protection*. 146, 620-628. <u>https://doi.org/10.1016/j.psep.2020.11.047</u>
- Furst, K.E., Pecson, B.M., Webber, B.D., y Mitch, W.A. (2018). Tradeoffs between pathogen inactivation and disinfection byproduct formation during sequential chlorine and chloramine disinfection for wastewater reuse. *Water research*, 143, 579-588. <u>https://doi.org/10.1016/j.watres.2018.05.050</u>
- Furukawa, T., Jikumaru, A., Ueno, T., y Sei, K. (2017). Inactivation effect of antibioticresistant gene using chlorine disinfection. Water, 9(7), 547. <u>https://doi.org/10.3390/w9070547</u>

- Gao, Y.Q., Gao, NY., Chu, W.H., Yang, Q.L. y Yin, D.Q. (2017). Kinetics and mechanistic investigation into the degradation of naproxen by a UV/chlorine process. *RSC Advances*, 7(53), 33627-33634. <u>https://doi.org/10.1039/C7RA04540A</u>
- Gao, Z., Lin, Y., Xu, B., Xia, Y., Hu, C., Zhang, T., Qian, H., Cao, T. y Gao, N. (2020). Effect of bromide and iodide on halogenated by-product formation from different organic precursors during UV/chlorine processes. *Water Research*, 182, 116035. <u>https://doi.org/10.1016/j.watres.2020.116035</u>
- Gao, Z.C., Lin, Y.L., Xu, B., Xia, Y., Hu, C.Y., Zhang, T.Y. y Gao, N.Y. (2019). Effect of UV wavelength on humic acid degradation and disinfection by-product formation during the UV/chlorine process. *Water Research*, 154, 199-209. <u>https://doi.org/10.1016/j.watres.2019.02.004</u>
- Garg, A., Namboodiri, V., Smith, B., Al-Anazi, A., Murugesan, B. y Bowman, T. (2018). Disinfection of wastewater with peracetic acid (PAA) and UV combined treatment: a pilot study. *Proceedings of the Water Environment Federation*, 2018(6), 76-89. <u>https://doi.org/10.2175/193864718824828344</u>
- Garg, A., Narasimman, L.M., Hogg, J., Nutter, A. y Mahoney, G. (2016). Wastewater Disinfection with Peracetic Acid. *Proceedings of the Water Environment Federation*, 2016(13), 1798-1808. <u>https://doi.org/10.2175/193864716819706257</u>
- Geeraerd, A.H., Herremans, C.H. y Van Impe, J.F. (2000). Structural model requirements to describe microbial inactivation during a mild heat treatment. *International Journal of Food Microbiology*, 59(3), 185-209. <u>https://doi.org/10.1016/S0168-1605(00)00362-7</u>
- Geeraerd, A.H., Valdramidis, V.P. y Impe, J.F. (2005). GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. *International Journal of Food Microbiology*, 102, 95-105. <u>https://doi.org/10.1016/j.ijfoodmicro.2004.11.038</u>
- Geldreich, E.E. y Rice, E.W. (1987). Occurrence, Significance, and Detection of *Klebsiella* in Water Systems. *Journal American Water Works Association*, 79(5), 74-80. <u>https://doi.org/10.1002/j.1551-8833.1987.tb02846.x</u>
- Gilca, A.F., Teodosiu, C., Fiore, S. y Musteret, C.P. (2020). Emerging disinfection byproducts: A review on their occurrence and control in drinking water treatment processes. *Chemosphere*, 259, 127476. <u>https://doi.org/10.1016/j.chemosphere.2020.127476</u>
- Gitis, V. y Hankins, N. (2018). Water treatment chemicals: Trends and challenges. *Journal* of Water Process Engineering, 25, 34-38. https://doi.org/10.1016/j.jwpe.2018.06.003
- Gryshko, I. y Lugovskoy, A. (2015). Methods of microorganisms inactivation in the technological liquids. Вісник Національного технічного університету України Київський політехнічний інститут. Серія: Машинобудування 3, 165-171. <u>http://nbuv.gov.ua/UJRN/VKPI mash 2015 3 25</u>

- Gyürék, L.L. y Finch, G.R. (1998). Modeling Water Treatment Chemical Disinfection Kinetics. *Journal of Environmental Engineering*, 124, 783-793. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:9(783)
- Hassaballah, A.H., Nyitrai, J., Hart, C.H., Dai, N. y Sassoubre, L.M. (2019). A pilot-scale study of peracetic acid and ultraviolet light for wastewater disinfection. *Environmental Science: Water Research y Technology*, 5(8), 1453-1463. https://doi.org/10.1039/C9EW00341J
- Hassaballah, A.H., Bhatt, T., Nyitrai, J., Dai, N. y Sassoubre, L. (2020). Inactivation of *E. coli, Enterococcus* spp., somatic coliphage, and *Cryptosporidium parvum* in wastewater by peracetic acid (PAA), sodium hypochlorite, and combined PAA-ultraviolet disinfection. *Environmental Science: Water Research y Technology*, 6, 197-209. <u>https://doi.org/10.1039/C9EW00837C</u>
- Henao, L.D., Cascio, M., Turolla, A. y Antonelli, M. (2018a). Effect of suspended solids on peracetic acid decay and bacterial inactivation kinetics: Experimental assessment and definition of predictive models. *Science of the Total Environment*, 643, 936-945. <u>https://doi.org/10.1016/j.scitotenv.2018.06.219</u>
- Henao, L. D., Turolla, A., y Antonelli, M. (2018b). Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: A review. *Chemosphere*, 213, 25-40. <u>https://doi.org/10.1016/j.chemosphere.2018.09.005</u>
- Hollman, J., Dominic, J.A. y Achari, G. (2020). Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: Kinetics, degradation pathways and comparison with UV/H₂O₂. *Chemosphere*, 248, 125911. <u>https://doi.org/10.1016/j.chemosphere.2020.125911</u>
- Hom, L.W. (1972). Kinetics of chlorine disinfection in an ecosystem. *Journal of the Sanitary Engineering Division*, 98(1), 183-194. <u>https://doi.org/10.1061/JSEDAI.0001370</u>
- How, Z.T., Kristiana, I., Busetti, F., Linge, K.L. y Joll, C.A. (2017). Organic chloramines in chlorine-based disinfected water systems: a critical review. *Journal of Environmental Sciences*, 58, 2-18. <u>https://doi.org/10.1016/j.jes.2017.05.025</u>
- Hua, Z., Li, D., Wu, Z., Wang, D., Cui, Y., Huang, X., Fang, J. y An, T. (2021). DBP formation and toxicity alteration during UV/chlorine treatment of wastewater and the effects of ammonia and bromide. *Water Research*, 188, 116549. <u>https://doi.org/10.1016/j.watres.2020.116549</u>
- Huang, J.J., Hu, H.Y., Tang, F., Li, Y., Lu, S.Q., y Lu, Y. (2011). Inactivation and reactivation of antibiotic-resistant bacteria by chlorination in secondary effluents of a municipal wastewater treatment plant. *Water research*, 45(9), 2775-2781. https://doi.org/10.1016/j.watres.2011.02.026
- Ikehata, K., Li, Y., Komor, A.T. y Gibson, G.W. (2018). Free Chlorine Disinfection of Full-Scale MBR Effluent to Achieve 5-Log Virus Inactivation. *Water Environment*

Research,

90(7),

https://doi.org/10.2175/106143017X15131012153103

- Jiménez, L.C. y Rojas-Jiménez, K. (2020). Resistencia a desinfectantes y su relación con la resistencia a los antibióticos. *Acta Médica Costarricense*, 62(1), 7-12.
- Jo, H.L., Hwang, H.J. y Chung, M.S. (2019). Inactivation of *Bacillus subtilis* spores at various germination and outgrowth stages using intense pulsed light. *Food microbiology*, 82, 409-415. <u>https://doi.org/10.1016/j.fm.2019.03.013</u>
- Jung, Y.J., Oh, B.S., y Kang, J.W. (2008). Synergistic effect of sequential or combined use of ozone and UV radiation for the disinfection of *Bacillus subtilis* spores. *Water Research*, 42(6-7), 1613-1621. <u>https://doi.org/10.1016/j.watres.2007.10.008</u>
- Kampf, G. (2018a). Sodium Hypochlorite. In: Antiseptic Stewardship. Springer Nature Switzerland, Gewerbestrasse, Cham, Switzerland, 161-210. https://doi.org/10.1007/978-3-319-98785-9_8
- Kampf, G. (2018b). Peracetic Acid. In: Antiseptic Stewardship. Springer Nature Switzerland, Gewerbestrasse, Cham, Switzerland, 63-98. <u>https://doi.org/10.1007/978-3-319-98785-9_5</u>
- Khadre, M.A., y Yousef, A.E. (2001). Sporicidal action of ozone and hydrogen peroxide: a comparative study. *International Journal of Food Microbiology*, 71(2-3), 131-138. <u>https://doi.org/10.1016/S0168-1605(01)00561-X</u>
- Khan, S., Beattie, T.K., y Knapp, C.W. (2016). Relationship between antibiotic-and disinfectant-resistance profiles in bacteria harvested from tap water. *Chemosphere*, 152, 132-141. <u>https://doi.org/10.1016/j.chemosphere.2016.02.086</u>
- Kibbee, R. y Örmeci, B. (2020). Peracetic acid (PAA) and low-pressure ultraviolet (LPUV) inactivation of Coxsackievirus B3 (CVB3) in municipal wastewater individually and concurrently. *Water Research*, 183, 116048. <u>https://doi.org/10.1016/j.watres.2020.116048</u>
- Kinani, S., Richard, B., Souissi, Y. y Bouchonnet, S. (2012). Analysis of inorganic chloramines in water. *Trends in Analytical Chemistry*, 33, 55-67. https://doi.org/10.1016/j.trac.2011.10.006
- Kingsley, D.H., Fay, J.P., Calci, K., Pouillot, R., Woods, J., Chen, H., Niemira, B.A. y Van, D.J.M. (2017). Evaluation of chlorine treatment levels for inactivation of human norovirus and MS2 bacteriophage during sewage treatment. *Applied and Environmental Microbiology*, 83(23), e01270-17. https://doi.org/10.1128/AEM.01270-17
- Kitis, M. (2004). Disinfection of wastewater with peracetic acid: a review. *Environment international*, 30(1), 47-55. <u>https://doi.org/10.1016/S0160-4120(03)00147-8</u>

- Köhler, A.T., Rodloff, A.C., Labahn, M., Reinhardt, M., Truyen, U. y Speck, S. (2018). Efficacy of sodium hypochlorite against multidrug-resistant gram-negative bacteria. *Journal of Hospital Infection*, 100(3), e40-e46. <u>https://doi.org/10.1016/j.jhin.2018.07.017</u>
- Koivunen, J. y Heinonen-Tanski, H. (2005). Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation, and combined chemical/UV treatments. *Water Research*, 39, 1519-1526. <u>https://doi.org/10.1016/j.watres.2005.01.021</u>
- Kong, J., Lu, Y., Ren, Y., Chen, Z. y Chen, M. (2021). The virus removal in UV irradiation, ozonation, and Chlorination. *Water Cycle*, 2, 23-31. <u>https://doi.org/10.1016/j.watcyc.2021.05.001</u>
- Köse, H. y Yapar, N. (2017). The comparison of various disinfectants efficacy on Staphylococcus aureus and Pseudomonas aeruginosa biofilm layers. Turkish Journal of Medical Sciences, 47(4), 1287-1294. <u>https://doi.org/10.3906/sag-1605-88</u>
- Kozari, A., Paloglou, A. y Voutsa, D. (2020). Formation potential of emerging disinfection by-products during ozonation and chlorination of sewage effluents. *Science of The Total Environment*, 700, 134449. <u>https://doi.org/10.1016/j.scitotenv.2019.134449</u>
- Larson, M.A. y Mariñas, B.J. (2003). Inactivation of *Bacillus subtilis* spores with ozone and monochloramine. *Water Research*, 37(4), 833–844. <u>https://doi.org/10.1016/S0043-1354(02)00381-0</u>
- Lautenschlager, K., Hwang, C., Liu, W.T., Boon, N., Köster, O., Vrouwenvelder, H., Egil, T. y Hammes, F. (2013). A microbiology-based multi-parametric approach towards assessing biological stability in drinking water distribution networks. *Water Research*, 47(9), 3015-3025. <u>https://doi.org/10.1016/j.watres.2013.03.002</u>
- Leaper, S. (1984). Synergistic killing of spores of *Bacillus subtilis* by peracetic acid and alcohol. *International Journal of Food Science Technology*, 19, 355-360. https://doi.org/10.1111/j.1365-2621.1984.tb00359.x
- Lee, W. y Westerhoff, P. (2009). Formation of organic chloramines during water disinfection-chlorination versus chloramination. *Water Research*, 43(8), 2233-2239. <u>https://doi.org/10.1016/j.watres.2009.02.009</u>
- Leggett, M.J., Setlow, P., Sattar, S.A., y Maillard, J.Y. (2016). Assessing the activity of microbicides against bacterial spores: knowledge and pitfalls. *Journal of Applied Microbiology*, 120(5), 1174-1180. <u>https://doi.org/10.1111/jam.13061</u>
- Leggett, M.J., McDonnell, G., Denyer, S.P., Setlow, P., y Maillard, J.Y. (2012). Bacterial spore structures and their protective role in biocide resistance. *Journal of applied microbiology*, 113(3), 485-498. <u>https://doi.org/10.1111/j.1365-2672.2012.05336.x</u>
- Leggett, M.J., Schwarz, J.S., Burke, P.A., Mcdonnell, G., Denyer, S.P., y Maillard, J. Y. (2015). Resistance to and killing by the sporicidal microbicide peracetic acid.

Journal of Antimicrobial Chemotherapy, 70(3), 773-779. https://doi.org/10.1093/jac/dku445

- Li, G.Q., Huo, Z.Y., Wu, Q.Y., Lu, Y. y Hu, H.Y. (2018). Synergistic effect of combined UV-LED and chlorine treatment on *Bacillus subtilis* spore inactivation. *Science of The Total Environment*, 639, 1233-1240. <u>https://doi.org/10.1016/j.scitotenv.2018.05.240</u>
- Li, T., Jiang, Y., An, X., Liu, H., Hu, C. y Qu, J. (2016). Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes. *Water Research*, 102, 421-427. <u>https://doi.org/10.1016/j.watres.2016.06.051</u>
- Li, Y., Yang, M., Zhang, X., Jiang, J., Liu, J., Yau, C.F., Graham, N.J.D. y Li, X. (2017). Twostep chlorination: a new approach to disinfection of a primary sewage effluent. *Water Research*, 108, 339-347. <u>https://doi.org/10.1016/j.watres.2016.11.019</u>
- Li, Y., Zhang, X., Yang, M., Liu, J., Li, W., Graham, N. J., Li, X. y Yang, B. (2017). Threestep effluent chlorination increases disinfection efficiency and reduces DBP formation and toxicity. *Chemosphere*, 168, 1302-1308. <u>https://doi.org/10.1016/j.chemosphere.2016.11.137</u>
- Lin, H., Zhu, X., Wang, Y. y Yu, X. (2017). Effect of sodium hypochlorite on typical biofilms formed in drinking water distribution systems. *Journal of Water and Health*, 15(2), 218-227. <u>https://doi.org/10.2166/wh.2017.141</u>
- Luo, L.W., Wu, Y.H., Yu, T., Wang, Y.H., Chen, G.Q., Tong, X., Bai, Y., Xu, C., Wang, H.B., Ikuno, N. y Hu, H.Y. (2021). Evaluating method and potential risks of chlorineresistant bacteria (CRB): A review. *Water Research*, 188, 116474. <u>https://doi.org/10.1016/j.watres.2020.116474</u>
- Luongo, G., Previtera, L., Ladhari, A., Fabio, G.D. y Zarrelli, A. (2020). Peracetic Acid vs. Sodium Hypochlorite: Degradation and Transformation of Drugs in Wastewater. *Molecules*, 25(10), 2294. <u>https://doi.org/10.3390/molecules25102294</u>
- Luukkonen, T. y Pehkonen, S.O. (2017). Peracids in water treatment: A critical review. *Critical Reviews in Environmental Science and Technology*, 47(1), 1-39. <u>https://doi.org/10.1080/10643389.2016.1272343</u>
- Ma, J.W., Huang, B.S., Hsu, C.W., Peng, C.W., Cheng, M.L., Kao, J.Y., Way, T.D., Yin, H.C. y Wang, S.S. (2017). Efficacy and safety evaluation of a chlorine dioxide solution. *International Journal of Environmental Research and Public Health*, 14(3), 329. <u>https://doi.org/10.3390/ijerph14030329</u>
- Macêdo, L.P.R., Dornelas, A.S.P., Vieira, M.M., de Jesus, F.J.S., Sarmento, R.A. y Cavallini, G.S. (2019). Comparative ecotoxicological evaluation of peracetic acid and the active chlorine of calcium hypochlorite: Use of *Dugesia tigrina* as a bioindicator of environmental pollution. *Chemosphere*, 233, 273-281. <u>https://doi.org/10.1016/j.chemosphere.2019.05.286</u>

- Mafart, P., Couvert, O., Gaillard, S. y Leguérinel, I. (2002) On calculating sterility in thermal preservation methods: Weibull frequency distribution model application. *International Journal of Food Microbiology*, 72(1-2), 107-113. <u>https://doi.org/10.1016/S0168-1605(01)00624-9</u>
- Malik, D.J., Shaw, C.M., Rielly, C.D. y Shama, G. (2013). The inactivation of *Bacillus subtilis* spores at low concentrations of hydrogen peroxide vapour. *Journal of Food Engineering*, 114(3), 391-396. <u>https://doi.org/10.1016/j.jfoodeng.2012.08.031</u>
- Malvestiti, J.A. y Dantas R.F. (2019). Influence of industrial contamination in municipal secondary effluent disinfection by UV/H₂O₂. *Environmental Science and Pollution Research*, 26(13), 13286-13298. <u>https://doi.org/10.1007/s11356-019-04705-1</u>
- Manoli, K., Sarathy, S., Maffettone, R. y Santoro, D. (2019). Detailed modeling and advanced control for chemical disinfection of secondary effluent wastewater by peracetic acid. *Water Research*, 153, 251-262. <u>https://doi.org/10.1016/j.watres.2019.01.022</u>
- Martin, D.J.H., Denyer, S.P., McDonnell, G. y Maillard, J.Y. (2008). Resistance and crossresistance to oxidizing agents of bacterial isolates from endoscope washer disinfectors. *Journal of Hospital Infection*, 69, 377-383. <u>https://doi.org/10.1016/j.jhin.2008.04.010</u>
- Mazhar, M.A., Khan, N.A., Ahmed, S., Khan, A.H., Hussain, A., Rahisuddin, Changani, F., Yousefi, M., Ahmadi, S., Vambol, V. (2020). Chlorination disinfection byproducts in Municipal drinking water–A review. *Journal of Cleaner Production*, 273, 123159. <u>https://doi.org/10.1016/j.jclepro.2020.123159</u>
- McFadden, M., Loconsole, J., Schockling, A.J., Nerenberg, R. y Pavissich, J.P. (2017). Comparing peracetic acid and hypochlorite for disinfection of combined sewer overflows: Effects of suspended-solids and pH. *Science of the Total Environment*, 599, 533-539. <u>https://doi.org/10.1016/j.scitotenv.2017.04.179</u>
- Medeiros, R.C. y Daniel, L.A. (2015). Study of sequential disinfection for the inactivation of protozoa and indicator microorganisms in wastewater. *Acta Scientiarum Technology*, 37(2), 203-209. <u>https://doi.org/10.4025/actascitechnol.v37i2.24950</u>
- Miklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E. y Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment– A critical review. *Water Research*, 139, 118-131. <u>https://doi.org/10.1016/j.watres.2018.03.042</u>
- Miles, A.A., Misra, S.S. y Irwin, J.O. (1938). The estimation of the bactericidal power of the blood. *Journal of Hygiene*, 38(6), 732-49. https://doi.org/10.1017/s002217240001158x
- Mir, J., Morató, J. y Ribas, F. (1997). Resistance to chlorine of freshwater bacterial strains. Journal of Applied Microbiology, 87, 7-18. <u>https://doi.org/10.1111/j.1365-2672.1997.tb03292.x</u>

- Miranda, A.C., Lepretti, M., Rizzo, L., Caputo, I., Vaiano, V., Sacco, O., Lopes, W.S. y Sannino, D. (2016). Surface water disinfection by chlorination and advanced oxidation processes: inactivation of an antibiotic resistant *E. coli* strain and cytotoxicity evaluation. *Science of the Total Environment*, 554, 1-6. https://doi.org/10.1016/j.scitotenv.2016.02.189
- Mounaouer, B. y Abdennaceur, H. (2016). Modeling and kinetic characterization of wastewater disinfection using chlorine and UV irradiation. *Environmental Science and Pollution Research*, 23(19), 19861-19875. <u>https://doi.org/10.1007/s11356-016-7173-4</u>
- Muniesa, A., Escobar, D.J., Silva, N., Henríquez, P., Bustos, P., Perez, A.M. y Mardones, F.O. (2019). Effectiveness of disinfectant treatments for inactivating Piscirickettsia salmonis. *Preventive Veterinary Medicine*, 167, 196-201. <u>https://doi.org/10.1016/j.prevetmed.2018.03.006</u>
- Murray, A., Goldman, J., Sarathy, S., Hilts, B., Bell, K., Santoro, D. y Broomfield, C.O. (2016). Disinfection of a municipal wastewater secondary effluent with a combination of ultraviolet irradiation and peracetic acid. *Proceedings of the Water Environment* Federation, 10, 2053-2064. https://doi.org/10.2175/193864716819707751
- Nie, X.B., Li, Z.H., Long, Y.N., He, P.P. y Xu, C. (2017). Chlorine inactivation of Tubifex tubifex in drinking water and the synergistic effect of sequential inactivation with UV irradiation and chlorine. *Chemosphere*, 177, 7-14. <u>https://doi.org/10.1016/j.chemosphere.2017.02.142</u>
- Nizer, W.S.C., Inkovskiy, V. y Overhage, J. (2020). Surviving Reactive chlorine Stress: Responses of Gram-Negative Bacteria to Hypochlorous Acid. *Microorganisms*, 8(8), 1220. <u>https://doi.org/10.3390/microorganisms8081220</u>
- Núñez, L. y Moretton, J. (2006). Perfil microbiológico y resistencia bacteriana a desinfectantes en aguas residuales de hospital. *Higiene y Sanidad Ambiental*, 6, 197-201.
- Ocampo-Rodríguez, D.B., Vázquez-Rodríguez, G.A., Martínez-Hernández, S., Iturbe-Acosta, U., y Coronel-Olivares, C. (2022). Desinfección del agua: una revisión a los tratamientos convencionales y avanzados con cloro y ácido peracético. *Ingeniería del Agua*, 26(3), 185-204. <u>https://doi.org/10.4995/ia.2022.17651</u>
- Ocampo-Rodríguez, D.B., Vázquez-Rodríguez, G.A., Rodríguez, J.A., González Sandoval, M.d.R., Iturbe-Acosta, U., Martínez Hernández, S. y Coronel-Olivares, C. (2023). Kinetic Models of Disinfection with Sodium Hypochlorite and Peracetic Acid of Bacteria Isolated from the Effluent of a WWTP. *Water*, 15, 2019. <u>https://doi.org/10.3390/w15112019</u>
- Odonkor, S.T. y Ampofo, J.K. (2013). *Escherichia coli* as an indicator of bacteriological quality of water: an overview. *Microbiology Research*, 4(1), e2. <u>https://doi.org/10.4081/mr.2013.e2</u>

- Ofori, I., Maddila, S., Lin, J. y Jonnalagadda, S.B. (2018). Chlorine dioxide inactivation of *Pseudomonas aeruginosa* and *Staphylococcus aureus* in water: the kinetics and mechanism. *Journal of Water Process Engineering*, 26, 46-54. https://doi.org/10.1016/j.jwpe.2018.09.001
- Oh, J., Salcedo, D.E., Medriano, C.A., y Kim, S. (2014). Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes. *Journal of Environmental Sciences*, 26(6), 1238-1242. https://doi.org/10.1016/S1001-0742(13)60594-X
- Oviaño, G.M., Rodríguez S.B., Caballero, P.J.D. y Muñoz, B.J.L. (2019). Aplicaciones de la espectrometría de masas MALDI-TOF en microbiología clínica; Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica: Madrid, España, 9-11. <u>https://doi.org/10.1016/j.ram.2022.08.001</u>
- Paes, F.A., Hissa, D.C., Angelim, A.L., Pinto, A.W., Grangeiro, T.B. y Melo, V.M.M. (2012) Diversity of a Chlorine-Resistant *Bacillus* Population Isolated from a Wastewater Treatment Station. *Water Environment Research*, 84(3), 274-281. https://doi.org/10.2175/106143012X13280358613462
- Peleg, M. (2021). Microbial Dose-Response Curves and Disinfection Efficacy Models Revisited. *Food Engineering Reviews*, 13, 305-321. <u>https://doi.org/10.1007/s12393-020-09249-6</u>
- Phattarapattamawong, S., Chareewan, N. y Polprasert, C. (2021). Comparative removal of two antibiotic resistant bacteria and genes by the simultaneous use of chlorine and UV irradiation (UV/chlorine): Influence of free radicals on gene degradation. *Science of the Total Environment*, 755, 142696. <u>https://doi.org/10.1016/j.scitotenv.2020.142696</u>
- Popa, L.I., Gheorghe, I., Barbu, I.C., Surleac, M., Paraschiv, S., Marutescu, L., Popa, M., Piracalabioru, G.G., Talapan, D., Nita, M., Streinu-Cercel, A., Streinu-Cercel, A., Otela, D. y Chifiriuc, M.C. (2021). Multidrug resistant *Klebsiella pneumoniae* ST101 clone survival chain from inpatients to hospital effluent after chlorine treatment. *Frontiers* in Microbiology, 11, 610296. <u>https://doi.org/10.3389/fmicb.2020.610296</u>
- Quartaroli, L., Cardoso, B.H., de Paula, R.G. y da Silva, G.H.R. (2018). Wastewater chlorination for reuse, an alternative for small communities. *Water Environment Research*, 90(12), 2100-2105. <u>https://doi.org/10.2175/106143017X15131012188231</u>
- Ragazzo, P., Chiucchini, N., Piccolo, V., Spadolini, M., Carrer, S., Zanon, F. y Ronald, G. (2020). Wastewater disinfection: long-term laboratory and full-scale studies on performic acid in comparison with peracetic acid and chlorine. *Water Research*, 184, 116169. <u>https://doi.org/10.1016/j.watres.2020.116169</u>
- Rattanakul, S., Oguma, K. y Takizawa, S. (2015). Sequential and simultaneous applications of UV and chlorine for adenovirus inactivation. *Food and*

Environmental Virology, 7(3), 295-304. <u>https://doi.org/10.1007/s12560-015-9202-8</u>

- Rennecker, J.L., Mariñas, B.J., Owens, J.H. y Rice, E.W. (1999). Inactivation of *Cryptosporidium parvum* oocysts with ozone. *Water Research*, 33(11), 2481–2488. https://doi.org/10.1016/S0043-1354(99)00116-5
- Rice, E.W., Adcock, N.J., Sivaganesan, M. y Rose, L.J. (2005). Inactivation of spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. israelensis by chlorination. Applied and Environmental Microbiology, 71(9), 5587-5589. <u>https://doi.org/10.1128/AEM.71.9.5587-5589.2005</u>
- Rochelle, P.A., Blatchley III, E.R., Chan, P.S., Scheible, O.K. y Shen, C. (2010). Challenge organisms for inactivation of viruses by ultraviolet treatment. Water Research Foundation: Denver, USA, 16-18.
- Rodríguez, F.A., García, L.P., Rosal, G.R., Dorado, V.A., Villar, F.S. y San García, J.M. (2006). CITME, CEIM, Comunidad de Madrid. Madrid, 26/07/2007. 136 paginas
- Sabeti, Z., Alimohammadi, M., Yousefzadeh, S., Aslani, H., Ghani, M., y Nabizadeh, R. (2017). Application of response surface methodology for modeling and optimization of *Bacillus subtilis* spores inactivation by the UV/persulfate process. *Water Science and Technology: Water Supply*, 17(2), 342-351. https://doi.org/10.2166/ws.2016.139
- Sagripanti, J.L. y Bonifacino, A. (1996). Comparative Sporicidal Effects of Liquid Chemical Agents. *Applied and Environmental Microbiology*, 62(2), 545-551. <u>https://doi.org/10.1128/aem.62.2.545-551.1996</u>
- Saxena, G., Bharagava, R.N., Kaithwas, G. y Raj, A. (2015). Microbial indicators, pathogens and methods for their monitoring in water environment. *Journal Water Health*, 13(2), 319-339. <u>https://doi.org/10.2166/wh.2014.275</u>
- Schoch, C.L., Ciufo, S., Domrachev, M., Hotton, C.L., Kannan, S., Khovanskaya, R., Leipe, D., Mcveigh, R., O'Neill, K., Robbertse, B., Sharma, S., Soussov, V., Sullivan, J.P., Sun, L., Turner, S. y Karsch-Mizrachi, I. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database: the journal of biological databases and curation, 2020, baaa062. https://doi.org/10.1093/database/baaa062
- Schweitzer, L., y Noblet, J. (2018). Water Contamination and pollution. *Green Chemistry*, 261-290. https://doi.org/10.1016/B978-0-12-809270-5.00011-X
- Selleck, R.E., Saunier, B.M. y Collins, H.F. (1978). Kinetics of bacterial deactivation with chlorine. *Journal of the Environmental Engineering División*, 104(6), 1197-1212. https://doi.org/10.1061/JEEGAV.00008
- Serna-Galvis, E.A., Vélez-Peña, E., Osorio-Vargas, P., Jiménez, A.N., Salazar-Ospina, L., Guaca-González, Y.M. y Torres-Palma, R.A. (2019). Inactivation of carbapenem-

resistant *Klebsiella pneumoniae* by photo-Fenton: Residual effect, gene evolution and modifications with citric acid and persulfate. *Water Research*, 354-363. <u>https://doi.org/10.1016/j.watres.2019.06.024</u>

- Setlow, B., Korza, G., Blatt, K.M.S., Fey, J.P. y Setlow, P. (2015). Mechanism of *Bacillus* subtilis spore inactivation by and resistance to supercritical CO₂ plus peracetic acid. *Journal of Applied Microbiology*, 120, 57-69. <u>https://doi.org/10.1111/jam.12995</u>
- Setlow, P. (2016). Spore resistance properties. The bacterial spore: from molecules to systems, 201-215. <u>https://doi.org/10.1128/microbiolspec.TBS-0003-2012</u>
- Shekhawat, S.S., Kulshreshtha, N.M., Vivekanand, V., y Gupta, A.B. (2021). Impact of combined chlorine and UV technology on the bacterial diversity, antibiotic resistance genes and disinfection by-products in treated sewage. *Bioresource Technology*, 339, 125615. <u>https://doi.org/10.1016/j.biortech.2021.125615</u>
- Sun, P., Tyree, C., y Huang, C.H. (2016). Inactivation of *Escherichia coli*, bacteriophage MS2, and *Bacillus* spores under UV/H₂O₂ and UV/peroxydisulfate advanced disinfection conditions. *Environmental Science y Technology*, 50(8), 4448-4458. https://doi.org/10.1021/acs.est.5b06097
- Sun, P., Zhang, T., Mejia-Tickner, B., Zhang, R., Cai, M. y Huang, C. (2018). Rapid disinfection by peracetic acid combined with UV irradiation. *Environmental Science* y *Technology Letters*, 5(6), 400-404. <u>https://doi.org/10.1021/acs.estlett.8b00249</u>
- Tong, C., Hu, H., Chen, G., Li, Z., Li, A., y Zhang, J. (2021). Disinfectant resistance in bacteria: Mechanisms, spread, and resolution strategies. *Environmental Research*, 195, 110897. <u>https://doi.org/10.1016/j.envres.2021.110897</u>
- Umar, M. (2022). From Conventional Disinfection to Antibiotic Resistance Control-Status of the Use of Chlorine and UV Irradiation during Wastewater Treatment. *International Journal of Environmental Research and Public Health*, 19(3), 1636. <u>https://doi.org/10.3390/ijerph19031636</u>
- Valero, P., Mosteo, R., Ormad, M.P., Lázaro, L. y Ovelleiro, J.L. (2015). Inactivation of *Enterococcus* sp. by conventional and advanced oxidation processes in synthetic treated urban wastewater. *Ozone: Science y Engineering*, 37(5), 467-475, <u>https://doi.org/10.1080/01919512.2015.1042572</u>
- Vos, P., Garrity, G., Jones, D., Krieg, N., Ludwig, W., Rainey, F. y Whitman, W. (2009). Bergey's Manual of Systematic Bacteriology, 2nd ed.; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; New York, NY, USA. 21–127; 392– 420.
- Wang, C., Ying, Z., Ma, M., Huo, M. y Yang, W. (2019). Degradation of micropollutants by UV-chlorine treatment in reclaimed water: pH effects, formation of

disinfectant byproducts, and toxicity assay. Water, 11(12), 2639. https://doi.org/10.3390/w11122639

- Wang, J., Sui, M., Yuan, B., Li, H. y Lu, H. (2019). Inactivation of two Mycobacteria by free chlorine: Effectiveness, influencing factors, and mechanisms. *Science of The Total Environment*, 648, 271-284. https://doi.org/10.1016/j.scitotenv.2018.07.451
- Wang, Y., Couet, M., Gutierrez, L., Allard, Sé., y Croué, J.P. (2020). Impact of DOM source and character on the degradation of primidone by UV/chlorine: Reaction kinetics and disinfection by-product formation. *Water Research*, 172, 115463. <u>https://doi.org/10.1016/j.watres.2019.115463</u>
- Watson, H.E. (1908). A note on the variation of the rate of disinfection with change in the concentration of the disinfectant. *Journal of Hygiene*, 8(4), 536-542. https://doi.org/10.1017/S0022172400015928
- Wawryk, N., Wu, D., Zhou, A., Moe, B., y Li, X.F. (2020). Disinfection: A trade-off between microbial and chemical risks. In: A New Paradigm for Environmental Chemistry and Toxicology (G. Jiang, X. Li, eds.), Springer Nature Singapore, Gateway East, Singapore, 211-228.
- Wen, G., Xu, X., Huang, T., Zhu, H. y Ma, J. (2017). Inactivation of three genera of dominant fungal spores in groundwater using chlorine dioxide: Effectiveness, influencing factors, and mechanisms. *Water Research*, 125, 132-140. <u>https://doi.org/10.1016/j.aguas.2017.08.038</u>
- Weng, S., Dunkin, N., Schwab, K.J., McQuarrie, J., Bell, K. y Jacangelo, J.G. (2018). Infectivity reduction efficacy of UV irradiation and peracetic acid-UV combined treatment on MS2 bacteriophage and murine norovirus in secondary wastewater effluent. *Journal of Environmental Management*, 221, 1-9. <u>https://doi.org/10.1016/j.jenvman.2018.04.064</u>
- Wolfe, R.L., Ward, N.R. y Olson, B.H. (1984). Inorganic chloramines as drinking water disinfectants: a review. *Journal American Water Works Association*, 76(5), 74-88. <u>https://doi.org/10.1002/j.1551-8833.1984.tb05337.x</u>
- Ye, B., Cang, Y., Li, J., y Zhang, X. (2019). Advantages of a ClO₂/NaClO combination process for controlling the disinfection by-products (DBPs) for high algae-laden water. *Environmental Geochemistry and Health*, 41, 1545-1557. https://doi.org/10.1007/s10653-018-0231-8
- Yin, K., Deng, Y., Liu, C., He, Q., Wei, Y., Chen, S., Liu, T. y Luo, S. (2018). Kinetics, Pathways and Toxicity Evaluation of Neonicotinoid Insecticides Degradation via UV/Chlorine Process. *Chemical Engineering Journal*, 346, 298-306. <u>https://doi.org/10.1016/j.cej.2018.03.168</u>
- Zhang, C., Brown, P.J., y Hu, Z. (2019). Higher functionality of bacterial plasmid DNA in water after peracetic acid disinfection compared with chlorination. *Science of The*

Total Environment, 685, 419-427. https://doi.org/10.1016/j.scitotenv.2019.05.074

- Zhang, C., Brown, P.J.B., Miles, R.J., White, T.A., Grant, D.G., Stalla, D. y Hu, Z. (2018). Inhibition of regrowth of planktonic and biofilm bacteria after peracetic acid disinfection. *Water Research*, 149, 640-649. <u>https://doi.org/10.1016/j.watres.2018.10.062</u>
- Zhang, K., San, Y., Cao, C., Zhang, T., Cen, C. y Zhou, X. (2020). Optimising the measurement of peracetic acid to assess its degradation during drinking water disinfection. *Environmental Science and Pollution Research*, 27(27), 34135-34146. <u>https://doi.org/10.1007/s11356-020-09505-6</u>
- Zhang, T., Wang, T., Mejia, T.B., Kissel, J.R., Xie, X. y Huang, C.H. (2020). Inactivation of bacteria by peracetic acid combined with UV irradiation: mechanism and optimization. *Environmental Science y Technology*, 54(15), 9652-9661. <u>https://doi.org/10.1021/acs.est.0c02424</u>
- Zhang, Y., Zhuang, Y., Geng, J., Ren, H., Zhang, Y., Ding, L. y Xu, K. (2015). Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection. Science of the Total Environment, 512, 125-132. <u>https://doi.org/10.1016/j.scitotenv.2015.01.028</u>
- Zhang, Y., Zhou, L., Zhang, Y., y Tan, C. (2014). Inactivation of *Bacillus subtilis* spores using various combinations of ultraviolet treatment with addition of hydrogen peroxide. *Photochemistry and photobiology*, 90(3), 609-614. <u>https://doi.org/10.1111/php.12210</u>
- Zhang, Z., Chuang, Y.H., Szczuka, A., Ishida, K.P., Roback, S., Plumlee, M.H., Mitch, W.A. (2019). Pilot-scale evaluation of oxidant speciation, 1, 4-dioxane degradation and disinfection byproduct formation during UV/hydrogen peroxide, UV/free chlorine and UV/chloramines advanced oxidation process treatment for potable reuse. Water Research, 164, 114939. https://doi.org/10.1016/j.watres.2019.114939
- Zheng, J., Su, C., Zhou, J., Xu, L., Qian, Y. y Chen, H. (2017). Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. *Chemical Engineering Journal*, 317, 309-316. <u>https://doi.org/10.1016/j.cej.2017.02.076</u>
- Zhong, Y., Gan, W., Du, Y., Huang, H., Wu, Q., Xiang, Y. y Yang, X. (2019). Disinfection byproducts and their toxicity in wastewater effluents treated by the mixing oxidant of ClO₂/Cl₂. *Water Research*, 162, 471-481. <u>https://doi.org/10.1016/j.watres.2019.07.012</u>
- Zhou, S., Wu, Y., Zhu, S., Sun, J., Bu, L. y Dionysiou, D.D. (2020). Nitrogen conversion from ammonia to trichloronitromethane: Potential risk during UV/chlorine process. *Water Research*, 172, 115508. <u>https://doi.org/10.1016/j.watres.2020.115508</u>

- Zhuang, Y., Ren, H., Geng, J., Zhang, Y., Zhang, Y., Ding, L. y Xu, K. (2015). Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection. *Environmental Science and Pollution Research*, 22, 7037-7044. <u>https://doi.org/10.1007/s11356-014-3919-z</u>
- Ziemba, C., Larivé, O., Deck, S., Huisman, T. y Morgenroth, E. (2019). Comparing the anti-bacterial performance of chlorination and electrolysis post-treatments in a hand washing water recycling system. *Water Research X*, 2, 100020. https://doi.org/10.1016/j.wroa.2018.100020
- Zou, H. y Tang, H. (2019). Comparison of different bacteria inactivation by a novel continuous-flow ultrasound/chlorination water treatment system in a pilot scale. *Water*, 11(2), 258. <u>https://doi.org/10.3390/w11020258</u>
- Zyara, A. M., Torvinen, E., Veijalainen, A. M. y Heinonen-Tanski, H. (2016). The effect of UV and combined chlorine/UV treatment on coliphages in drinking water disinfection. *Journal Water* y *Health*, 16(4), 640-649. https://doi.org/10.2166/wh.2016.144

ANEXOS

Anexo I. Medios de cultivo

El aislamiento de bacterias resistentes al cloro descritos en los apartados 6.1.2 y 7.1.1 se realizó mediante el empleo de los siguientes agares: agar CM, Medio *Bacillus* ATCC 455, Luria Bertani y MYP, cuya fórmula por litro se describe en la tabla 1. Todos los medios fueron hidratados, clarificados y esterilizados (15 min, 15 psi, 121 °C).

Fórmula	СМ	Medio <i>Bacillus</i> ATCC 455	МҮР	Luria Bertani
Agar	20 g	20 g	15 g	15 g
Polipeptona	10 g	5 g	-	-
Extracto de levadura	10 g	5 g	-	5 g
NaCl	5 g	-	10 g	10 g
Almidón soluble	-	30 g	-	-
Extracto de carne	-	-	1 g	-
Peptona	-	-	10 g	-
D- manitol	-	-	10 g	-
Rojo de fenol	-	-	0.025 g	-
Triptona	-	-	-	10 g
Emulsión de huevo de yemaª	-	-	100 mL	-
Caldo Nutritivo	-	-	-	-
Antibiótico	-	-	1 mL (10 mg)	-
pH	7 ± 0.2	-	7 ± 0.2	-

Tabla 1. Composición de los medios utilizados para el aislamiento de cepas.

^a1 yema de huevo y 1 huevo completo, todo disuelto en 50 mL de solución NaCl al 0.9%.

Para la caracterización morfológica y bioquímica de las cepas aisladas se emplearon los siguientes medios, los cuales fueron hidratados, clarificados y esterilizados (15 min, 15 psi, 121 °C), su composición por litro se describe a continuación.

8	Agar I	Nutritivo	(DIBICO [®] ,	Cuautitlán	Izcalli,	México)
---	--------	-----------	------------------------	------------	----------	---------

Fórmula	
Peptona	5 g
Extracto de Carne	3 g
Agar	15 g

8	Caldo nutritivo	(Bioxon [®] ,	Atizapán o	de Zaragoza,	México)
---	-----------------	------------------------	------------	--------------	---------

Fórmula	
Peptona	5 g
Extracto de Carne	3 g

Citrato de Simmons (Bioxon[®], Atizapán de Zaragoza, México)

Este medio se emplea para la prueba de citrato, en la cual se determina si un microorganismo es capaz de utilizar al citrato como única fuente de carbono y compuestos amoniacales como única fuente de nitrógeno esto provoca una alcalinización del medio. La cepa se siembra en tubo inclinado y se incuba a 37 °C por 48-72 h, su composición por litro es la siguiente:

Fórmula	
Citrato de sodio	2 g
Cloruro de sodio	5 g
Fosfato di potásico	1 g
Fosfato mono amónico	1 g
Sulfato de magnesio	0.2 g
Azul de bromotimol	0.08 g
Agar	15 g
pH	6.9 ± 0.2

Interpretación: La prueba es positiva cuando existe un cambio de turbidez en el medio por la presencia de un color azul intenso o color rojo a rosado en la superficie (Figura 1) y negativa cuando no hay cambio en el medio.

Figura 1. Prueba de citrato positiva (Fuente: Propia).

Medio Skim Milk (Fluka, Carolina del Norte, Estados Unidos de América) Este medio se emplea para la prueba de hidrólisis de caseína, en la cual los microorganismos degradan la caseína en aminoácidos mediante la secreción de enzimas proteolíticas, para que pueda ser utilizada como fuente de carbono. El medio se inocula con la cepa y se incuba a 37 °C por 72 h. Este medio se prepara al 10% (p/v) en agua destilada y se esteriliza por 5 min, su composición por litro se describe a continuación:

Fórmula	
Skim Milk	100 g
pH	6.3 ± 0.2

Interpretación: La prueba es positiva cuando el medio presenta la formación de un coagulo visible y negativa cuando no existe cambio alguno en el medio (Figura 2).

Figura 2. Prueba de hidrólisis de caseína positiva (izq.) y negativa (der.) (Fuente: Propia).

֎ Medio MR-VP

Este medio se emplea para las pruebas de rojo de metilo y Voges-Proskauer. Su composición por litro es la siguiente:

Fórmula			
Polipeptona	7 g		
Glucosa	5 g		
Fosfato di potásico	5 g		
pH	6.9 ± 0.2		

Rojo de metilo: esta prueba se utiliza para comprobar la capacidad de un microorganismo de producir y mantener estables los productos terminales ácidos de la fermentación de la glucosa por la vía de fermentación ácido-mixta. Los microorganismos acidifican el medio por la aparición de ácidos estables, el indicador rojo de metilo a pH 4.5 es de color rojo y a pH 6.3 es amarillo. Para realizar esta prueba, se inocula un tubo con medio MR-VP, a continuación, se incuba a 37 °C por 48-72 h. posteriormente, se agregan cinco gotas de indicador rojo de metilo.

Interpretación: La prueba es positiva si la superficie del medio es rojo fuerte y negativa si presenta color amarillo (Figura 3).

Figura 3. Prueba de rojo de metilo positiva (izq.) y negativa (der.) (Fuente: Propia).

Voges- Proskauer: esta prueba permite identificar si un microorganismo fermenta la glucosa por la vía butanodiólica, en la cual se forma un producto intermedio que es la acetoína que forma un complejo de color rojizo al reaccionar con el alfa-naftol. En esta prueba se inocula la cepa y a continuación se incuba a 37 °C por 48 h. Posteriormente, se agregan 0.5 mL de solución de alfa-naftol y 0.5 mL de hidróxido sódico al 40% (p/v). **Interpretación**: la prueba es positiva con la presencia de una coloración rojo a rosada y negativa si presenta una coloración amarillenta a cobrizo (Figura 4).

Figura 4. Prueba de Voges-Proskauer positiva (izq.) y negativa (der.) (Fuente: Propia).

Medio SIM

Este medio se emplea para la prueba de indol, la cual se basa en la enzima triptofanasa que degrada al triptófano lo que forma indol, metil-indol y ácido indolacético. El medio se inocula con la cepa, en forma de picadura, a continuación, se incuba a 37 °C por 24 - 48 h, posteriormente, se le agrega cinco gotas de reactivo de Kovac. Su composición por litro es la siguiente:

Fórmula	
Tripteína	20 g
Peptona	6.1 g
Sulfato de Hierro y Amonio	0.2 g
Tiosulfato de sodio	0.2 g
Agar	3.5 g
pH	7.3 ± 0.2

Interpretación: La prueba es positiva si existe la presencia de un anillo color rojo en la superficie indica indol positivo y negativa si el medio toma el color del reactivo añadido (Figura 5).

Figura 5. Prueba de Indol positiva (izq.) y negativa (der.) (Fuente: Propia).

& Agar de hierro y lisina (Bioxon[®], Atizapán de Zaragoza, México)

Este medio se emplea para las pruebas de descarboxilación y desaminación de la lisina y en la producción de ácido sulfhídrico. La descarboxilación consiste en la eliminación de un grupo carboxilo de una molécula orgánica, algunos microorganismos son capaces de producir la enzima lisina descarboxilasa y utilizar las aminas como precursores para la síntesis de aminoácidos. La composición por litro de este medio se describe a continuación:

Fórmula	
Peptona de Gelatina	5 g
Extracto de levadura	3 g
Dextrosa	1 g
L-Lisina	10 g
Citrato de hierro y amonio	0.5 g
Tiosulfato de sodio	0.04 g
Purpura de bromocresol	0.02
Agar	13.50 g
pН	6.7 ± 0.2
Citrato de hierro y amonio Tiosulfato de sodio Purpura de bromocresol Agar pH	0.5 g 0.04 g 0.02 13.50 g 6.7 ± 0.2

Interpretación: La prueba es positiva a la descarboxilación de lisina cuando hay un cambio de color del medio a púrpura, la presencia de colonias negras, o la fragmentación del medio representa una prueba positiva a la formación de H_2S . La prueba es negativa cuando no hay cambios en el medio.

Agar almidón

Este medio se emplea para la prueba de hidrolisis de almidón en la cual se demuestra la capacidad de los microorganismos para hidrolizar el almidón a dextrosa, maltosa y glucosa, mediante la acción de la enzima α -amilasa. Para esta prueba el medio se inocula con la cepa por estría, a continuación, se incuba a 37 °C por 24 h. Posteriormente, se añade yodo de Gram y se inunda la caja. La composición por litro de este agar es la siguiente:

Fórmula	
Extracto de carne	3 g
Almidón soluble	10 g
Agar	12 g
Agar bacteriológico	15 g

Interpretación: La prueba es positiva cuando al agregar yodo de Gram se forma un halo alrededor de las colonias y la prueba es negativa cuando no se observa el halo (Figura 6).

Agar gelatina

Este agar se emplea para la prueba de hidrólisis de gelatina en la cual se demuestra la capacidad de los microorganismos para hidrolizar la gelatina a péptidos y aminoácidos, mediante la acción de la enzima gelatinasa. Se inocula el medio por siembra en picadura y posteriormente se mantienen a temperatura ambiente durante ocho días. La composición por litro de este agar es la siguiente:

Fórmula	
Peptona de gelatina	5 g
Extracto de carne	3 g
Gelatina	120 g
pН	6.8 ± 0.2

Interpretación: La prueba se considera positiva si se produce una zona de licuefacción en caso de no existir cambios la prueba es negativa (Figura 7).

Figura 7. Hidrólisis de gelatina positiva (izq.) y negativa (der.) (Fuente: Propia).

Catalasa

A partir de cepas previamente activadas en AN, ya que algunos microorganismos aerobios obligados y anaerobios facultativos utilizan las enzimas de superóxido y catalasa o peroxidasa, que descomponen al peróxido de hidrógeno para formar oxígeno. Para realizar esta prueba se toma un frotis de la cepa y se coloca en un portaobjetos y se le añade cinco gotas de peróxido de hidrogeno.

Interpretación: La prueba es positiva si se libera gas cuando se añade el peróxido de hidrógeno y la ausencia de burbujas señala una prueba negativa. Algunas veces las burbujas tardan en aparecer, en este caso se reporta como una prueba positiva retardada.

Medio de esporulación

El siguiente medio se empleó para la obtención de endosporas.

Fórmula						
MgSO ₄ ·H ₂ O	280 mg					
KCl	1.11 g					
FeSO ₄ ·7H ₂ O	3.1 mg					
Caldo nutritivo	8.9 g					
MnSO ₄	1 mM					

Anexo II. Determinación de la concentración de NaClO y PAA por yodometría

Determinación de la concentración de NaClO

La determinación de la concentración del NaClO se realiza por yodometría. Esta técnica, consiste en hacer reaccionar el NaClO con un exceso de yoduro de potasio (KI) en condiciones ácidas para formar el ion triyoduro (Ecuación 1). Este se valora con una solución de tiosulfato de sodio ($Na_2S_2O_3$) estandarizado, para determinar indirectamente la cantidad de NaClO presente en el reactivo que se utiliza posteriormente en la desinfección (Ecuación 2) (DOF, 2018).

$$2H^{+} + Cl0^{-} + 2I^{-} \to Cl^{-} + I_{3}^{-} + H_{2}0$$
(1)

$$2S_2 O_s^{2-} + I_3^- \to 3I^- + S_4 O_6^{2-} \tag{2}$$

La determinación de la concentración del NaClO se describe en las Figuras 1 y 2, para lo cual es necesario realizar la estandarización del Na₂S₂O₃ (figura 1), el cual se utiliza como titulante de una solución a valorar, esta presenta un color rojo ladrillo y cambia a azul en el punto de equilibrio. A partir del volumen gastado de Na₂S₂O₃ se obtiene su concentración sustituyendo el volumen gastado en la ecuación 3.

Figura 1. Estandarización del tiosulfato de sodio (Fuente: Elaboración propia).

$$M_{Na_2S_2O_3} = \frac{\left(\frac{2 \ mmol \ S_2O_3}{1 \ mmol \ I_3}\right) * \left(\frac{3 \ mmol \ I_3}{1 \ mmol \ Cr_2O_7}\right) * \left(\frac{1 \ mmol \ Cr_2O_7}{0.294 \ g}\right) * g \ K_2Cr_2O_7}{mL \ Na_2S_2O_3}$$
(3)

Posteriormente, al conocer su concentración en molaridad (mol/L) se realiza el cálculo para obtener su concentración en normalidad (eq/L). La solución de $Na_2S_2O_3$ se emplea para valorizar una solución que contiene NaClO para conocer indirectamente su concentración, la cual pasa de un color rojo ladrillo a transparente en el punto de equilibrio (Figura 2), con el valor del volumen gastado se sustituye en la ecuación 4 se obtiene la concentración del NaClO.

Figura 2. Proceso de titulación del NaClO (Fuente: Elaboración propia).

$$M_{NaClO} = \frac{\left(\frac{1 \ mmol \ ClO^{-}}{3 \ mmol \ I_{3}}\right) * \left(\frac{3 \ mmol \ I_{3}}{2 \ mmol \ S_{2} O_{3}}\right) * \left(\frac{0.247 \ mmol \ Na_{2} S_{2} O_{3}}{ml}\right) * mL \ Na_{2} S_{2} O_{3}}{mL \ NaOCl}$$
(4)

El cloro libre es el cloro presente en forma de ácido hipocloroso (HOCl), ion hipoclorito (OCI⁻) y cloro molecular disuelto (Cl₂). La determinación del cloro libre se basa en su reacción instantánea con el N, N-dietil-p-fenilendiamina (DPD), mismo que reacciona en su forma reducida para producir el radical libre "Würster Dye" el cuál es el responsable del color rosa/magenta (DOF, 2001).

La determinación del cloro libre se realiza mediante el método 4500-ClG. DPD Colorimetric Method de la APHA, en la figura 3 se describe dicho proceso (APHA, 2012). La curva de calibración obtenida y usada en los puntos 6.1.5 y 7.1.3 se muestra en la figura 4, con la cual se obtuvo la ecuación 5.

Figura 3. Determinación del cloro libre (Fuente: Elaboración propia).

Figura 4. Curva de calibración del cloro libre (R²=0.9982) (Fuente: Elaboración propia).

 $y = 0.1249x + 0.01 \tag{5}$

Donde: y= absorbancia y x =concentración de cloro libre.

Determinación de la concentración de PAA

La determinación de la concentración del PAA se realiza por yodometría. Esta técnica, consiste en hacer reaccionar el PAA con yoduro de potasio (KI) en condiciones ácidas para formar el ion yoduro (Ecuación 6). El yodo liberado se valora a continuación con una solución de Na₂S₂O₃ estandarizado (Ecuación 7), para determinar indirectamente la

cantidad de PAA presente en el reactivo que se utiliza posteriormente en la desinfección (DOF, 2018).

$$2H^{+} + CH_{3}COOOH + 2I^{-} \to CH_{3}COOH + I_{2} + H_{2}O$$
(6)

$$2S_2 O_s^{2-} + I_2 \to 2I^- + S_4 O_6^{2-} \tag{7}$$

La determinación de la concentración del PAA se describe en la figura 5, para lo cual es necesario realizar la estandarización del $Na_2S_2O_3$ (Figura 1), posteriormente, al conocer su concentración en molaridad (mol/L), se realiza la valoración de una solución que contiene PAA, la cual pasa de un color rojo ladrillo a transparente en el punto de equilibrio (Figura 5), con el valor del volumen gastado se sustituye en la ecuación 8 y se obtiene la concentración del PAA.

Figura 5. Determinación de la concentración de PAA.

(Fuente: Propia)

$$M_{PAA} = \frac{\frac{\binom{Mol \, Na_2 S_2 O_3}{L} * mL \, Na_2 S_2 O_3}{2}}{mL \, muestra} \tag{8}$$

Para la determinación del residual del PAA en los puntos 6.1.5 y 7.1.3 se realizó mediante el método 4500-ClG. DPD Colorimetric Method de la APHA, en la figura 6 se describe el proceso (APHA, 2012). La curva de calibración obtenida y usada en los puntos 6.1.5 y 7.1.3 se muestra en la figura 7, con la cual se obtuvo la ecuación 9.

Figura 6. Determinación del PAA residual (Fuente: Elaboración propia).

Figura 7. Curva patrón del PAA (R²=0.9919) (Fuente: Elaboración propia).

y = 0.0.153x - 0.0008 (5)

Donde: y = absorbancia y x =concentración de PAA.

Anexo III. Ensayos de desinfección de la cepa certificada de *B. subtilis* con NaClO y PAA

Desinfección de células vegetativas de B. subtilis (CDBB-10009) con NaClO

Este experimento se realizó con células vegetativas de *B. subtilis*, previamente activadas en caldo nutritivo (37 °C por 24 horas), en un matraz Erlenmeyer con 100 mL de agua estéril, se agregó NaClO (30 mg/L), se ajustó el pH a 7.5 y se colocó en agitación orbital (125 rpm), con el fin de ensayar el proceso, determinar las diluciones decimales y tiempos para tomar las alícuotas. El proceso se describe en la figura 6.1. A continuación, se muestran los resultados obtenidos del ensayo de desinfección con NaClO (Tabla 1 y Figura 1).

Tabla 1. Unidades de inactivación y valores de C·t de la desinfección con NaClO (30 mg/L) de células vegetativas de *B. subtilis* (CDBB-1009).

Tiempo (min)	UFC/mL	UI	% Remoción	Cloro residual	C∙t
0	1.02E+06	0.00	0	0	0
10	1.00E+03	-3.01	99.90	2.13	21.3
20	1.00E+03	-3.01	99.90	1.06	21.2
30	1.00E+02	-4.01	99.99	0.83	24.9
45	5.00E+01	-4.31	99.99	0.67	30.15

UI: Unidades de remoción (log N/N₀); C·t: dosis (mg·min/L).

Este ensayo permitió medir el tiempo para la realizar la medición de cloro libre, las diluciones decimales seriadas y la siembra de estas por triplicado.

Además, dio pauta para seleccionar los tiempos de toma de muestra en los ensayos de desinfección los cuales fueron los siguientes: 0, 10, 20, 30, 45, 60 y 100 minutos. Cabe señalar que la lectura de cloro libre se tiene que realizar inmediatamente, debido a que la intensidad de color rosa-rojo aumenta conforme al tiempo, lo cual puede dar resultados erróneos.

Figura 1. Desinfección con NaClO (30 mg/L) de células vegetativas de *B. subtilis* (CDBB-1009) (a) unidades de inactivación y (b) valores de C·t.

Desinfección de endosporas de B. subtilis (CDBB-1009) con PAA

Los ensayos de desinfección de endosporas de la cepa certificada de *B. subtilis* se llevaron a cabo como se describe en el punto 7.1.3.1, con una concentración de 5 y 15 mg/L de PAA. Estos ensayos de desinfección nos permitieron observar la tendencia de las endosporas ante este desinfectante, y por ende seleccionar una concentración para inactivar las endosporas de las cepas aisladas. Los resultados de la desinfección se muestran en las tablas 2 y 3 y en la figura 2.

Dosis (mg/L)	Tiempo (min)	Endosporas/ mL	UI	% Remoción	PAA residual	C∙t
5 mg/L	0	2.00E+13	0.00	0.00	0.00	0.00
	10	2.89E+12	-0.84	85.53	0.77	7.71
	20	1.40E+11	-2.15	99.30	0.77	15.42
	30	3.00E+09	-3.82	99.99	0.51	15.29
	45	6.03E+08	-4.52	100.00	0.31	14.12
	60	1.05E+07	-6.28	100.00	0.38	22.75
	100	6.15E+06	-6.51	100.00	0.51	50.98

Tabla 2. Unidades de inactivación y valores de C·t de la desinfección con PAA (5 mg/L) de endosporas de *B. subtilis* (CDBB-1009).

UI: unidades de remoción (log N/N₀); C·t: dosis (mg·min/L).

Dosis (mg/L)	Tiempo (min)	Endosporas/ mL	UI	% Remoción	PAA residual	C∙t
15 mg/L	0	1.00E+13	0	0	0	0
	10	1.14E+09	-3.94	99.99	15.35	153.46
	20	1.00E+07	-6.00	100.00	14.89	297.78
	30	3.50E+06	-6.46	100.00	14.69	440.78
	45	1.00E+06	-7.00	100.00	13.45	605.29
	60	1.00E+05	-8.00	100.00	13.58	814.90
	100	2.25E+04	-8.65	100.00	11.49	1149.02

Tabla 3. Unidades de inactivación y valores de C·t de la desinfección con PAA (15 mg/L) de endosporas de *B. subtilis* (CDBB-1009).

UI: Unidades de remoción (log N/N₀); C·t: dosis (mg·min/L).

Figura 2. Desinfección con PAA (5 y 15 mg/L) de endosporas de *B*. subtilis (a) unidades de inactivación y (b) valores de C·t.

La desinfección de endosporas con PAA a dosis bajas mostraron ser más eficientes que el empleo de NaClO, ya que un tiempo de contacto de 30 min se puede observar una remoción del 99.99 %, con una concentración de 5 mg/L y en 10 min empleando una concentración de 15 mg/L, así mismo, se puede observar que el incremento de la dosis, aumentó las unidades de inactivación en dos unidades logarítmicas, sin embargo, como se observa en el punto 6.2.3 estas dosis para el caso de la cepa de *B. subtilis* aislada no refleja el incremento de remoción no se obtuvo, por lo que se optó por realizar un ensayo de desinfección con un aumento en la dosis (25 mg/L) con la cepa de *B. subtilis* aislada, dicho ensayo se encuentra en el **Anexo IV.**

Anexo IV. Ensayo de desinfección de B. subtilis (aislada) con PAA

Los ensayos de desinfección de endosporas de la cepa aislada de *B. subtilis* se llevaron a cabo como se describe en el punto 7.1.3.1, con una concentración de 25 mg/L de PAA. Este ensayo de desinfección nos permite observar la tendencia de remoción de las endosporas ante este desinfectante, y así mismo poder comparar su remoción y poder emplear esta dosis en las endosporas de otras cepas aisladas. Los resultados de la desinfección se muestran en la tabla 1 y en la figura 1.

Tiempo	UFC/mL	UI	% Remoción	PAA residual (mg/L)	C∙t
0	3.60E+12	0	0	0	0
10	4.05E+11	-0.95	88.75	10.12	101.18
20	4.00E+10	-1.95	98.89	10.25	204.97
30	4.00E+09	-2.95	99.89	9.33	280.00
45	2.60E+07	-5.14	100.00	9.07	408.24
60	1.92E+07	-5.27	100.00	8.61	516.86
80	2.31E+07	-5.19	100.00	8.48	678.69
100	2.03E+07	-5.25	100.00	8.22	822.22

Tabla 1. Unidades de inactivación y valores de C·t de la desinfección con PAA (25 mg/L) de endosporas de *B. subtilis* (aislada).

UI: Unidades de remoción (log N/N₀); C·t: dosis (mg·min/L).

Los resultados mostraron un pequeño aumento en la remoción de endosporas (~1 log), se observa una remoción de aproximadamente del 100 % a los 45 minutos, sin embargo, aún existen endosporas viables, por lo que se optó por usar una dosis mayor y ya reportada para la inactivación de endosporas aisladas con resistencia al cloro.

Anexo V. Conteo general de UFC de los ensayos de desinfección convencional de tres cepas

En este apartado se muestran las tablas del conteo general de unidades formadoras de colonias de los ensayos de desinfección de cada cepa aislada por cada concentración del desinfectante del punto 6.2.3.

Tiempo (min)	Dilución	UFC	FD	UFC/100 μL	UFC/mL	Promedio de dilución
0	-	-	-	-	3.80E+12	5.00E+12
	-2	1	1.00E+02	1.00E+02	1.00E+03	
5	-1	14	1.00E+01	1.40E+02	1.40E+03	1.20E+03
	D	1171	-	1.17E+03	1.17E+04	

Tabla 1. Desinfección con NaClO (15 mg/L) de S. pasteuri.

UFC: unidades formadoras de colonia; FD: factor de dilución; D: directa.

Tiempo (min)	Dilución	UFC	FD	UFC/100 µL	UFC/mL	Promedio de dilución
0	-	-	-	-	2.66E+10	2.66E+10
	-4	2	1.00E+04	2.00E+04	2.00E+05	
5	-2	198	1.00E+02	1.98E+04	1.98E+05	2.01E+05
	-2	206	1.00E+02	2.06E+04	2.06E+05	
	-4	3	1.00E+04	3.00E+04	3.00E+05	
10	-3	12	1.00E+03	1.20E+04	1.20E+05	
10	-3	2	1.00E+03	2.00E+03	2.00E+04	2.106+05
	-2	6	1.00E+02	6.00E+02	6.00E+03	
	-1	2	1.00E+01	2.00E+01	2.00E+02	
15	D	4	1	4	4.00E+01	1.50E+02
	D	10	-	10	1.00E+02	
	-2	2	1.00E+02	2.00E+02	2.00E+03	
	-1	13	1.00E+01	1.30E+02	1.30E+03	0.705.00
30	-1	12	1.00E+01	1.20E+02	1.20E+03	8.70E+02
	D	87	-	87	8.70E+02	

Tabla 2. Desinfección con NaClO (15 mg/L) de K. pneumoniae.

UFC: unidades formadoras de colonia; FD: factor de dilución; D: directa.

Tiempo	Dilución	UFC	FD	UFC/100 μL	UFC/mL	Promedio dilución
0	-8	2	1.00E+08	2.00E+08	2.00E+09	2.00E+09
	-9	1	1.00E+09	1.00E+09	1.00E+10	
	-6	2	1.00E+06	2.00E+06	2.00E+07	
5	-6	3	1.00E+06	3.00E+06	3.00E+07	2.00E+07
	-3	737	1.00E+03	7.37E+05	7.37E+06	
	-3	1000	1.00E+03	1.00E+06	1.00E+07	
10	-3	9	1.00E+03	9.00E+03	9.00E+04	1.00E+05
10	-3	10	1.00E+03	1.00E+04	1.00E+05	
	-1	2	1.00E+01	2.00E+01	2.00E+02	
1 5	-1	1	1.00E+01	1.00E+01	1.00E+02	1.47E+02
15	D	14	1	14	1.40E+02	
	D	6	1	6	6.00E+01	
	D	9	1	9	9.00E+01	2.005.02
20	D	20	1	20	2.00E+02	2.00E+02
30	-1	2	1.00E+01	2.00E+01	2.00E+02	
	D	12	1	12	1.20E+02	1.60E+02
	D	2	1	2	2.00E+01	

Tabla 3. Desinfección con PAA (5 mg/L) de S. pasteuri.

UFC: unidades formadoras de colonia; FD: factor de dilución; D: directa.

Tiempo (min)	Dilución	UFC	FD (JFC/100 μL	UFC/mL	Promedio dilución
	-7	17	1.00E+07	1.70E+08	1.70E+09	
	-6	17	1.00E+06	1.70E+07	1.70E+08	
0	-6	40	1.00E+06	4.00E+07	4.00E+08	1.70E+09
	-5	10	1.00E+05	1.00E+06	1.00E+07	
	-5	31	1.00E+05	3.10E+06	3.10E+07	
	-1	2	1.00E+01	20	2.00E+02	
10	D	16	1	16	1.60E+02	1.70E+02
	D	15	1	15	1.50E+02	
15	D	2	1	2	2.00E+01	2.00E+01

 Tabla 4. Desinfección con PAA (15 mg/L) de S. pasteuri.

UFC: unidades formadoras de colonia; FD: factor de dilución; D: directa.

Tiempo (min)	Dilución	UFC	FD	UFC/100 μL	UFC/mL	Promedio dilución
	-6	58	1.00E+06	5.80E+07	5.80E+08	
	-6	57	1.00E+06	5.70E+07	5.70E+08	
0	-5	34	1.00E+05	3.40E+06	3.40E+07	5 75 5 + 00
0	-5	56	1.00E+05	5.60E+06	5.60E+07	5.75ETUO
	-4	211	1.00E+04	2.11E+06	2.11E+07	
	-4	216	1.00E+04	2.16E+06	2.16E+07	
F	-4	180	1.00E+04	1.80E+06	1.80E+07	1 60 - 107
Э	-4	156	1.00E+04	1.56E+06	1.56E+07	1.086+07
	-3	627	1.00E+03	6.27E+05	6.27E+06	
10	-3	684	1.00E+03	6.84E+05	6.84E+06	1.42E+07
	-4	142	1.00E+04	1.42E+06	1.42E+07	
1 5	-4	4	1.00E+04	4.00E+04	4.00E+05	7 155 00
15	-3	715	1.00E+03	7.15E+05	7.15E+06	7.15E+06
	-5	2	1.00E+05	2.00E+05	2.00E+06	
20	-4	2	1.00E+04	2.00E+04	2.00E+05	4.19E+06
	-3	637	1.00E+03	6.37E+05	6.37E+06	
30	-5	1	1.00E+05	1.00E+05	1.00E+06	1.00E+06

Tabla 5. Desinfección con PAA (5 mg/L) de K. pneumoniae.

UFC: unidades formadoras de colonia; FD: factor de dilución.
Tiempo (min)	Dilución	UFC	FD	UFC/100 μL	UFC/mL	Promedio dilución
	-9	1	1.00E+09	1.00E+09	1.00E+10	
	-9	8	1.00E+09	8.00E+09	8.00E+10	
0	-8	5	1.00E+08	5.00E+08	5.00E+09	2 42 - 10
0	-8	13	1.00E+08	1.30E+09	1.30E+10	3.43E+10
	-7	1	1.00E+07	1.00E+07	1.00E+08	
	-7	5	1.00E+07	5.00E+07	5.00E+08	
	-8	4	1.00E+08	4.00E+08	4.00E+09	
	-7	10	1.00E+07	1.00E+08	1.00E+09	
5	-7	1	1.00E+07	1.00E+07	1.00E+08	2.50E+09
	-6	5	1.00E+06	5.00E+06	5.00E+07	
	-6	4	1.00E+06	4.00E+06	4.00E+07	
	-7	7	1.00E+07	7.00E+07	7.00E+08	
	-6	2	1.00E+06	2.00E+06	2.00E+07	
10	-6	2	1.00E+06	2.00E+06	2.00E+07	1.83E+07
	-5	18	1.00E+05	1.80E+06	1.80E+07	
	-5	15	1.00E+05	1.50E+06	1.50E+07	
	-6	4	1.00E+06	4.00E+06	4.00E+07	
	-6	17	1.00E+06	1.70E+07	1.70E+08	
15	-5	15	1.00E+05	1.50E+06	1.50E+07	2040107
15	-5	13	1.00E+05	1.30E+06	1.30E+07	2.046+07
	-4	137	1.00E+04	1.37E+06	1.37E+07	
	-4	91	1.00E+04	9.10E+05	9.10E+06	
	-5	28	1.00E+05	2.80E+06	2.80E+07	
	-5	35	1.00E+05	3.50E+06	3.50E+07	
20	-4	216	1.00E+04	2.16E+06	2.16E+07	2.82E+07
	-3	544	1.00E+03	5.44E+05	5.44E+06	
	-3	660	1.00E+03	6.60E+05	6.60E+06	
_	-4	169	1.00E+04	1.69E+06	1.69E+07	
30	-4	164	1.00E+04	1.64E+06	1.64E+07	1.67E+07
	-3	696	1.00E+03	6.96E+05	6.96E+06	

Tabla 6. Desinfección con PAA (15 mg/L) de K. pneumoniae.

Tiempo (min)	Dilución	UFC	FD	Endosporas/ 100 µL	Endosporas/mL	Promedio de dilución
	-10	56	1.00E+10	5.60E+11	5.60E+12	
	-10	1	1.00E+10	1.00E+10	1.00E+11	
0	-9	21	1.00E+09	2.10E+10	2.10E+11	1675+11
0	-9	19	1.00E+09	1.90E+10	1.90E+11	1.076+11
	-8	6	1.00E+08	6.00E+08	6.00E+09	
	-8	8	1.00E+08	8.00E+08	8.00E+09	
	-9	1600	1.00E+09	1.60E+12	1.60E+13	
10	-7	100	1.00E+07	1.00E+09	1.00E+10	1.44E+10
	-7	188	1.00E+07	1.88E+09	1.88E+10	
	-8	2000	1.00E+08	2.00E+11	2.00E+12	
20	-7	860	1.00E+07	8.60E+09	8.60E+10	5.20E+09
	-6	520	1.00E+06	5.20E+08	5.20E+09	
	-7	520	1.00E+07	5.20E+09	5.20E+10	
20	-7	284	1.00E+07	2.84E+09	2.84E+10	1 575 1 00
30	-6	157	1.00E+06	1.57E+08	1.57E+09	1.57E+09
	-5	52	1.00E+05	5.20E+06	5.20E+07	
	-6	58	1.00E+06	5.80E+07	5.80E+08	
45	-6	250	1.00E+06	2.50E+08	2.50E+09	2 505 1 00
40	-5	119	1.00E+05	1.19E+07	1.19E+08	3.30E+00
	-4	723	1.00E+04	7.23E+06	7.23E+07	
	-5	400	1.00E+05	4.00E+07	4.00E+08	
65	-5	424	1.00E+05	4.24E+07	4.24E+08	9.76E+07
	-4	976	1.00E+04	9.76E+06	9.76E+07	
100	-4	484	1.00E+04	4.84E+06	4.84E+07	4 145 107
100	-4	344	1.00E+04	3.44E+06	3.44E+07	4.14 ±+ 07

 Tabla 7. Desinfección con NaClO (15 mg/L) de endosporas de B. subtilis.

Tiempo (min)	Dilución	UFC	FD	Endosporas/ 100 µL	Endosporas/mL	Promedio de dilución
	-9	156	1.00E+09	1.56E+11	1.56E+12	
	-9	9	1.00E+09	9.00E+09	9.00E+10	
0	-8	17	1.00E+08	1.70E+09	1.70E+10	1 565 1 1 2
0	-8	5	1.00E+08	5.00E+08	5.00E+09	1.506+12
	-7	2	1.00E+07	2.00E+07	2.00E+08	
	-7	4	1.00E+07	4.00E+07	4.00E+08	
	-8	276	1.00E+08	2.76E+10	2.76E+11	
10	-7	51	1.00E+07	5.10E+08	5.10E+09	2.76E+11
	-6	28	1.00E+06	2.80E+07	2.80E+08	
	-7	97	1.00E+07	9.70E+08	9.70E+09	
20	-7	315	1.00E+07	3.15E+09	3.15E+10	2 15 - 10
20	-5	80	1.00E+05	8.00E+06	8.00E+07	3.15E+10
	-5	157	1.00E+05	1.57E+07	1.57E+08	
	-6	94	1.00E+06	9.40E+07	9.40E+08	
30	-5	114	1.00E+05	1.14E+07	1.14E+08	5.27E+08
	-4	323	1.00E+04	3.23E+06	3.23E+07	
	-5	100	1.00E+05	1.00E+07	1.00E+08	
45	-3	676	1.00E+03	6.76E+05	6.76E+06	1.00E+08
	-3	912	1.00E+03	9.12E+05	9.12E+06	
<u> </u>	-4	282	1.00E+04	2.82E+06	2.82E+07	0.000 .07
00	-4	130	1.00E+04	1.30E+06	1.30E+07	2.002+07
100	-3	430	1.00E+03	4.30E+05	4.30E+06	4.000 + 0.0
100	-3	430	1.00E+03	4.30E+05	4.30E+06	4.30E+06

 Tabla 8. Desinfección con NaClO (30 mg/L) de endosporas de B. subtilis.

Tiempo (min)	Dilución	UFC	FD	Endosporas/ 100 µL	Endosporas /mL	Promedio dilución
0	-	-	-	-	1.00E+10	
	-8	44	1.00E+08	4.40E+09	4.40E+10	
	-8	20	1.00E+08	2.00E+09	2.00E+10	
10	-7	1	1.00E+07	1.00E+07	1.00E+08	3.20E+10
	-7	5	1.00E+07	5.00E+07	5.00E+08	
	-6	4	1.00E+06	4.00E+06	4.00E+07	
	-7	8	1.00E+07	8.00E+07	8.00E+08	
20	-5	10	1.00E+05	1.00E+06	1.00E+07	8.00E+08
	-5	11	1.00E+05	1.10E+06	1.10E+07	
	-6	1	1.00E+06	1.00E+06	1.00E+07	
	-6	8	1.00E+06	8.00E+06	8.00E+07	
30	-5	18	1.00E+05	1.80E+06	1.80E+07	3.60E+07
	-4	26	1.00E+04	2.60E+05	2.60E+06	
	-4	19	1.00E+04	1.90E+05	1.90E+06	
	-5	1	1.00E+05	1.00E+05	1.00E+06	
	-4	32	1.00E+04	3.20E+05	3.20E+06	
45	-4	23	1.00E+04	2.30E+05	2.30E+06	1.89E+06
	-3	140	1.00E+03	1.40E+05	1.40E+06	
	-3	155	1.00E+03	1.55E+05	1.55E+06	
	-4	27	1.00E+04	2.70E+05	2.70E+06	
60	-4	62	1.00E+04	6.20E+05	6.20E+06	3.31E+06
	-3	104	1.00E+03	1.04E+05	1.04E+06	
	-5	6	1.00E+05	6.00E+05	6.00E+06	
80	-4	32	1.00E+04	3.20E+05	3.20E+06	3.49E+06
	-3	128	1.00E+03	1.28E+05	1.28E+06	
	-5	4	1.00E+05	4.00E+05	4.00E+06	
100	-4	31	1.00E+04	3.10E+05	3.10E+06	2.98E+06
	-3	185	1.00E+03	1.85E+05	1.85E+06	

Tabla 9. Desinfección con PAA (5 mg/L) de endosporas de *B. subtilis*.

Tiempo (min)	Dilución	UFC	FD	Endosporas/ 100 µL	Endosporas/mL	Promedio dilución
	-10	1	1.00E+10	1.00E+10	1.00E+11	
	-10	1	1.00E+10	1.00E+10	1.00E+11	
0	-9	4	1.00E+09	4.00E+09	4.00E+10	1 100 1 11
0	-9	14	1.00E+09	1.40E+10	1.40E+11	1.136+11
	-8	4	1.00E+08	4.00E+08	4.00E+09	
	-8	2	1.00E+08	2.00E+08	2.00E+09	
	-7	69	1.00E+07	6.90E+08	6.90E+09	
10	-7	81	1.00E+07	8.10E+08	8.10E+09	
10	-6	54	1.00E+06	5.40E+07	5.40E+08	5.02E+09
	-6	245	1.00E+06	2.45E+08	2.45E+09	
	-7	22	1.00E+07	2.20E+08	2.20E+09	
	-6	15	1.00E+06	1.50E+07	1.50E+08	
20	-6	20	1.00E+06	2.00E+07	2.00E+08	2.20E+09
	-5	7	1.00E+05	7.00E+05	7.00E+06	
	-5	13	1.00E+05	1.30E+06	1.30E+07	
	-5	16	1.00E+05	1.60E+06	1.60E+07	
30	-4	70	1.00E+04	7.00E+05	7.00E+06	1.60E+07
	-4	51	1.00E+04	5.10E+05	5.10E+06	
	-5	7	1.00E+05	7.00E+05	7.00E+06	
	-4	35	1.00E+04	3.50E+05	3.50E+06	
45	-4	30	1.00E+04	3.00E+05	3.00E+06	3.60E+06
	-3	236	1.00E+03	2.36E+05	2.36E+06	
	-3	215	1.00E+03	2.15E+05	2.15E+06	
	-4	48	1.00E+04	4.80E+05	4.80E+06	
60	-3	279	1.00E+03	2.79E+05	2.79E+06	3.27E+06
	-3	221	1.00E+03	2.21E+05	2.21E+06	
	-3	300	1.00E+03	3.00E+05	3.00E+06	0.500.000
100	-3	200	1.00E+03	2.00E+05	2.00E+06	2.50E+06

Tabla 10. Desinfección con PAA (15 mg/L) de endosporas de *B. subtilis*.

Anexo VI. Conteo general de UFC de los ensayos de desinfección convencional y secuencial de endosporas de diversas especies del género *Bacillus*.

En este apartado se muestran las tablas del conteo general de unidades formadoras de colonias de los ensayos de desinfección de endosporas de cada cepa aislada por cada concentración del desinfectante del punto 7.2.3.1 y de la desinfección secuencial del punto 7.2.3.2.

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio de dilución
0	-	-	-	-	1.00E+16	1.00E+16
	-9	2	1.00E+09	2.00E+09	2.00E+10	
	-10	6	1.00E+10	6.00E+10	6.00E+11	
10	-10	2	1.00E+10	2.00E+10	2.00E+11	9.00E+13
	-11	8	1.00E+11	8.00E+11	8.00E+12	
	-11	90	1.00E+11	9.00E+12	9.00E+13	
20	-10	1	1.00E+10	1.00E+10	1.00E+11	1.00E+11
30	-9	3	1.00E+09	3.00E+09	3.00E+10	3.00E+10
	-8	1	1.00E+08	1.00E+08	1.00E+09	
	-7	1	1.00E+07	1.00E+07	1.00E+08	
45	-7	2	1.00E+07	2.00E+07	2.00E+08	1.00E+09
	-6	2	1.00E+06	2.00E+06	2.00E+07	
	-6	4	1.00E+06	4.00E+06	4.00E+07	
60	-7	1	1.00E+07	1.00E+07	1.00E+08	1.00E+08
100	-1	3	1.00E+01	30	300	220
100	D	14	1	14	140	220

Tabla 1. Desinfección con NaClO (30 mg/L) de endosporas de B. licheniformis.

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio de dilución
	-8	22	1.00E+08	2.20E+09	2.20E+10	
0	-8	16	1.00E+08	1.60E+09	1.60E+10	1.00E+10
0	-7	22	1.00E+07	2.20E+08	2.20E+09	1.906+10
	-7	21	1.00E+07	2.10E+08	2.10E+09	
	-8	9	1.00E+08	9.00E+08	9.00E+09	
	-8	88	1.00E+08	8.80E+09	8.80E+10	
10	-7	7	1.00E+07	7.00E+07	7.00E+08	
10	-7	1	1.00E+07	1.00E+07	1.00E+08	9.00E+09
	-6	2	1.00E+06	2.00E+06	2.00E+07	
	-6	5	1.00E+06	5.00E+06	5.00E+07	
	-7	4	1.00E+07	4.00E+07	4.00E+08	
	-6	4	1.00E+06	4.00E+06	4.00E+07	4.000 + 00
20	-5	6	1.00E+05	6.00E+05	6.00E+06	4.00E+08
	-5	1	1.00E+05	1.00E+05	1.00E+06	
	-6	4	1.00E+06	4.00E+06	4.00E+07	
	-5	2	1.00E+05	2.00E+05	2.00E+06	
30	-5	1	1.00E+05	1.00E+05	1.00E+06	4.00E+07
	-4	8	1.00E+04	8.00E+04	8.00E+05	
	-4	11	1.00E+04	1.10E+05	1.10E+06	
45	-5	1	1.00E+05	1.00E+05	1.00E+06	1.00E+00
45	-3	8	1.00E+03	8.00E+03	8.00E+04	1.00E+06
	-3	8	1.00E+03	8.00E+03	8.00E+04	
60	-3	11	1.00E+03	1.10E+04	1.10E+05	4.78E+05
	-2	845	1.00E+02	8.45E+04	8.45E+05	
_	-2	60	1.00E+02	6.00E+03	6.00E+04	
100	-1	1	1.00E+01	1.00E+01	1.00E+02	6.00E+04
	-1	3	1.00E+01	3.00E+01	3.00E+02	

Tabla 2. Desinfección con NaClO (30 mg/L) de endosporas de *B. atrophaeus*.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio de dilución
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-9	167	1.00E+09	1.67E+11	1.67E+12	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	-8	800	1.00E+08	8.00E+10	8.00E+11	1.075 + 10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0	-7	716	1.00E+07	7.16E+09	7.16E+10	1.07E+12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-7	400	1.00E+07	4.00E+09	4.00E+10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-8	1600	1.00E+08	1.60E+11	1.60E+12	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-8	1252	1.00E+08	1.25E+11	1.25E+12	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	-7	774	1.00E+07	7.74E+09	7.74E+10	1.43E+12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-6	800	1.00E+06	8.00E+08	8.00E+09	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-6	563	1.00E+06	5.63E+08	5.63E+09	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-7	177	1.00E+07	1.77E+09	1.77E+10	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	-7	126	1.00E+07	1.26E+09	1.26E+10	4 505 4 4 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-6	380	1.00E+06	3.80E+08	3.80E+09	1.526+10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-5	656	1.00E+05	6.56E+07	6.56E+08	
30 -6 212 1.00E+06 2.12E+08 2.12E+09 2.00E+09 -5 300 1.00E+05 3.00E+07 3.00E+08 2.00E+09 -4 446 1.00E+04 4.46E+06 4.46E+07 4.46E+07 -5 33 1.00E+05 3.30E+06 3.30E+07 5.00E+07 -5 67 1.00E+05 6.70E+06 6.70E+07 5.00E+07 45 -4 55 1.00E+04 5.50E+05 5.50E+06 5.00E+07 -3 54 1.00E+03 5.40E+04 5.40E+05 5.00E+05 -3 57 1.00E+03 5.70E+04 5.70E+05 4.10E+06 -3 120 1.00E+03 1.20E+05 1.20E+06 4.10E+06 60 -3 57 1.00E+03 5.70E+04 5.70E+05 4.10E+06 -2 72 1.00E+02 7.20E+03 7.20E+04 2.60E+04 100 -2 27 1.00E+02 2.50E+03 2.50E+04 2.60E+04		-6	188	1.00E+06	1.88E+08	1.88E+09	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-6	212	1.00E+06	2.12E+08	2.12E+09	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	-5	300	1.00E+05	3.00E+07	3.00E+08	2.00E+09
-5 33 1.00E+05 3.30E+06 3.30E+07 -5 67 1.00E+05 6.70E+06 6.70E+07 45 -4 55 1.00E+04 5.50E+05 5.50E+06 5.00E+07 -3 54 1.00E+03 5.40E+04 5.40E+05 5.00E+05 -3 57 1.00E+03 5.70E+04 5.70E+05 5.70E+05 -4 70 1.00E+03 5.70E+04 5.70E+06		-4	446	1.00E+04	4.46E+06	4.46E+07	
-5 67 1.00E+05 6.70E+06 6.70E+07 45 -4 55 1.00E+04 5.50E+05 5.50E+06 5.00E+07 -3 54 1.00E+03 5.40E+04 5.40E+05 5.40E+05 -3 57 1.00E+03 5.70E+04 5.70E+05 7.00E+05 -3 57 1.00E+03 5.70E+04 5.70E+05 7.00E+06 -4 70 1.00E+03 1.20E+05 1.20E+06 4.10E+06 -3 57 1.00E+03 5.70E+04 5.70E+05 4.10E+06 -3 57 1.00E+03 5.70E+04 5.70E+05 4.10E+06 -2 72 1.00E+02 7.20E+03 7.20E+04 4.10E+06 -2 57 1.00E+02 5.70E+03 5.70E+04 5.70E+04 100 -2 25 1.00E+02 2.50E+03 2.50E+04 2.60E+04 -2 27 1.00E+02 2.70E+03 2.70E+04 2.60E+04		-5	33	1.00E+05	3.30E+06	3.30E+07	
45 -4 55 1.00E+04 5.50E+05 5.50E+06 5.00E+07 -3 54 1.00E+03 5.40E+04 5.40E+05 5.40E+05 -3 57 1.00E+03 5.70E+04 5.70E+05 5.00E+06 -4 70 1.00E+04 7.00E+05 7.00E+06		-5	67	1.00E+05	6.70E+06	6.70E+07	
-3 54 1.00E+03 5.40E+04 5.40E+05 -3 57 1.00E+03 5.70E+04 5.70E+05 -4 70 1.00E+04 7.00E+05 7.00E+06 -3 120 1.00E+03 1.20E+05 1.20E+06 -3 57 1.00E+03 5.70E+04 5.70E+05 60 -3 57 1.00E+03 5.70E+04 5.70E+05 -2 72 1.00E+02 7.20E+03 7.20E+04 -2 57 1.00E+02 5.70E+03 5.70E+04 -2 57 1.00E+02 5.70E+03 5.70E+04 -2 25 1.00E+02 2.50E+03 2.50E+04 -2 25 1.00E+02 2.70E+03 2.50E+04 -2 27 1.00E+02 2.70E+03 2.50E+04	45	-4	55	1.00E+04	5.50E+05	5.50E+06	5.00E+07
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-3	54	1.00E+03	5.40E+04	5.40E+05	
-4 70 1.00E+04 7.00E+05 7.00E+06 -3 120 1.00E+03 1.20E+05 1.20E+06 60 -3 57 1.00E+03 5.70E+04 5.70E+05 4.10E+06 -2 72 1.00E+02 7.20E+03 7.20E+04 -2 -2 57 1.00E+02 5.70E+03 5.70E+04 100 -2 25 1.00E+02 2.50E+03 2.50E+04 -2 27 1.00E+02 2.70E+03 2.50E+04 2.60E+04		-3	57	1.00E+03	5.70E+04	5.70E+05	
-3 120 1.00E+03 1.20E+05 1.20E+06 60 -3 57 1.00E+03 5.70E+04 5.70E+05 4.10E+06 -2 72 1.00E+02 7.20E+03 7.20E+04 -2 -2 57 1.00E+02 5.70E+03 5.70E+04 -2 100 -2 25 1.00E+02 2.50E+03 2.50E+04 -2.60E+04 -2 27 1.00E+02 2.70E+03 2.70E+04 -2.60E+04		-4	70	1.00E+04	7.00E+05	7.00E+06	
60 -3 57 1.00E+03 5.70E+04 5.70E+05 4.10E+06 -2 72 1.00E+02 7.20E+03 7.20E+04 - -2 57 1.00E+02 5.70E+03 5.70E+04 - 100 -2 25 1.00E+02 2.50E+03 2.50E+04 2.60E+04 -2 27 1.00E+02 2.70E+03 2.70E+04 2.60E+04		-3	120	1.00E+03	1.20E+05	1.20E+06	
-2 72 1.00E+02 7.20E+03 7.20E+04 -2 57 1.00E+02 5.70E+03 5.70E+04 100 -2 25 1.00E+02 2.50E+03 2.50E+04 -2 27 1.00E+02 2.70E+03 2.70E+04	60	-3	57	1.00E+03	5.70E+04	5.70E+05	4.10E+06
-2 57 1.00E+02 5.70E+03 5.70E+04 100 -2 25 1.00E+02 2.50E+03 2.50E+04 -2 27 1.00E+02 2.70E+03 2.70E+04		-2	72	1.00E+02	7.20E+03	7.20E+04	
-2 25 1.00E+02 2.50E+03 2.50E+04 -2 27 1.00E+02 2.70E+03 2.70E+04		-2	57	1.00E+02	5.70E+03	5.70E+04	
-2 27 1.00E+02 2.70E+03 2.70E+04	100	-2	25	1.00E+02	2.50E+03	2.50E+04	
	100	-2	27	1.00E+02	2.70E+03	2.70E+04	2.00E+04

Tabla 3. Desinfección con NaClO (30 mg/L) de endosporas de *B. amyloliquefaciens* spp. *plantarum*.

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio de dilución
	-9	306	1.0E+09	3.1E+11	3.1E+12	
0	-9	220	1.0E+09	2.2E+11	2.2E+12	2.6E+12
0	-7	550	1.0E+07	5.5E+09	5.5E+10	
	-7	306	1.0E+07	3.1E+09	3.1E+10	
	-8	500	1.0E+08	5.0E+10	5.0E+11	
	-8	520	1.0E+08	5.2E+10	5.2E+11	
10	-7	800	1.0E+07	8.0E+09	8.0E+10	5.1E+11
	-6	540	1.0E+06	5.4E+08	5.4E+09	
	-6	500	1.0E+06	5.0E+08	5.0E+09	
	-7	231	1.0E+07	2.3E+09	2.3E+10	
20	-7	100	1.0E+07	1.0E+09	1.0E+10	1.7E+10
	-6	260	1.0E+06	2.6E+08	2.6E+09	
	-6	100	1.0E+06	1.0E+08	1.0E+09	
	-6	123	1.0E+06	1.2E+08	1.2E+09	
20	-5	230	1.0E+05	2.3E+07	2.3E+08	1 1 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0
30	-5	50	1.0E+05	5.0E+06	5.0E+07	1.1E+09
	-4	170	1.0E+04	1.7E+06	1.7E+07	
	-4	284	1.0E+04	2.8E+06	2.8E+07	
	-5	19	1.0E+05	1.9E+06	1.9E+07	
	-5	10	1.0E+05	1.0E+06	1.0E+07	
45	-4	100	1.0E+04	1.0E+06	1.0E+07	1.3E+07
	-3	51	1.0E+03	5.1E+04	5.1E+05	
	-3	14	1.0E+03	1.4E+04	1.4E+05	
	-3	60	1.0E+03	6.0E+04	6.0E+05	
60	-3	185	1.0E+03	1.9E+05	1.9E+06	1.05+06
60	-2	235	1.0E+02	2.4E+04	2.4E+05	1.95+00
	-2	151	1.0E+02	1.5E+04	1.5E+05	
100	-3	22	1.0E+03	2.2E+04	2.2E+05	4.05.05
100	-3	74	1.0E+03	7.4E+04	7.4E+05	4.8 Ľ+ 05

Tabla 4. Desinfección con NaClO (30 mg/L) de endosporas de *B. amyloliquefaciens*.

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio dilución
	-11	1	1.00E+11	1.00E+11	1.00E+12	
0	-11	4	1.00E+11	4.00E+11	4.00E+12	
0	-10	2	1.00E+10	2.00E+10	2.00E+11	2.306+12
	-10	6	1.00E+10	6.00E+10	6.00E+11	
	-10	2	1.00E+10	2.00E+10	2.00E+11	
10	-10	2	1.00E+10	2.00E+10	2.00E+11	2.005.11
10	-9	2	1.00E+09	2.00E+09	2.00E+10	2.006+11
	-9	1	1.00E+09	1.00E+09	1.00E+10	
	-9	1	1.00E+09	1.00E+09	1.00E+10	
20	-8	2	1.00E+08	2.00E+08	2.00E+09	1.00E+10
	-7	1	1.00E+07	1.00E+07	1.00E+08	
	-7	1	1.00E+07	1.00E+07	1.00E+08	
30	-6	2	1.00E+06	2.00E+06	2.00E+07	1.00E+08
	-6	1	1.00E+06	1.00E+06	1.00E+07	
	-7	3	1.00E+07	3.00E+07	3.00E+08	2.00E+07
45	-6	2	1.00E+06	2.00E+06	2.00E+07	
45	-6	2	1.00E+06	2.00E+06	2.00E+07	
	-5	1	1.00E+05	1.00E+05	1.00E+06	
	-6	2	1.00E+06	2.00E+06	2.00E+07	
	-5	1	1.00E+05	1.00E+05	1.00E+06	
60	-5	4	1.00E+05	4.00E+05	4.00E+06	2.03E+06
	-4	8	1.00E+04	8.00E+04	8.00E+05	
	-4	11	1.00E+04	1.10E+05	1.10E+06	
	-5	3	1.00E+05	3.00E+05	3.00E+06	
80	-5	5	1.00E+05	5.00E+05	5.00E+06	3.37E+06
	-4	21	1.00E+04	2.10E+05	2.10E+06	
	-6	1	1.00E+06	1.00E+06	1.00E+07	
100	-5	3	1.00E+05	3.00E+05	3.00E+06	4.00E+06
	-5	5	1.00E+05	5.00E+05	5.00E+06	

Tabla 5. Desinfección con PAA (300 mg/L) de endosporas de *B. liqueniformis.*

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio dilución
	-12	152	1.00E+12	1.52E+14	1.52E+15	
0	-11	10	1.00E+11	1.00E+12	1.00E+13	1 507 1 15
0	-11	72	1.00E+11	7.20E+12	7.20E+13	1.526+15
	-10	148	1.00E+10	1.48E+12	1.48E+13	
	-11	43	1.00E+11	4.30E+12	4.30E+13	
10	-11	58	1.00E+11	5.80E+12	5.80E+13	5 <u>05</u> ፲±12
10	-10	35	1.00E+10	3.50E+11	3.50E+12	5.05E+15
	-10	29	1.00E+10	2.90E+11	2.90E+12	
	-10	7	1.00E+10	7.00E+10	7.00E+11	
20	-10	24	1.00E+10	2.40E+11	2.40E+12	2.40E+12
20	-9	41	1.00E+09	4.10E+10	4.10E+11	
	-9	33	1.00E+09	3.30E+10	3.30E+11	
	-9	41	1.00E+09	4.10E+10	4.10E+11	
	-9	55	1.00E+09	5.50E+10	5.50E+11	
	-8	38	1.00E+08	3.80E+09	3.80E+10	1 00E±11
30	-8	95	1.00E+08	9.50E+09	9.50E+10	4.0011+11
	-7	64	1.00E+07	6.40E+08	6.40E+09	
	-7	60	1.00E+07	6.00E+08	6.00E+09	
	-8	90	1.00E+08	9.00E+09	9.00E+10	
45	-8	50	1.00E+08	5.00E+09	5.00E+10	7.00 - 10
45	-7	94	1.00E+07	9.40E+08	9.40E+09	1.005+10
	-7	18	1.00E+07	1.80E+08	1.80E+09	
	-7	7	1.00E+07	7.00E+07	7.00E+08	
	-7	1	1.00E+07	1.00E+07	1.00E+08	
60	-6	2	1.00E+06	2.00E+06	2.00E+07	4.00E+08
	-6	5	1.00E+06	5.00E+06	5.00E+07	
	-5	5	1.00E+05	5.00E+05	5.00E+06	
00	-6	7	1.00E+06	7.00E+06	7.00E+07	
δU	-6	4	1.00E+06	4.00E+06	4.00E+07	5.50E+07
100	D	112	1.00E+00	1.12E+02	1.12E+03	1.12E+03

Tabla 6. Desinfección con PAA (300 mg/L) de endosporas de *B. atrophaeus*.

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio dilución
0	-12	322	1.00E+12	3.22E+14	3.22E+15	3.22E+15
	-11	105	1.00E+11	1.05E+13	1.05E+14	1045+14
10	-11	102	1.00E+11	1.02E+13	1.02E+14	
10	-10	238	1.00E+10	2.38E+12	2.38E+13	1.046+14
	-10	200	1.00E+10	2.00E+12	2.00E+13	
	-10	240	1.00E+10	2.40E+12	2.40E+13	
	-9	265	1.00E+09	2.65E+11	2.65E+12	
20	-9	194	1.00E+09	1.94E+11	1.94E+12	2.40E+13
	-8	494	1.00E+08	4.94E+10	4.94E+11	
	-7	294	1.00E+07	2.94E+09	2.94E+10	
	-9	110	1.00E+09	1.10E+11	1.10E+12	
	-8	135	1.00E+08	1.35E+10	1.35E+11	1 10E 1 12
30	-7	205	1.00E+07	2.05E+09	2.05E+10	1.106+12
	-7	181	1.00E+07	1.81E+09	1.81E+10	
	-7	32	1.00E+07	3.20E+08	3.20E+09	
45	-7	52	1.00E+07	5.20E+08	5.20E+09	4 20E I 00
40	-6	30	1.00E+06	3.00E+07	3.00E+08	4.206+09
	-6	18	1.00E+06	1.80E+07	1.80E+08	
	-7	3	1.00E+07	3.00E+07	3.00E+08	
	-7	15	1.00E+07	1.50E+08	1.50E+09	
60	-6	3	1.00E+06	3.00E+06	3.00E+07	2.00 - 1.00
60	-6	4	1.00E+06	4.00E+06	4.00E+07	3.00E+08
	-5	2	1.00E+05	2.00E+05	2.00E+06	
	-5	5	1.00E+05	5.00E+05	5.00E+06	
	-7	1	1.00E+07	1.00E+07	1.00E+08	
00	-7	10	1.00E+07	1.00E+08	1.00E+09	1 475 1 00
80	-6	12	1.00E+06	1.20E+07	1.20E+08	1.4/E+08
	-6	22	1.00E+06	2.20E+07	2.20E+08	

Tabla 7. Desinfección con PAA (300 mg/L) de endosporas de *B. amyloliquefaciens* spp. *plantarum*.

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio dilución
	-12	464	1.00E+12	4.64E+14	4.64E+15	
0	-11	374	1.00E+11	3.74E+13	3.74E+14	4.046+15
	-12	141	1.00E+12	1.41E+14	1.41E+15	
10	-10	92	1.00E+10	9.20E+11	9.20E+12	1 /10 15
10	-9	354	1.00E+09	3.54E+11	3.54E+12	1.416+15
	-9	305	1.00E+09	3.05E+11	3.05E+12	
20	-9	445	1.00E+09	4.45E+11	4.45E+12	0 4EE 10
20	-9	245	1.00E+09	2.45E+11	2.45E+12	5.45E+12
	-10	22	1.00E+10	2.20E+11	2.20E+12	
30	-8	200	1.00E+08	2.00E+10	2.00E+11	2.20E+12
	-8	30	1.00E+08	3.00E+09	3.00E+10	
45	-8	73	1.00E+08	7.30E+09	7.30E+10	
	-8	55	1.00E+08	5.50E+09	5.50E+10	
	-7	55	1.00E+07	5.50E+08	5.50E+09	6 40E±10
	-7	64	1.00E+07	6.40E+08	6.40E+09	0.406+10
	-6	95	1.00E+06	9.50E+07	9.50E+08	
	-6	81	1.00E+06	8.10E+07	8.10E+08	
	-7	145	1.00E+07	1.45E+09	1.45E+10	
60	-7	264	1.00E+07	2.64E+09	2.64E+10	2.058±10
00	-6	148	1.00E+06	1.48E+08	1.48E+09	2.056+10
	-5	175	1.00E+05	1.75E+07	1.75E+08	
	-7	55	1.00E+07	5.50E+08	5.50E+09	
	-7	62	1.00E+07	6.20E+08	6.20E+09	
00	-6	78	1.00E+06	7.80E+07	7.80E+08	4 22E±00
80	-6	129	1.00E+06	1.29E+08	1.29E+09	4.33E+09
	-5	91	1.00E+05	9.10E+06	9.10E+07	
	-5	90	1.00E+05	9.00E+06	9.00E+07	
	-7	59	1.00E+07	5.90E+08	5.90E+09	
100	-6	91	1.00E+06	9.10E+07	9.10E+08	5.90E+09
	-6	76	1.00E+06	7.60E+07	7.60E+08	

Tabla 8. Desinfección con PAA (300 mg/L) de endosporas de *B. amyloliquefaciens*.

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio dilución
	-10	2	1.00E+10	2.00E+10	2.00E+11	2 00E + 11
0	-9	2	1.00E+09	2.00E+09	2.00E+10	2.00E+11
	-10	1	1.00E+10	1.00E+10	1.00E+11	
	-9	5	1.00E+09	5.00E+09	5.00E+10	
10	-9	4	1.00E+09	4.00E+09	4.00E+10	1.00E+11
	-8	3	1.00E+08	3.00E+08	3.00E+09	
	-8	4	1.00E+08	4.00E+08	4.00E+09	
	-8	7	1.00E+08	7.00E+08	7.00E+09	
20	-8	7	1.00E+08	7.00E+08	7.00E+09	
20	-7	6	1.00E+07	6.00E+07	6.00E+08	7.00E+09
	-7	7	1.00E+07	7.00E+07	7.00E+08	
30	-7	9	1.00E+07	9.00E+07	9.00E+08	
	-6	11	1.00E+06	1.10E+07	1.10E+08	4.00E+08
	-6	19	1.00E+06	1.90E+07	1.90E+08	
45	-6	8	1.00E+06	8.00E+06	8.00E+07	
	-6	4	1.00E+06	4.00E+06	4.00E+07	2.00 - 07
40	-5	12	1.00E+05	1.20E+06	1.20E+07	5.001107
	-5	23	1.00E+05	2.30E+06	2.30E+07	
	-6	10	1.00E+06	1.00E+07	1.00E+08	
	-6	39	1.00E+06	3.90E+07	3.90E+08	
60	-5	30	1.00E+05	3.00E+06	3.00E+07	
60	-5	20	1.00E+05	2.00E+06	2.00E+07	2.306+07
	-4	47	1.00E+04	4.70E+05	4.70E+06	
	-4	45	1.00E+04	4.50E+05	4.50E+06	
	-6	5	1.00E+06	5.00E+06	5.00E+07	
00	-5	27	1.00E+05	2.70E+06	2.70E+07	
80	-4	31	1.00E+04	3.10E+05	3.10E+06	3.85E+07
	-4	80	1.00E+04	8.00E+05	8.00E+06	
	-6	3	1.00E+06	3.00E+06	3.00E+07	
100	-5	8	1.00E+05	8.00E+05	8.00E+06	3.00E+07
	-5	9	1.00E+05	9.00E+05	9.00E+06	

Tabla 9. Desinfección con PAA (300 mg/L) de endosporas de *B. subtilis* (aislada).

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio dilución
	-12	2	1.00E+12	2.00E+12	2.00E+13	
	-12	2	1.00E+12	2.00E+12	2.00E+13	
0	-11	5	1.00E+11	5.00E+11	5.00E+12	2.00E+13
	-11	1	1.00E+11	1.00E+11	1.00E+12	
	-10	1	1.00E+10	1.00E+10	1.00E+11	
	-11	6	1.00E+11	6.00E+11	6.00E+12	
Б	-11	1	1.00E+11	1.00E+11	1.00E+12	2 27 ⊑ ⊥12
5	-10	2	1.00E+10	2.00E+10	2.00E+11	5.276712
	-10	28	1.00E+10	2.80E+11	2.80E+12	
10	-10	5	1.00E+10	5.00E+10	5.00E+11	
	-10	30	1.00E+10	3.00E+11	3.00E+12	
	-9	6	1.00E+09	6.00E+09	6.00E+10	
	-9	7	1.00E+09	7.00E+09	7.00E+10	5.00E+11
	-8	4	1.00E+08	4.00E+08	4.00E+09	
	-8	2	1.00E+08	2.00E+08	2.00E+09	
	-8	35	1.00E+08	3.50E+09	3.50E+10	
15	-7	5	1.00E+07	5.00E+07	5.00E+08	3.50E+10
	-7	2	1.00E+07	2.00E+07	2.00E+08	
20	-6	6	1.00E+06	6.00E+06	6.00E+07	6.00E+07
	-7	1	1.00E+07	1.00E+07	1.00E+08	1.005.00
30	-5	3	1.00E+05	3.00E+05	3.00E+06	1.00E+08
	-6	8	1.00E+06	8.00E+06	8.00E+07	
45	-5	2	1.00E+05	2.00E+05	2.00E+06	8.00E+07
	-4	4	1.00E+04	4.00E+04	4.00E+05	
	-5	32	1.00E+05	3.20E+06	3.20E+07	
60	-3	5	1.00E+03	5.00E+03	5.00E+04	3.20E+07
-	-3	4	1.00E+03	4.00E+03	4.00E+04	

 Tabla 10. Desinfección con PAA (300 mg/L) de endosporas de B. subtilis (certificada).

Tiempo (min)	Dilución	UFC	FD	Endosporas /100µl	Endosporas /mL	Promedio de dilución
	-11	3	1.00E+11	3.00E+11	3.00E+12	
0	-11	3	1.00E+11	3.00E+11	3.00E+12	
0	-10	2	1.00E+10	2.00E+10	2.00E+11	3.00E+12
	-10	5	1.00E+10	5.00E+10	5.00E+11	
	-9	3	1.00E+09	3.00E+09	3.00E+10	
15	-9	4	1.00E+09	4.00E+09	4.00E+10	2 507 1 10
15	-8	3	1.00E+08	3.00E+08	3.00E+09	3.50E+10
	-8	4	1.00E+08	4.00E+08	4.00E+09	
	-7	2	1.00E+07	2.00E+07	2.00E+08	
30	-7	2	1.00E+07	2.00E+07	2.00E+08	2.00E+08
	-6	1	1.00E+06	1.00E+06	1.00E+07	
	-6	3	1.00E+06	3.00E+06	3.00E+07	
	-6	1	1.00E+06	1.00E+06	1.00E+07	
	-6	2	1.00E+06	2.00E+06	2.00E+07	
45	-5	5	1.00E+05	5.00E+05	5.00E+06	
40	-5	8	1.00E+05	8.00E+05	8.00E+06	4.156+00
	-4	24	1.00E+04	2.40E+05	2.40E+06	
	-4	12	1.00E+04	1.20E+05	1.20E+06	
	-5	16	1.00E+05	1.60E+06	1.60E+07	
	-5	6	1.00E+05	6.00E+05	6.00E+06	
60	-4	21	1.00E+04	2.10E+05	2.10E+06	
60	-4	24	1.00E+04	2.40E+05	2.40E+06	2.086+00
	-3	150	1.00E+03	1.50E+05	1.50E+06	
	-3	139	1.00E+03	1.39E+05	1.39E+06	
	-3	88	1.00E+03	8.80E+04	8.80E+05	
75	-2	470	1.00E+02	4.70E+04	4.70E+05	5.83E+05
	-2	400	1.00E+02	4.00E+04	4.00E+05	
	-3	140	1.00E+03	1.40E+05	1.40E+06	
90	-2	323	1.00E+02	3.23E+04	3.23E+05	3.24E+05
	-2	325	1.00E+02	3.25E+04	3.25E+05	

Tabla 11. Desinfección consecutiva con NaClO (30 mg/L) seguida de PAA (300 mg/L) de endosporas de *B.liqueniformis*.

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio de dilución
105	-3	120	1.00E+03	1.20E+05	1.20E+06	
	-2	305	1.00E+02	3.05E+04	3.05E+05	3.16E+05
	-2	326	1.00E+02	3.26E+04	3.26E+05	
120	-3	68	1.00E+03	6.80E+04	6.80E+05	
	-2	274	1.00E+02	2.74E+04	2.74E+05	3.86E+05
	-2	204	1.00E+02	2.04E+04	2.04E+05	

Tabla 11. Desinfección consecutiva con NaClO (30 mg/L) seguida de PAA (300 mg/L) de endosporas de *B. liqueniformis* (continuación).

Tabla 12. Desinfección consecutiva con NaClO (30 mg/L) seguida de PAA (300 mg/L) de endosporas de *B. atrophaeus*.

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio de dilución
	-12	34	1.00E+12	3.40E+13	3.40E+14	
0	-11	12	1.00E+11	1.20E+12	1.20E+13	3.40E+14
	-10	22	1.00E+10	2.20E+11	2.20E+12	
	-10	26	1.00E+10	2.60E+11	2.60E+12	
	-10	97	1.00E+10	9.70E+11	9.70E+12	
15	-9	103	1.00E+09	1.03E+11	1.03E+12	3.74E+12
	-9	161	1.00E+09	1.61E+11	1.61E+12	
	-8	40	1.00E+08	4.00E+09	4.00E+10	
	-8	113	1.00E+08	1.13E+10	1.13E+11	
	-7	94	1.00E+07	9.40E+08	9.40E+09	
20	-7	71	1.00E+07	7.10E+08	7.10E+09	
30	-6	144	1.00E+06	1.44E+08	1.44E+09	4.746+09
	-6	102	1.00E+06	1.02E+08	1.02E+09	
	-6	38	1.00E+06	3.80E+07	3.80E+08	
45	-6	3	1.00E+06	3.00E+06	3.00E+07	
	-5	5	1.00E+05	5.00E+05	5.00E+06	3.00E+07
	-4	5	1.00E+04	5.00E+04	5.00E+05	
	-4	11	1.00E+04	1.10E+05	1.10E+06	

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio de dilución
	-5	3	1.00E+05	3.00E+05	3.00E+06	
	-5	6	1.00E+05	6.00E+05	6.00E+06	
60	-4	6	1.00E+04	6.00E+04	6.00E+05	4.50E+06
	-4	2	1.00E+04	2.00E+04	2.00E+05	
	-3	14	1.00E+03	1.40E+04	1.40E+05	
75	-4	1	1.00E+04	1.00E+04	1.00E+05	
	-4	4	1.00E+04	4.00E+04	4.00E+05	
	-3	6	1.00E+03	6.00E+03	6.00E+04	2.50E+05
	-3	3	1.00E+03	3.00E+03	3.00E+04	
	D	286	1.00E+00	2.86E+02	2.86E+03	
	-3	4	1.00E+03	4.00E+03	4.00E+04	
90	-2	6	1.00E+02	6.00E+02	6.00E+03	2.55E+04
	-2	11	1.00E+02	1.10E+03	1.10E+04	
	-2	1	1.00E+02	1.00E+02	1.00E+03	
105	-1	45	1.00E+01	4.50E+02	4.50E+03	2.45E+03
	D	184	1.00E+00	1.84E+02	1.84E+03	
	-2	2	1.00E+02	2.00E+02	2.00E+03	
120	-2	9	1.00E+02	9.00E+02	9.00E+03	2 96 - 102
120	-1	31	1.00E+01	3.10E+02	3.10E+03	3.80E+U3
	D	133	1.00E+00	1.33E+02	1.33E+03	

Tabla 12. Desinfección consecutiva con NaClO (30 mg/L) seguida de PAA (300 mg/L) de endosporas de *B. atrophaeus* (continuación).

Tabla 13. Desinfección consecutiva con NaClO (30 mg/L) seguida de PAA (300 mg/L) de endosporas de *B. amyloliquefaciens* spp. *plantarum*.

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio de dilución
0	-11	15	1.00E+11	1.50E+12	1.50E+13	
	-11	17	1.00E+11	1.70E+12	1.70E+13	1 460 1 12
	-10	69	1.00E+10	6.90E+11	6.90E+12	1.405+13
	-10	117	1.00E+10	1.17E+12	1.17E+13	

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio de dilución
	-9	21	1.00E+09	2.10E+10	2.10E+11	
15	-9	21	1.00E+09	2.10E+10	2.10E+11	2 105 11
	-8	38	1.00E+08	3.80E+09	3.80E+10	2.10E+11
	-8	31	1.00E+08	3.10E+09	3.10E+10	
	-8	23	1.00E+08	2.30E+09	2.30E+10	
	-8	73	1.00E+08	7.30E+09	7.30E+10	
20	-7	133	1.00E+07	1.33E+09	1.33E+10	2 C4E+10
30	-7	93	1.00E+07	9.30E+08	9.30E+09	3.046+10
	-6	115	1.00E+06	1.15E+08	1.15E+09	
	-6	120	1.00E+06	1.20E+08	1.20E+09	
45	-6	14	1.00E+06	1.40E+07	1.40E+08	
	-6	9	1.00E+06	9.00E+06	9.00E+07	
	-5	3	1.00E+05	3.00E+05	3.00E+06	1 40F+08
	-5	6	1.00E+05	6.00E+05	6.00E+06	1.406+08
	-4	11	1.00E+04	1.10E+05	1.10E+06	
	-4	5	1.00E+04	5.00E+04	5.00E+05	
	-4	1	1.00E+04	1.00E+04	1.00E+05	
	-3	1	1.00E+03	1.00E+03	1.00E+04	
60	-2	1	1.00E+02	1.00E+02	1.00E+03	1.00E+05
	-1	87	1.00E+01	8.70E+02	8.70E+03	
	D	71	1.00E+00	7.10E+01	7.10E+02	
	-1	1	1.00E+01	1.00E+01	1.00E+02	
75	D	8	1.00E+00	8.00E+00	8.00E+01	2.05E+02
	D	31	1.00E+00	3.10E+01	3.10E+02	
	-1	2	1.00E+01	2.00E+01	2.00E+02	
90	-1	4	1.00E+01	4.00E+01	4.00E+02	2.60E+02
	D	18	1.00E+00	1.80E+01	1.80E+02	
4.05	D	12	1.00E+00	1.20E+01	1.20E+02	0.005.00
105	D	28	1.00E+00	2.80E+01	2.80E+02	2.00E+02
	-1	2	1.00E+01	2.00E+01	2.00E+02	
120	D	15	1.00E+00	1.50E+01	1.50E+02	1.75E+02

Tabla 13. Desinfección consecutiva con NaClO (30 mg/L) seguida de PAA (300 mg/L) de endosporas de *B. amyloliquefaciens* spp. *plantarum* (continuación).

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio de dilución
	-12	85	1.00E+12	8.50E+13	8.50E+14	
	-12	85	1.00E+12	8.50E+13	8.50E+14	
0	-11	218	1.00E+11	2.18E+13	2.18E+14	
0	-11	170	1.00E+11	1.70E+13	1.70E+14	J.ZZE+14
	-10	55	1.00E+10	5.50E+11	5.50E+12	
	-10	44	1.00E+10	4.40E+11	4.40E+12	
	-10	28	1.00E+10	2.80E+11	2.80E+12	
15	-10	44	1.00E+10	4.40E+11	4.40E+12	
	-9	111	1.00E+09	1.11E+11	1.11E+12	0.775 + 10
	-9	35	1.00E+09	3.50E+10	3.50E+11	2.776+12
	-8	12	1.00E+08	1.20E+09	1.20E+10	
	-8	32	1.00E+08	3.20E+09	3.20E+10	
	-8	65	1.00E+08	6.50E+09	6.50E+10	
	-8	56	1.00E+08	5.60E+09	5.60E+10	
30	-7	50	1.00E+07	5.00E+08	5.00E+09	4.39E+10
	-7	108	1.00E+07	1.08E+09	1.08E+10	
	-6	154	1.00E+06	1.54E+08	1.54E+09	
	-6	11	1.00E+06	1.10E+07	1.10E+08	
	-6	22	1.00E+06	2.20E+07	2.20E+08	
45	-5	14	1.00E+05	1.40E+06	1.40E+07	
40	-5	32	1.00E+05	3.20E+06	3.20E+07	1.035+00
	-4	68	1.00E+04	6.80E+05	6.80E+06	
	-4	38	1.00E+04	3.80E+05	3.80E+06	

Tabla 14. Desinfección consecutiva con NaClO (30 mg/L) seguida de PAA (300 mg/L) de endosporas de *B. amyloliquefaciens*.

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio de dilución
	-5	1	1.00E+05	1.00E+05	1.00E+06	
	-5	5	1.00E+05	5.00E+05	5.00E+06	
60	-4	5	1.00E+04	5.00E+04	5.00E+05	2 43F+06
00	-4	13	1.00E+04	1.30E+05	1.30E+06	2.436+00
	-3	33	1.00E+03	3.30E+04	3.30E+05	
	-3	22	1.00E+03	2.20E+04	2.20E+05	
	-2	2	1.00E+02	2.00E+02	2.00E+03	
	-1	8	1.00E+01	8.00E+01	8.00E+02	
75	-1	2	1.00E+01	2.00E+01	2.00E+02	3.53E+02
	D	19	1.00E+00	1.90E+01	1.90E+02	
	D	22	1.00E+00	2.20E+01	2.20E+02	
	D	12	1.00E+00	1.20E+01	1.20E+02	1.000.00
90	D	7	1.00E+00	7.00E+00	7.00E+01	1.20E+02
105	-1	1	1.00E+01	1.00E+01	1.00E+02	1.000.00
105	D	3	1.00E+00	3.00E+00	3.00E+01	1.00E+02
	-1	1	1.00E+01	1.00E+01	1.00E+02	
120	D	3	1.00E+00	3.00E+00	3.00E+01	3.00E+01
	D	3	1.00E+00	3.00E+00	3.00E+01	

Tabla 14. Desinfección consecutiva con NaClO (30 mg/L) seguida de PAA (300 mg/L) de endosporas de *B. amyloliquefaciens* (continuación).

Tabla 15. Desinfección consecutiva con NaClO (30 mg/L) seguida de PAA (300 mg/L) de endosporas de *B. subtilis* aislada.

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio de dilución
0	-12	1	1.00E+12	1.00E+12	1.00E+13	1.00E+13
	-10	88	1.00E+10	8.80E+11	8.80E+12	
	-10	323	1.00E+10	3.23E+12	3.23E+13	
15	-9	32	1.00E+09	3.20E+10	3.20E+11	0 00F±12
15	-9	14	1.00E+09	1.40E+10	1.40E+11	0.001112
	-8	7	1.00E+08	7.00E+08	7.00E+09	
	-8	21	1.00E+08	2.10E+09	2.10E+10	

Tiempo (min)	Dilución	UFC	FD	Endosporas /100 µL	Endosporas /mL	Promedio de dilución
30	-8	15	1.00E+08	1.50E+09	1.50E+10	1.35E+10
	-8	12	1.00E+08	1.20E+09	1.20E+10	
	-7	19	1.00E+07	1.90E+08	1.90E+09	
	-7	22	1.00E+07	2.20E+08	2.20E+09	
	-6	11	1.00E+06	1.10E+07	1.10E+08	
	-6	20	1.00E+06	2.00E+07	2.00E+08	
45	-6	9	1.00E+06	9.00E+06	9.00E+07	3.98E+07
	-6	5	1.00E+06	5.00E+06	5.00E+07	
	-5	37	1.00E+05	3.70E+06	3.70E+07	
	-5	35	1.00E+05	3.50E+06	3.50E+07	
	-4	137	1.00E+04	1.37E+06	1.37E+07	
	-4	130	1.00E+04	1.30E+06	1.30E+07	
	-5	5	1.00E+05	5.00E+05	5.00E+06	4.40E+06
60	-5	23	1.00E+05	2.30E+06	2.30E+07	
	-4	38	1.00E+04	3.80E+05	3.80E+06	
	-4	44	1.00E+04	4.40E+05	4.40E+06	
	-3	72	1.00E+03	7.20E+04	7.20E+05	4.51E+05
75	-3	104	1.00E+03	1.04E+05	1.04E+06	
	-2	181	1.00E+02	1.81E+04	1.81E+05	
90	-3	38	1.00E+03	3.80E+04	3.80E+05	3.60E+05
	-3	51	1.00E+03	5.10E+04	5.10E+05	
	-2	89	1.00E+02	8.90E+03	8.90E+04	
	-2	190	1.00E+02	1.90E+04	1.90E+05	
105	-3	83	1.00E+03	8.30E+04	8.30E+05	8.30E+05
	-2	78	1.00E+02	7.80E+03	7.80E+04	
	-2	68	1.00E+02	6.80E+03	6.80E+04	
120	-3	61	1.00E+03	6.10E+04	6.10E+05	4.40E+05
	-3	70	1.00E+03	7.00E+04	7.00E+05	
	-2	100	1.00E+02	1.00E+04	1.00E+05	
	-2	350	1.00E+02	3.50E+04	3.50E+05	

Tabla 15. Desinfección consecutiva con NaClO (30 mg/L) seguida de PAA (300 mg/L) de endosporas de *B. subtilis* aislada (continuación).

Tiempo (min)	Dilución	UFC	FD	Endosporas	Endosporas	Promedio
				/100 μL	/mL	dilución
0					7.50E+12	7.50E+12
15	-10	3	1.00E+10	3.00E+10	3.00E+11	2.75E+11
	-10	4	1.00E+10	4.00E+10	4.00E+11	
	-9	10	1.00E+09	1.00E+10	1.00E+11	
	-8	300	1.00E+08	3.00E+10	3.00E+11	
30	-6	1	1.00E+06	1.00E+06	1.00E+07	1.00E+07
	-5	2	1.00E+05	2.00E+05	2.00E+06	
	-4	9	1.00E+04	9.00E+04	9.00E+05	
	-4	2	1.00E+04	2.00E+04	2.00E+05	2.16E+05
	-4	4	1.00E+04	4.00E+04	4.00E+05	
45	-3	18	1.00E+03	1.80E+04	1.80E+05	
40	-3	19	1.00E+03	1.90E+04	1.90E+05	
	-2	112	1.00E+02	1.12E+04	1.12E+05	
	-2	95	1.00E+02	9.50E+03	9.50E+04	
60	-5	1	1.00E+05	1.00E+05	1.00E+06	2.9E02
	-1	2	1.00E+01	2.00E+01	2.00E+02	
	D	38	1.00E+00	3.80E+01	3.80E+02	
	-2	8	1.00E+02	8.00E+02	8.00E+03	4.67E+03
75	-1	35	1.00E+01	3.50E+02	3.50E+03	
	D	250	1.00E+00	2.50E+02	2.50E+03	
	-1	1	1.00E+01	1.00E+01	1.00E+02	1.00E+02
00	-1	1	1.00E+01	1.00E+01	1.00E+02	
90	D	2	1.00E+00	2.00E+00	2.00E+01	
	D	1	1.00E+00	1.00E+00	1.00E+01	
105	-2	1	1.00E+02	1.00E+02	1.00E+03	2.00E+01
	-1	2	1.00E+01	2.00E+01	2.00E+02	
	D	3	1.00E+00	3.00E+00	3.00E+01	
	D	1	1.00E+00	1.00E+00	1.00E+01	
120	-2	1	1.00E+02	1.00E+02	1.00E+03	1.00E+01
	D	1	1.00E+00	1.00E+00	1.00E+01	

Tabla 16. Desinfección consecutiva con NaClO (30 mg/L) seguida de PAA (300 mg/L) de endosporas de *B. subtilis* certificada.

Anexo VII. Constancias de eventos científicos

AMEXBIO Asociación Mexicana de Biosegurida CLINICAL CONTAINMENT OF INFECTIOUS DISEASES WORLD CONFERENCE &

INTERNATIONAL SYMPOSIUM ON BIOSAFETY AND BIOSECURITY

Ciudad de México a 23 de Noviembre de 2021

La Asociación Mexicana de Bioseguridad A.C.

Otorga la presente constancia a:

OCAMPO RODRÍGUEZ DULCE BRIGITE, Coronel Olivares Claudia, Martínez Hernández Sylvia, Vázquez Rodríguez Gabriela Alejandra, Prieto García Francisco, Lucho Constantino Carlos Alexander e Iturbe Acosta Ulises

Por su valiosa presentación de CARTEL con exposición ORAL, dentro de las actividades del "XIII Clinical Containment of Infectious Diseases: World Conference", con el trabajo libre:

"Diversity of chlorine-resistant bacteria isolated from disinfected waste water"

Que se llevó en una reunión virtual en la plataforma de zoom el miércoles 10 de noviembre del 2021.

Dra. en C. Klintsy Julieta Torres Hernández Presidente AMEXBIO 2021-2022

LA UNIVERSIDAD TECNOLÓGICA DE CULIACÁN Y EL COMITÉ ORGANIZADOR DEL **6TH CONFERENCE IWA-YWP MEXICO 2022.** LE EXTIENDE EL PRESENTE

RECONOCIMIENTO

Dulce Brigite Ocampo Rodríguez, Sylvia Martínez Hernández, **Gabriela Alejandra Vázquez Rodríguez, Jose Antonio Rodríguez Ávila, Carlos Alexander Lucho Constantino, Ulises Iturbe Acosta, Claudia Coronel Olivares**

por su participación con la PRESENTACIÓN DEL PÓSTER titulado "Cinéticas de inactivación con hipoclorito de sodio de diferentes formas biológicas de bacterias aisladas del efluente de una PTAR y de una cepa certificada de Bacillus subtilis",

en el marco del congreso que se llevó a cabo del 25 al 27 de mayo de 2022.

CULIACÁN, SINALOA MÉXICO **MAYO DE 2022**

Dra. Aurora Margarita Pat Espadas Presidenta YWP México Investigadores por México ERNO-Instituto de Geología UNAM

Dra. Adriana Roé Sosa Presidenta Comité organizador Profesora Tiempo Completo Universidad Tecnológica de Culiacán

Otorga el presente RECONOCIMIENTO a:

Dulce Brigite Ocampo Rodríguez

Por la Mención Especial a la presentación del trabajo titulado "Cinéticas de inactivación de endosporas de *bacillus subtilis* con ácido peracético" el día 7 de septiembre en el marco del **4º Seminario Virtual Diáspora Hídrica 2023.**

Dra. Rosa María Ramírez Zamora

Directora del Instituto de Ingeniería de la Universidad Nacional Autónoma de México 7 Gonzaly Dr. Fernando González Villarreal

Coordinador Técnico de la Red del Agua

Universidad Nacional Autónoma

de México

Dr. Adrian Pedrozo Acuña

Director General del Instituto Mexicano de Tecnología del Agua

Instituto de Ciencias Básicas e Ingeniería

Otorgan el presente

RECONOCIMIENTO

Α

Dulce Brigite Ocampo Rodríguez, Claudia Coronel Olivares, Sylvia Martínez Hernández, Gabriela Alejandra Vázquez Rodríguez, Francisco Prieto García

Por su participación como Ponente con el trabajo: "Desinfección consecutiva de cepas de *Bacillus subtilis* aisladas de una planta de tratamiento de aguas residuales ", en el marco del XV aniversario del Programa de Doctorado en Ciencias Ambientales

"Amor, Orden y Progreso"

Mineral de la Reforma, Hgo., a 21 de noviembre de 2019

Número de Control: : ICBI-AAQ/R989/2019

Dr. Carlos Andrés Galán Vidal Jefe del Área Académica de Química

Dra. Klanda Marmolejo Santillán Coordinadora del Doctorado en Ciencias Ambientales

Mene Ory

Dra. Elena María Otazo Sánchez Líder del Cuerpo Académico de Ciencias Ambientales

